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1. 应用
1.1. Model Checking | 回顾

回顾: 定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ
M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

回顾: 下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: 一种方案: M 和 ϕ 均用 Logics

Propositional logic, First-order logic, Higher-order logic
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1. 应用
1.1. Model Checking | 回顾 | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!
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1. 应用
1.1. Model Checking | 回顾 | Limitation of higher-order logic

回顾: 另一种答案: Second-order Logic

¬∃P∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4)

where

C1
def= P (x, x)

C2
def= P (x, y) ∧ P (y, z) → P (x, z)

C3
def= P (u, v) → ⊥

C4
def= R(x, y) → P (x, y)

问题:
难以理解ϕ，难以构建ϕ
如何自动验证?
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1. 应用
1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: 一种方案: M 和 ϕ 均用 Logics

Propositional logic, First-order logic, Higher-order logic

还有一个大问题:
用 Logics 来直接构建 M 的缺点?
不够直观

怎样自动化?
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1. 应用
1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

模型检测 (重新定义问题):

重新定义ϕ: LTL, CTL, ...

重新定义M: Transition System 等

NuSMV 语言的使用

下一节 (预告) (2. 理论)

如何设计算法求解上述问题

利用 SAT 求解工具, 如 BMC

设计新的算法, 如 BDD
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1. 应用
1.1. Model Checking | 定义

再往前回顾: 定义: Verifier
A verifier for a language A is an algorithm V , where

A = {w | V accepts ⟨w, c⟩ for some string c }.

再往前回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

System
P

Model
w = M

Specification
A = ϕ

Model Checking: (1) M ⇒ M, s (2) ϕ: classical logic ⇒ temporal logic
详见后页
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1. 应用

To verify that a system satisfies a property, we must do three things:
• model the system using the description language of a model

checker, arriving at a model M;
• code the property using the specification language of the model

checker, resulting in a temporal logic formula ϕ;
• Run the model checker with inputs M and ϕ.

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of ϕ. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are
very powerful, for they allow us to focus on the essentials of our particular
concern.



1. 应用
1.1. Model Checking | 定义

定义: Model checking
Model checking is the process of computing an answer to the question of
whether M, s ⊨ ϕ holds, where

M is an appropriate model of the system under consideration.
s is a state of that model
⊨ is the underlying satisfaction relation
ϕ is a formula of one of the following temporal logics:

Linear-time Temporal Logic (LTL)
Computation Tree Logic (CTL)
etc.

下一个问题: temporal logic? LTL? CTL?
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1. 应用
1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)
Linear-time temporal logic (LTL) has following syntax given in BNF:

ϕ ::=⊤ | ⊥ | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)
| (X ϕ) | (F ϕ) | (G ϕ) | (ϕ U ϕ) | (ϕ W ϕ) | (ϕ R ϕ)

where p is any propositional atom from some set Atoms.

Convention: The unary connectives (consisting of ¬ and the temporal
connectives X, F and G) bind most tightly. Next in the order come U, R
and W; then come ∧ and ∨; and after that comes →. For example:

(((F p) ∧ (G q)) → (p W r)) ≡ F p ∧ G q → p W r

(F (p → (G r)) ∨ ((¬q) U p)) ≡ F (p → G r) ∨ ¬q U p

(p W (q W r)) ≡ p W (q W r)
((G (F p)) → (F (q ∨ s))) ≡ G F p → F (q ∨ s)
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1. 应用

It’s boring to write all those brackets, and makes the formulas hard to
read. Many of them can be omitted without introducing ambiguities;
for example, (p → (F q)) could be written p → F q without ambiguity.
Others, however, are required to resolve ambiguities. In order to omit some
of those, we assume similar binding priorities for the LTL connectives to
those we assumed for propositional and predicate logic.



