
形式化方法导引
第 5 章 模型检测

5.1 应用 – 5.1.4 NuSMV

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Introduction

NuSMV (sometimes called simply SMV): A language for
describing models
specifying LTL / CTL formulas, etc.
check the validity of the formulas on the models

The output of model checking
True, if the specifications holds
a trace, otherwise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Introduction

NuSMV (sometimes called simply SMV): A language for
describing models
specifying LTL / CTL formulas, etc.
check the validity of the formulas on the models

The output of model checking
True, if the specifications holds
a trace, otherwise

20
24

-0
2-

13
形式化方法导引

1. 应用

NuSMV (sometimes called simply SMV) provides a language for describing
the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some speci-
fications (temporal logic formulas). It produces as output either the word
‘true’if the specifications hold, or a trace showing why the specification

is false for the model represented by our program.

1. 应用
1.4 Verification by NuSMV | Introduction

MODULE main
VAR

request : boolean;
status : {ready ,busy};

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
TRUE : {ready ,busy};

esac;
LTLSPEC

G(request -> F status=busy)

NuSMV v.s. C, Java...
In Common

one, or more
modules
main

Differences
state transition
specification
non-deterministic
abstraction

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Introduction

MODULE main
VAR

request : boolean;
status : {ready ,busy};

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
TRUE : {ready ,busy};

esac;
LTLSPEC

G(request -> F status=busy)

NuSMV v.s. C, Java...
In Common

one, or more
modules
main

Differences
state transition
specification
non-deterministic
abstraction20

24
-0

2-
13

形式化方法导引

1. 应用

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules
can declare variables and assign to them. Assignments usually give the
initial value of a variable and its next value as an expression in terms of
the current values of variables. This expression can be non-deterministic
(denoted by several expressions in braces, or no assignment at all). Non-
determinism is used to model the environment and for abstraction.

The SMV consists of a program and a specification. The program has
two variables, request of type boolean and status of enumeration type
ready, busy: 0 denotes “false” and 1 represents “true”. The initial and
subsequent values of variable request are not determined within this pro-
gram; this conservatively models that these values are determined by an
external environment. This under-specification of request implies that the
value of variable status is partially determined: initially, it is ready; and it
becomes busy whenever request is true. If request is false, the next value
of status is not determined.

1. 应用
1.4 Verification by NuSMV | Introduction

MODULE main
VAR

request : boolean;
status : {ready ,busy};

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
TRUE : {ready ,busy};

esac;
LTLSPEC

G(request -> F status=busy)

3.3 Model checking: systems, tools, properties 193

req
ready busy

req

¬req
busyready

¬req

Figure 3.9. The model corresponding to the SMV program in the text.

easily verify that the specification of our module main holds of the model in
Figure 3.9.

Modules in SMV SMV supports breaking a system description into sev-
eral modules, to aid readability and to verify interaction properties. A mod-
ule is instantiated when a variable having that module name as its type is
declared. This defines a set of variables, one for each one declared in the
module description. In the example below, which is one of the ones dis-
tributed with SMV, a counter which repeatedly counts from 000 through to
111 is described by three single-bit counters. The module counter cell is
instantiated three times, with the names bit0, bit1 and bit2. The counter
module has one formal parameter, carry in, which is given the actual value
1 in bit0, and bit0.carry out in the instance bit1. Hence, the carry in of
module bit1 is the carry out of module bit0. Note that we use the period
‘.’ in m.v to access the variable v in module m. This notation is also used by
Alloy (see Chapter 2) and a host of programming languages to access fields
in record structures, or methods in objects. The keyword DEFINE is used
to assign the expression value & carry in to the symbol carry out (such
definitions are just a means for referring to the current value of a certain
expression).