1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R
思路: 先定义一种最简化的模型, 然后利用这个模型来定义符号

回顾: 定义: finite automaton
A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

1 Q is a finite set called the states,
2 Σ is a finite set called the alphabet,
3 δ : Q× Σ → Q is the transition function,
4 q0 ∈ Q is the start state, and
5 F ⊆ Q is the set of accept states.

q1start q2 q3

0 1

1
0

0,1
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R
思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system
A transition system M = (S,→, L) is

S: a set of states
→: a transition relation.

every s ∈ S has some s′ ∈ S with
s → s′

L: a label function.
L : S → P(Atoms)

p, q

q, r r

s0

s1

s2

S = {s0, s1, s2}
transitions: s0 → s1, s0 → s2, s1 → s0, s1 → s2, s2 → s2

L(s0) = {p, q}, L(s1) = {q, r}, L(s2) = {r}
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1. 应用

Transition systems are also simply called models in this chapter. So a
model has a collection of states S, a relation →, saying how the system
can move from state to state, and, associated with each state s, one has
the set of atomic propositions L(s) which are true at that particular state.
We write P(Atoms) for the power set of Atoms, a collection of atomic
descriptions. For example, the power set of {p, q} is {∅, {p}, {q}, {p, q}}.
A good way of thinking about L is that it is just an assignment of truth
values to all the propositional atoms, as it was the case for propositional
logic (we called that a valuation). The difference now is that we have more
than one state, so this assignment depends on which state s the system is
in: L(s) contains all atoms which are true in state s.



1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

定义: path
A path in a model M = (S,→, L) is an infinite sequence of states
s1, s2, s3, . . . in S such that, for each i ≥ 1, si → si+1. We write the path
as s1 → s2 → . . .

定义: πi

Consider the path π = s1 → s2 → . . . .
It represents a possible future of our system: first it is in state s1,
then it is in state s2, and so on.

We write πi for the suffix starting at si, e.g., s3 → s4 → . . .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 48

https://faculty.ustc.edu.cn/huangwenchao


1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

定义: Semantic of LTL (for π ⊨ ϕ)
Let M = (S,→, L) be a model and π = s1 → s2 → . . . be a path in M.
Whether π satisfies an LTL formula is defined by the satisfaction relation
⊨ as follows:

1 π ⊨ ⊤
2 π ⊭ ⊥
3 π ⊨ p iff p ∈ L(s1)
4 π ⊨ ¬ϕ iff π ⊭ ϕ
5 π ⊨ ϕ1 ∧ ϕ2 iff π ⊨ ϕ1 and π ⊨ ϕ2
6 π ⊨ ϕ1 ∨ ϕ2 iff π ⊨ ϕ1 or π ⊨ ϕ2
7 π ⊨ ϕ1 → ϕ2 iff π ⊨ ϕ2 whenever π ⊨ ϕ1

8 π ⊨ X ϕ iff π2 ⊨ ϕ
9 π ⊨ G ϕ iff for all i ≥ 1, πi ⊨ ϕ
10 π ⊨ F ϕ iff there is some i ≥ 1 such that πi ⊨ ϕ
11 π ⊨ ϕ U ψ iff there is some i ≥ 1 such that πi ⊨ ψ and for all
j = 1, . . . , i− 1 we have πj ⊨ ϕ

12 π ⊨ ϕ W ψ iff either there is some i ≥ 1 such that πi ⊨ ψ and for all
j = 1, . . . , i− 1 we have πj ⊨ ϕ; or for k ≥ 1 we have πk ⊨ ϕ

13 π ⊨ ϕ R ψ iff either there is some i ≥ 1 such that πi ⊨ ϕ and for all
j = 1, . . . , i, we have πj ⊨ ψ, or for all k ≥ 1 we have πk ⊨ ψ
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics
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1. 应用

一种易于理解的方法

• X: next
• G: global
• F: future
• U: until (strong version)
• W: until (weak version)
• R: release



1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

3. π ⊨ p iff p ∈ L(s1)

For example, π ⊨ p:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ...
p

8. π ⊨ X ϕ iff π2 ⊨ ϕ
For example, π ⊨ X p:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ...
p
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

9. π ⊨ G ϕ iff for all i ≥ 1, πi ⊨ ϕ
For example, π ⊨ G p:

s1

p

s2

p

s3

p

s4

p

s5

p

s6

p

s7

p

s8

p

s9

p

s10

p
...

10. π ⊨ F ϕ iff there is some i ≥ 1 such that πi ⊨ ϕ
For example, π ⊨ F p:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ...
p
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

11. π ⊨ ϕ U ψ iff there is some i ≥ 1 such that πi ⊨ ψ and for all
j = 1, . . . , i− 1 we have πj ⊨ ϕ
For example, π ⊨ p U q:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p p p p p p p p
...

q

12. π ⊨ ϕ W ψ iff either there is some i ≥ 1 such that πi ⊨ ψ and for all
j = 1, . . . , i− 1 we have πj ⊨ ϕ; or for k ≥ 1 we have πk ⊨ ϕ
For example, π ⊨ p W q:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p p p p p p p p
...

q

s1

p

s2

p

s3

p

s4

p

s5

p

s6

p

s7

p

s8

p

s9

p

s10

p
...
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

11. π ⊨ ϕ R ψ iff either there is some i ≥ 1 such that πi ⊨ ϕ and for all
j = 1, . . . , i, we have πj ⊨ ψ, or for all k ≥ 1 we have πk ⊨ ψ
For example, π ⊨ q R p:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p p p p p p p p
...

q

s1

p

s2

p

s3

p

s4

p

s5

p

s6

p

s7

p

s8

p

s9

p

s10

p
...

性质: ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

回顾定义: Semantic of LTL (for π ⊨ ϕ)
Let M = (S,→, L) be a model and π = s1 → s2 → . . . be a path in M.
Whether π satisfies an LTL formula is defined by the satisfaction relation
⊨ as follows:
...

定义: Semantic of LTL (for M, s ⊨ ϕ)
Suppose M = (S,→, L) is a model, s ∈ S, and ϕ an LTL formula. We
write M, s ⊨ ϕ if, for every execution path π of M starting at s, we have
π ⊨ ϕ.
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1. 应用
1.2 Linear-time temporal Logic (LTL) | Semantics

p, q

q, r r

s0

s1

s2

M, s0 ⊨ p ∧ q holds
M, s0 ⊨ ¬r holds
M, s0 ⊨ ⊤ holds
M, s0 ⊨ X r holds
M, s0 ⊨ X (q ∧ r) does not hold
M, s0 ⊨ G ¬(p ∧ r) holds
M, s2 ⊨ G r holds
For any state s of M, we have
M, s ⊨ F (¬q ∧ r) → F G r

Which π satisfies π ⊨ G F p?
π1 = s0 → s1 → s0 → s1 → . . . Yes
π2 = s0 → s2 → s2 → s2 → . . . No

M, s0 ⊨ G F p → G F r holds
M, s0 ⊨ G F r → G F p does not hold
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1. 应用
1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?
答: 看如下案例

It is impossible to get to a state where started holds, but ready does
not hold:

G¬(started ∧ ¬ready)

For any state, if a request (of some resource) occurs, then it will
eventually be acknowledged:

G (requested → F acknowledged)

A certain process is enabled infinitely often on every computation
path:

G F enabled
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 48

https://faculty.ustc.edu.cn/huangwenchao


1. 应用
1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?
答: 看如下案例

Whatever happens, a certain process will eventually be permanently
deadlocked:

F G deadlock

If the process is enabled infinitely often, then it runs infinitely often:

G F enabled → G F running

An upwards travelling lift at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor:

G (floor2 ∧ directionup ∧ ButtonPressed5 → (directionup U floor5))
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1. 应用
1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?
答: 看如下案例

From any state it is possible to get to a restart state
i.e., there is a path from all states to a state satisfying restart

The lift can remain idle on the third floor with its doors closed
i.e., from the state in which it is on the third floor, there is a path
along which it stays there

LTL can’t express these because it cannot directly assert the existence of
paths.
怎么办?
另一种选择: CTL
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1. 应用
1.2 LTL | Equivalences

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

¬G ϕ ≡ F ¬ϕ ¬F ϕ ≡ G ¬ϕ ¬X ϕ ≡ X ¬ϕ

¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

F (ϕ ∨ ψ) ≡ F ϕ ∨ F ψ G (ϕ ∧ ψ) ≡ G ϕ ∧ G ψ

F ϕ ≡ ⊤ U ϕ G ϕ ≡ ⊥ R ϕ

ϕ U ψ ≡ ϕ W ψ ∧ F ψ ϕ W ψ ≡ ϕ U ψ ∨ G ψ

ϕ W ψ ≡ ψ R (ϕ ∨ ψ) ϕ R ψ ≡ ψ W (ϕ ∧ ψ)
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1. 应用
1.3 Computation Tree Logic (CTL)

回顾: 定义: Linear-time temporal logic (LTL)
Linear-time temporal logic (LTL) has following syntax given in BNF:

ϕ ::=⊤ | ⊥ | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)
| (X ϕ) | (F ϕ) | (G ϕ) | (ϕ U ϕ) | (ϕ W ϕ) | (ϕ R ϕ)

where p is any propositional atom from some set Atoms.