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

LTLSPEC
G F bit2.carry_out

运行结果: $./NuSMV c-sample1.smv
– specification G (request -> F status = busy) is true

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

例: Mutual exclusion (互斥，操作系统经典问题)
回顾: 关键词: critical sections (临界区)
回顾: 需求: Only one process can be in its critical section at a time
问题: to find a protocol for determining which process is allowed to
enter its critical section at which time

如何利用 NuSMV 求解上述问题:
1 specify the properties of the protocol using NuSMV
2 design a protocol
3 model the protocol using NuSMV
4 check the output of NuSMV

if true, problem solved
if not, goto step 2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

例: Mutual exclusion (互斥，操作系统经典问题)
回顾: 关键词: critical sections (临界区)
回顾: 需求: Only one process can be in its critical section at a time
问题: to find a protocol for determining which process is allowed to
enter its critical section at which time

如何利用 NuSMV 求解上述问题:
1 specify the properties of the protocol using NuSMV
2 design a protocol
3 model the protocol using NuSMV
4 check the output of NuSMV

if true, problem solved
if not, goto step 2

20
24

-0
2-

13
形式化方法导引

1. 应用

Let us now look at a larger example of verification using LTL, having
to do with mutual exclusion. When concurrent processes share a resource
(such as a file on a disk or a database entry), it may be necessary to ensure
that they do not have access to it at the same time. Several processes
simultaneously editing the same file would not be desirable.

We therefore identify certain critical sections of each process’code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though
it should be as small as possible so that no unnecessary exclusion takes
place). The problem we are faced with is to find a protocol for determining
which process is allowed to enter its critical section at which time. Once we
have found one which we think works, we verify our solution by checking
that it has some expected properties, such as the following ones.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

1. Specify the properties of the protocol using NuSMV
Safety: Only one process is in its critical section at any time.
Liveness: Whenever any process requests to enter its critical section,
it will eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical
section.
No strict sequencing: Processes need not enter their critical section in
strict sequence.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

1. Specify the properties of the protocol using NuSMV
Safety: Only one process is in its critical section at any time.
Liveness: Whenever any process requests to enter its critical section,
it will eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical
section.
No strict sequencing: Processes need not enter their critical section in
strict sequence.

20
24

-0
2-

13
形式化方法导引

1. 应用

Some rather crude protocols might work on the basis that they cycle
through the processes, making each one in turn enter its critical section.
Since it might be naturally the case that some of them request access
to the shared resource more often than others, we should make sure our
protocol has the property

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:
188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

processes
1,2

states
n: in its non-critical state
t: trying to enter its critical
state
c: in its critical state

state transitions
ni → ti → ci → ni . . .

问题: Is the model correct?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:
188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

processes
1,2

states
n: in its non-critical state
t: trying to enter its critical
state
c: in its critical state

state transitions
ni → ti → ci → ni . . .

问题: Is the model correct?20
24

-0
2-

13
形式化方法导引

1. 应用

State s0 is the only initial state, indicated by the incoming edge with no
source. Either of them may now move to its trying state, but only one of
them can ever make a transition at a time (asynchronous interleaving). At
each step, an (unspecified) scheduler determines which process may run.
So there is a transition arrow from s0 to s1 and s5. From s1 (i.e., process 1
trying, process 2 non-critical) again two things can happen: either process
1 moves again (we go to s2), or process 2 moves (we go to s3). Notice
that not every process can move in every state. For example, process 1
cannot move in state s7, since it cannot go into its critical section until
process 2 comes out of its critical section.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

Safety: Only one process is in its
critical section at any time.

LTL specification:

G¬(c1 ∧ c2)

Satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:
188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

Liveness: Whenever any process
requests to enter its critical
section, it will eventually be
permitted to do so.

LTL specification:

G (t1 → F c1)

Not Satisfied
s0 → s1 → s3 → s7 → s1 →
s3 → s7 . . .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

Non-blocking: A process can
always request to enter its critical
section.

In other words, for every
state satisfying n1, there is a
successor satisfying t1.
LTL specification? No
CTL specification: ??
实验小作业, 见 PPT 尾页
Satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

No strict sequencing: Processes
need not enter their critical
section in strict sequence

there is a path with two
distinct states satisfying c1
such that no state in
between them has that
property
LTL spec? Also no
A complement LTL? OK…

G (c1 → c1 W (¬c1 ∧ ¬c1 W c2))
The complement LTL is false:
s0 → s5 → s3 → s4 → s5 → s3 → s4 → . . .
So the original property is satisfied
How to design CTL spec? (同前，实验小作业)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

No strict sequencing: Processes
need not enter their critical
section in strict sequence

there is a path with two
distinct states satisfying c1
such that no state in
between them has that
property
LTL spec? Also no
A complement LTL? OK…