定义: Computation Tree Logic (CTL)
Computation Tree logic (CTL) has following syntax given in BNF:

ϕ ::=⊤ | ⊥ | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)
| (AX ϕ) | (EX ϕ) | (AF ϕ) | (EF ϕ) | (AG ϕ) | (EG ϕ)
| A[ϕ U ϕ] | E[ϕ U ϕ]

where p is any propositional atom from some set Atoms.
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

定义: Semantic of CTL (for M, s ⊨ ϕ)
Let M = (S,→, L) be a model for CTL, s in S, ϕ a CTL formula. The
relation M, s ⊨ ϕ is defined by structural induction on ϕ

1 M, s ⊨ ⊤
2 M, s ⊭ ⊥
3 M, s ⊨ p iff p ∈ L(s)
4 M, s ⊨ ¬ϕ iff M, s ⊭ ϕ
5 M, s ⊨ ϕ1 ∧ ϕ2 iff M, s ⊨ ϕ1 and M, s ⊨ ϕ2
6 M, s ⊨ ϕ1 ∨ ϕ2 iff M, s ⊨ ϕ1 or M, s ⊨ ϕ2
7 M, s ⊨ ϕ1 → ϕ2 iff M, s ⊨ ϕ2 whenever M, s ⊨ ϕ1

8 M, s ⊨ AX ϕ iff for all s1 such that s → s1 we have M, s1 ⊨ ϕ
9 M, s ⊨ EX ϕ iff for some s1 such that s → s1, we have M, s1 ⊨ ϕ
10 M, s ⊨ AG ϕ iff for all paths s1 → s2 → s3 → . . . , where s1 equals
s, and for all si along the path, we have M, si ⊨ ϕ

11 M, s ⊨ EG ϕ iff there is a path s1 → s2 → s3 → . . . , where s1
equals s, and for all si along the path, we have M, si ⊨ ϕ

12 M, s ⊨ AF ϕ iff for all paths s1 → s2 → s3 → . . . , where s1 equals s,
and there is some si such that M, si ⊨ ϕ

13 M, s ⊨ EF ϕ iff there is a path s1 → s2 → s3 → . . . , where s1 equals
s, and there is some si such that M, si ⊨ ϕ

14 M, s ⊨ A[ϕ1 U ϕ2] iff for all paths s1 → s2 → s3 → . . . , where s1
equals s, that path satisfies ϕ1 U ϕ2, i.e., there is some si along the
path, such that M, si ⊨ ϕ2, and, for each j < i, we have M, si ⊨ ϕ1

15 M, s ⊨ E[ϕ1 U ϕ2] iff there is a path s1 → s2 → s3 → . . . , where s1
equals s, that path satisfies ϕ1 U ϕ2, i.e., there is some si along the
path, such that M, si ⊨ ϕ2, and, for each j < i, we have M, si ⊨ ϕ1
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

3. M, s ⊨ p iff p ∈ L(s)

For example,

M, s0 ⊨ ϕ

ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ AX ϕ iff for all s1
such that s → s1 we have
M, s1 ⊨ ϕ

For example,

M, s0 ⊨ AX ϕ

ϕ ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ EX ϕ iff for some s1
such that s → s1, we have
M, s1 ⊨ ϕ

For example,

M, s0 ⊨ EX ϕ

ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ AG ϕ iff for all paths
s1 → s2 → s3 → . . . , where
s1 equals s, and for all si

along the path, we have
M, si ⊨ ϕ

For example,

M, s0 ⊨ AG ϕ

ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ

...

...