G (c1 → c1 W (¬c1 ∧ ¬c1 W c2))
The complement LTL is false:
s0 → s5 → s3 → s4 → s5 → s3 → s4 → . . .
So the original property is satisfied
How to design CTL spec? (同前，实验小作业)

20
24

-0
2-

13
形式化方法导引

1. 应用

This says that anytime we get into a c1 state, either that condition persists
indefinitely, or it ends with a non- c1 state and in that case there is no
further c1 state unless and until we obtain a c2 state.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n → t → c → n → . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm

are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

回顾: Liveness is not satisfied:
Liveness: Whenever any process
requests to enter its critical
section, it will eventually be
permitted to do so.

LTL specification:

G (t1 → F c1)

Not Satisfied
s0 → s1 → s3 → s7 → s1 →
s3 → s7 . . .

原因: The problem is that the state s3 does not distinguish between which
of the processes first went into its trying state.
解决方法: We can solve this by splitting s3 into two states. (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

The second modeling attempt:3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

s3 =⇒ s3, s9

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

The second modeling attempt:3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

s3 =⇒ s3, s9

20
24

-0
2-

13
形式化方法导引

1. 应用

The two states s3 and s9 both correspond to the state s3 in our first
modelling attempt. They both record that the two processes are in their
trying states, but in s3 it is im- plicitly recorded that it is process 1’s turn,
whereas in s9 it is process 2’s turn. Note that states s3 and s9 both have
the labelling t1t2; the definition of transition systems does not preclude
this. We can think of there being some other, hidden, variables which are
not part of the initial labelling, which distinguish s3 and s9.

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same
state). We may wish to model that a process can stay in its critical state
for several ticks, but if we include an arrow from s4, or s7, to itself, we
will again violate liveness. This problem will be solved later in this chapter
when we consider ‘fairness constraints’.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

Safety: Only one process is in its
critical section at any time.

LTL specification:

G¬(c1 ∧ c2)

Satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

Liveness: Whenever any process
requests to enter its critical
section, it will eventually be
permitted to do so.

LTL specification:

G (t1 → F c1)

Now Satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

Non-blocking: A process can
always request to enter its critical
section.

In other words, for every
state satisfying n1, there is a
successor satisfying t1.
LTL specification? No
CTL specification: ??
Satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

No strict sequencing: Processes
need not enter their critical
section in strict sequence

there is a path with two
distinct states satisfying c1
such that no state in
between them has that
property
LTL spec? Also no
A complement LTL? OK…

G (c1 → c1 W (¬c1 ∧ ¬c1 W c2))

The complement LTL is false:
s0 → s1 → s2 → s0 → s1 → s2 → s0 → . . .
So the original property is satisfied

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

难道问题都解决了么? No

新问题 1: What if a process can
stay in its critical state for several
ticks?, i.e,

we include an arrow from s4,
or s7, to itself

Liveness:

G (t1 → F c1)

Not Satisfied again
方法: Consider “fairness
constraints”, 见后

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

新问题 2: How to distinguish
between states s3 and s9 in
NuSMV?

方法: introduce a new variable,
named turn, 见后

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

3rd attempt
MODULE main
VAR

pr1: process prc(pr2.st, turn, FALSE);
pr2: process prc(pr1.st, turn, TRUE);
turn: boolean;

ASSIGN
init(turn) := FALSE;
...

问题 2 的解决方法: introduce a new variable, named turn

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

3rd attempt
MODULE main
VAR

pr1: process prc(pr2.st, turn, FALSE);
pr2: process prc(pr1.st, turn, TRUE);
turn: boolean;

ASSIGN
init(turn) := FALSE;
...

问题 2 的解决方法: introduce a new variable, named turn20
24

-0
2-

13
形式化方法导引

1. 应用

This code consists of two modules, main and prc. The module main has
the variable turn, which determines whose turn it is to enter the critical
section if both are trying to enter

The module main also has two instantiations of prc. In each of these
instantiations, st is the status of a process (saying whether it is in its critical
section, or not, or trying) and other-st is the status of the other process
(notice how this is passed as a parameter in the third and fourth lines of
main).

Because the boolean variable turn has been explicitly introduced to
distinguish between states s3 and s9, we now distinguish between certain
states (for example, ct0 and ct1) which were identical before. However,
these states are not distinguished if you look just at the transitions from
them. Therefore, they satisfy the same LTL formulas which don’t mention
turn. Those states are distinguished only by the way they can arise.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
VAR

st: {n, t, c};
ASSIGN
init(st) := n;

...

So, the variables are: st of prc1, st of prc2, turn

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
VAR

st: {n, t, c};
ASSIGN
init(st) := n;

...

So, the variables are: st of prc1, st of prc2, turn

20
24

-0
2-

13
形式化方法导引

1. 应用

The value of st evolves in the way described in a previous section: when
it is n, it may stay as n or move to t. When it is t, if the other one is
n, it will go straight to c, but if the other one is t, it will check whose
turn it is before going to c. Then, when it is c, it may move back to n.
Each instantiation of prc gives the turn to the other one when it gets to
its critical section.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
...
next(st) :=
case

(st = n) : {t,n};
(st = t) & (other -st = n) : c;
(st = t) & (other -st = t) & (turn = myturn): c;
(st = c) : {c,n};
TRUE : st;

esac;
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
...
next(st) :=
case

(st = n) : {t,n};
(st = t) & (other -st = n) : c;
(st = t) & (other -st = t) & (turn = myturn): c;
(st = c) : {c,n};
TRUE : st;

esac;
...20

24
-0

2-
13

形式化方法导引

1. 应用

We have eliminated an over-simplification made in the model of 2nd at-
tempt. Recall that we assumed the system would move to a different state
on every tick of the clock (there were no transitions from a state to itself).

Now we allow transitions from each state to itself, representing that a
process was chosen for execution and did some private computation, but
did not move in or out of its critical section. Of course, by doing this
we have introduced paths in which one process gets stuck in its critical
section, whence the need to invoke a fairness constraint to eliminate such
paths.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
...
next(turn) :=
case

turn = myturn & st = c : !turn;
TRUE : turn;

esac;
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
...
FAIRNESS running
FAIRNESS ! (st = c)
...

问题 1 的解决方法: Consider “fairness constraints”:
We can restrict its search tree to execution paths along which an
arbitrary boolean formula about the state ϕ is true infinitely often.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other -st, turn, myturn)
...
FAIRNESS running
FAIRNESS ! (st = c)
...

问题 1 的解决方法: Consider “fairness constraints”:
We can restrict its search tree to execution paths along which an
arbitrary boolean formula about the state ϕ is true infinitely often.

20
24

-0
2-

13
形式化方法导引

1. 应用

Because this is often used to model fair access to resources, it is called a
fairness constraint and introduced by the keyword FAIRNESS. Thus, the
occurrence of FAIRNESS ϕ means that SMV, when checking a specification
ϕ, will ignore any path along which ϕ is not satisfied infinitely often.

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt 198

3
V
e
rific

a
tio

n
b
y

m
o
d
e
l
c
h
e
c
k
in

g

cn0

tn0tc0

tt0

nn0

ct0

1,2

2 1

1

1

2

1,2

1

2

2

2

2 1

1

2

1

1,2
11,2

1,2

12

2

2

1
2

1

1

1

2

1

2

2

nn1

tn1cn1ct1nt1

tt1

nc1

tc1

1,2

2

nc0nt0

1,2
2 1

1,21,2

1

1,2

F
ig

u
re

3
.1

1
.

T
h
e

tra
n
sitio

n
sy

ste
m

c
o
rre

sp
o
n
d
in

g
to

th
e

S
M

V
c
o
d
e

in
F
ig

u
re

3
.1

0
.
T
h
e

la
b
e
ls

o
n

th
e

tra
n
sitio

n
s

d
e
n
o
te

th
e

p
ro

c
e
ss

w
h
ic

h
m

a
k
e
s

th
e

m
o
v
e
.