... ...
...

s0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 48

https://faculty.ustc.edu.cn/huangwenchao


1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ EG ϕ iff there is a
path s1 → s2 → s3 → . . . ,
where s1 equals s, and for all
si along the path, we have
M, si ⊨ ϕ

For example,

M, s0 ⊨ EG ϕ

ϕ

ϕ

ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ AF ϕ iff for all paths
s1 → s2 → s3 → . . . , where
s1 equals s, and there is some
si such that M, si ⊨ ϕ

For example,

M, s0 ⊨ AF ϕ

ϕ ϕ ϕ

ϕ

ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ EF ϕ iff there is a
path s1 → s2 → s3 → . . . ,
where s1 equals s, and there
is some si such that
M, si ⊨ ϕ

For example,

M, s0 ⊨ EF ϕ

ϕ

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ A[ϕ1 U ϕ2] iff for all
paths s1 → s2 → s3 → . . . ,
where s1 equals s, that path
satisfies ϕ1 U ϕ2, i.e., there is
some si along the path, such
that M, si ⊨ ϕ2, and, for
each j < i, we have
M, si ⊨ ϕ1

For example,

M, s0 ⊨ A[ϕ1 U ϕ2]

ϕ1

ϕ1 ϕ2

ϕ1

ϕ2 ϕ1

ϕ2

...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

M, s ⊨ E[ϕ1 U ϕ2] iff there
is a path
s1 → s2 → s3 → . . . , where
s1 equals s, that path
satisfies ϕ1 U ϕ2, i.e., there is
some si along the path, such
that M, si ⊨ ϕ2, and, for
each j < i, we have
M, si ⊨ ϕ1

For example,

M, s0 ⊨ E[ϕ1 U ϕ2]

ϕ1

ϕ1

ϕ1

ϕ2
...

...

... ...
...

s0
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

p, q

q, r r

s0

s1

s2

M, s0 ⊨ p ∧ q holds
M, s0 ⊨ ¬r holds
M, s0 ⊨ ⊤ holds
M, s0 ⊨ EX (q ∧ r) holds
M, s0 ⊨ ¬AX (q ∧ r) holds
M, s0 ⊨ ¬EF (p ∧ r) holds
M, s2 ⊨ EG r holds
M, s0 ⊨ AF r holds
M, s0 ⊨ E[(p ∧ q) U r] holds
M, s0 ⊨ A[p U r] holds
M, s0 ⊨ AG (p ∨ q ∨ r → EF EG r)
holds

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 48

https://faculty.ustc.edu.cn/huangwenchao


1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

回顾: 反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

回顾: 反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

回顾: 另一种答案: Second-order Logic

¬∃P∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4)

where

C1
def= P (x, x)

C2
def= P (x, y) ∧ P (y, z) → P (x, z)

C3
def= P (u, v) → ⊥

C4
def= R(x, y) → P (x, y)
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

新答案: 使用 CTL

M, n ⊨ EF (s = n′)
2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and
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1. 应用
1.3 Computation Tree Logic (CTL) | Equivalences

¬AF ϕ ≡ EG ¬ϕ

¬EF ϕ ≡ AG ¬ϕ

¬AX ϕ ≡ EX ¬ϕ

AF ϕ ≡ A[⊤ U ϕ]

EF ϕ ≡ E[⊤ U ϕ]
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1. 应用
1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it cannot directly assert the
existence of paths.

CTL can express the existence of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?
答案: No

例:
An LTL formula:

FG p

How to express it in CTL? AFAG p? No
Another LTL formula?

F p → F q

怎么办?
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1. 应用
1.3 Computation Tree Logic (CTL) | LTL v.s. CTL | CTL*

CTL* is a logic which combines the expressive powers of LTL and CTL, by
dropping the CTL constraint that every temporal operator (X, U, F, G)
has to be associated with a unique path quantifier (A, E). For example:

A[(p U r) ∨ (q U r)]: along all paths, either p is true until r, or q is
true until r.
A[X p ∨ XX p]: along all paths, p is true in the next state, or the
next but one.
E[G F p]: there is a path along which p is infinitely often true.
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

定义: CTL*
The syntax of CTL* involves two classes of formulas:

state formulas, which are evaluated in states:

ϕ ::== ⊤ | p | (¬ϕ) | (ϕ ∧ ϕ) | A[α] | E[α]

where p is any atomic formula and α any path formula
path formulas, which are evaluated along paths:

α ::== ϕ | (¬α) | (α ∧ α) | (α U α) | (G α) | (F α) | (X α)
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

LTL CTL

CTL*
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1. 应用
1.3 Computation Tree Logic (CTL) | Semantics

Concluding:
LTL, CTL, CTL* can be used to model ϕ, instead of propositional
logics, first-order logics, higher-order logics
Transition system can be used to model M, instead of logics

剩下的问题:
How to program using LTL, CTL, CTL*, transition system

Using NuSMV (见第 1.4 节)
How to implement algorithms for NuSMV

(见第 2 节)
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作业
246 3 Verification by model checking

q3

q1 q2

ab

q4

ab

ab ab

Figure 3.39. A model M.