T
h
e

la
b
e
l

1
,2

m
e
a
n
s

th
a
t

e
ith

e
r

p
ro

c
e
ss

c
o
u
ld

m
a
k
e

th
a
t
m

o
v
e
.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

// safety
LTLSPEC G!((pr1.st = c) & (pr2.st = c))
// liveness
LTLSPEC G((pr1.st = t) -> F (pr1.st = c))
LTLSPEC G((pr2.st = t) -> F (pr2.st = c))
// ‘ negation’ of strict sequencing (desired to be false)
LTLSPEC G(pr1.st=c -> (G pr1.st=c | (pr1.st=c U

(pr1.st!=c & G pr1.st!=c | ((pr1.st!=c) U pr2.st=c)))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

运行结果: $./NuSMV c-sample2-mutex.smv

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

运行结果: $./NuSMV c-sample2-mutex.smv

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

例: Foxes and Rabbits
如何用 NuSMV 进行SAT 求解?

Three foxes and three rabbits
have to cross a river
There is only one boat that can
carry at most two animals
When the boat is on the river,
at each of the sides the number
of foxes should be ≤ the
number of rabbits, otherwise the
rabbits will be eaten

Is there a solution? which?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

要点: Automated Reasoning: Do not think about how to solve it, only
specify the rules, and let the tool to solve it

Several ways to encode

We prefer not to define the moves in both directions separately

Variables:
b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat
r: the number of rabbits at the side where the boat is
rb: the number of rabbits that goes into the boat

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat
r: the number of rabbits at the side where the boat is
rb: the number of rabbits that goes into the boat

MODULE main
VAR

r : 0..3;
rb : 0..2;
f : 0..3;
fb : 0..2;
b : boolean;

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat
r: the number of rabbits at the side where the boat is
rb: the number of rabbits that goes into the boat

INIT
b & f = 3 & r = 3

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat
r: the number of rabbits at the side where the boat is
rb: the number of rabbits that goes into the boat

TRANS
next(b) = !b &
fb + rb <= 2 &
fb + rb >= 1 &
f - fb <= r - rb &
next(f) = 3 - f + fb &
next(r) = 3 - r + rb
CTLSPEC !EF(!b & f = 3 & r = 3)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Foxes and Rabbits

运行结果: $./NuSMV c-sample3-fox.smv

b=FALSE, f=3,
r=3

indeed showing
that the final state
where all animals
reached the other
side

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

问题: What is a deadlock here?
a state that cannot be changed by applying the rules

Occurs very often in hardware, network protocols,…

定义: Deadlock
In a transition system, a state s is a deadlock state, if not state s′ ̸= s
exists such that s → s′

Typical desired property to be verified: No deadlock state is reachable
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

建模思路: Build a Network as a Graph
Messages in the Network:

sent
processed
received

Edges are channels:
either empty
or filled by a message and a destination

So no two messages can be in the same
channel

1 2

34

3

4

1

2

注: 这个 graph 与模型检测中的 transition system 模型的用途不同

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

建模思路: Initialization
As the set of initial states, we choose the single
state where every channel is empty

建模思路: Running
Our computation / processing is asynchronous

That is, it is not controlled by a central clock,
but at any moment a send step, a processing
step or a receiving step can be done

验证思路: Specification
We wonder whether in a particular network, a
deadlock state is reachable

1 2

34

3

4

1

2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

实现: (1) Define the state space
message: For investigating deadlocks, the contents of the message
does not play a role: it will be ignored
node ID: Number the nodes from 1 to n
channel: So the contents of a channel is identified by

the destination node of the corresponding message, or
0, if it is empty
so, for every channel c declare

c : 0..n

This yields state space {0, 1, . . . , n}k, for k = number of channels

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

思路: Determined outgoing channel
For every node n and destination m, it should be determined which
outgoing channel c from n is allowed to be chosen for passing a message
to m

实现: (2) Define OK(n, m, c)
Write OK(n, m, c), if this is allowed

讨论: Typically, OK(n, m, c) yields true, if and only if c is the first edge of
a shortest path from n to m

Then the messages will always follow a shortest path to its destination

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 39 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

实现: (3) Define the transitions of states - send
send steps: replace the value 0 in an empty outgoing channel c from
n by the value m, if OK(n, m, c)

replace
n c

0
by

n c
m

c=0 next(c)=m

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 40 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

实现: (3) Define the transitions of states - receive
receive steps: if channel c to node m contains the value m, then it
may be replaced by 0

replace mm
by m0

c=m next(c)=0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 41 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