2. Consider the system of Figure 3.39. For each of the formulas φ:
(a) G a
(b) a U b
(c) a U X (a ∧ ¬b)
(d) X¬b ∧ G (¬a ∨ ¬b)
(e) X (a ∧ b) ∧ F (¬a ∧ ¬b)

(i) Find a path from the initial state q3 which satisfies φ.
(ii) Determine whether M, q3 ! φ.

3. Working from the clauses of Definition 3.1 (page 175), prove the equivalences:

φ U ψ ≡ φ W ψ ∧ Fψ
φ W ψ ≡ φ U ψ ∨ Gφ

φ W ψ ≡ ψ R (φ ∨ ψ)
φ R ψ ≡ ψ W (φ ∧ ψ) .

4. Prove that φ U ψ ≡ ψ R (φ ∨ ψ) ∧ Fψ.
5. List all subformulas of the LTL formula ¬p U (F r ∨ G¬q → q W ¬r).
6. ‘Morally’ there ought to be a dual for W. Work out what it might mean, and

then pick a symbol based on the first letter of the meaning.
7. Prove that for all paths π of all models, π ! φ W ψ ∧ Fψ implies π ! φ U ψ.

That is, prove the remaining half of equivalence (3.2) on page 185.
8. Recall the algorithm NNF on page 62 which computes the negation normal form

of propositional logic formulas. Extend this algorithm to LTL: you need to add
program clauses for the additional connectives X, F, G and U, R and W; these
clauses have to animate the semantic equivalences that we presented in this
section.
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作业
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r

p, q q, r

p, t s2

s3

s1

s0

Figure 3.41. Another model with four states.

(c) [[¬φ]] = S − [[φ]],
(d) [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
(e) [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]
(f)* [[φ1 → φ2]] = (S − [[φ1]]) ∪ [[φ2]]
(g)* [[AXφ]] = S − [[EX¬φ]]
(h) [[A(φ2 U φ2)]] = [[¬(E(¬φ1 U (¬φ1 ∧ ¬φ2)) ∨ EG¬φ2)]].

8. Consider the model M in Figure 3.41. Check whether M, s0 ! φ and M, s2 ! φ
hold for the CTL formulas φ:
(a) AF q
(b) AG (EF (p ∨ r))
(c) EX (EX r)
(d) AG (AF q).

9.* The meaning of the temporal operators F, G and U in LTL and AU, EU, AG,
EG, AF and EF in CTL was defined to be such that ‘the present includes the
future.’ For example, EF p is true for a state if p is true for that state already.
Often one would like corresponding operators such that the future excludes the
present. Use suitable connectives of the grammar on page 208 to define such
(six) modified connectives as derived operators in CTL.

10. Which of the following pairs of CTL formulas are equivalent? For those which
are not, exhibit a model of one of the pair which is not a model of the
other:
(a) EFφ and EGφ
(b)* EFφ ∨ EFψ and EF (φ ∨ ψ)
(c)* AFφ ∨ AFψ and AF (φ ∨ ψ)
(d) AF¬φ and ¬EGφ
(e)* EF¬φ and ¬AFφ
(f) A[φ1 U A[φ2 U φ3]] and A[A[φ1 U φ2] U φ3], hint: it might make it simpler

if you think first about models that have just one path
(g) ' and AGφ→ EGφ
(h)* ' and EGφ→ AGφ.

11. Find operators to replace the ?, to make the following equivalences:
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本章大作业参考论文

大作业可参考论文 (但不限于下列论文):
经典

Word level model checking—avoiding the Pentium FDIV error
应用

Liveness Verification of Stateful Network Functions
Weak, strong, and strong cyclic planning via symbolic model checking
Specification Patterns for Robotic Missions
Synthesis of Reactive Switching Protocols From
Temporal Logic Specifications

工具实现
NUSMV:A new symbolic model verifier
The nuXmv symbolic model checker
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