实现: (3) Define the transitions of states - processing
processing steps: if channel c to node n contains the value m, and the
channel c’ starting in n is empty and satisfies OK(n, m, c’), then the
destination m may be passed to c’

that is, c gets the value 0 and c’ gets the value m

replace
nc c’

m 0
by

nc c’
0 m

c=m
c’=0

next(c)=0
next(c’)=m

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 42 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

实现: (3) Define the transitions of states - Disjunction
The transition relation is a big disjunction of all possible send, receive and
processing steps

...
| case c = m & c' = 0 : next(c) = 0 & next(c') = m;

TRUE : next(c) = c & next(c') = c';
esac & P

...

where P is the conjunction of next(x)=x for all other channels x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 43 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

The ultimate NuSMV code consists of
VAR

c : 0..n for all channels c
INIT

c = 0 for all channels c
TRANS

the big disjunction of all possible steps, to be generated by a program
CTLSPEC EF D

for D describing deadlock
Deadlock D is obtained as !Q in which Q is the disjunction of all
non-TRUE branches in all these case statements
In order to find the path to the deadlock, one should run CTLSPEC
!EF D, then the desired path is obtained from the counter example

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 44 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

回顾: write OK(n, m, c), if it is allowed to pass the message to the
outgoing channel c from n, when a message has to be sent from n to m

send steps: if OK(n, m, c), then

replace
n c

0
by

n c
m

receive steps:

replace mm
by m0

processing steps: if OK(n, m, c’), then

replace
nc c’

m 0
by

nc c’
0 m

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 45 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

Let M be the set of main nodes: nodes that are allowed to send messages,
and to which messages can be sent

Choose M = {1, 2, 3} in

1 2

34

C1

C2

C3

C4

Then by our approach NuSMV finds a
reachable deadlock by the five steps

send(3,2): C3:=2
process C3: C4:=2; C3:=0
send(3,1): C3:=1
send(1,3): C1:=3
send(2,1): C2:=1

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

Let M be the set of main nodes: nodes that are allowed to send messages,
and to which messages can be sent

Hence the following
deadlock is reached

1 2

34

C1:3

C2:1

C3:1

C4:2

Then by our approach NuSMV finds a
reachable deadlock by the five steps

send(3,2): C3:=2
process C3: C4:=2; C3:=0
send(3,1): C3:=1
send(1,3): C1:=3
send(2,1): C2:=1

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 47 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

A more complicated example:
1 2 3 4 5

6

7

8

910111213

14

15

16

17

When taking M = {1, 5, 9, 13}, no
deadlock is reachable

But when taking M = {2, 4, 6}, a
deadlock is reachable

Doing this by hand is not feasible
anymore, just like in many other
examples and formats and as occurs
in practice

(实验大作业，可选，见尾)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

回顾: 定义: Deadlock
In a transition system, a state s is a deadlock state, if not state s′ ̸= s
exists such that s → s′

Typical desired property to be verified: No deadlock state is reachable
回顾: CTLSPEC EF D

Deadlock D is obtained as !Q in which Q is the disjunction of all
non-TRUE branches in all these case statements

An interesting variant of deadlock: local deadlock:
a particular variable will never change in the future
for checking whether a channel c having value x causes such a local
deadlock, we need a nested CTL formula
CTLSPEC EF(AG c=x)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 49 / 51

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 Verification by NuSMV | Example | Checking deadlocks

回顾: 定义: Deadlock
In a transition system, a state s is a deadlock state, if not state s′ ̸= s
exists such that s → s′

Typical desired property to be verified: No deadlock state is reachable
回顾: CTLSPEC EF D

Deadlock D is obtained as !Q in which Q is the disjunction of all
non-TRUE branches in all these case statements

An interesting variant of deadlock: local deadlock:
a particular variable will never change in the future
for checking whether a channel c having value x causes such a local
deadlock, we need a nested CTL formula
CTLSPEC EF(AG c=x)

20
24

-0
2-

13
形式化方法导引

1. 应用

stating that there exists a path to a state (EF) such that from that state
for every path on every state (AG), it holds that c=x
If we do not know x, we may declare it as a variable, do not initialize it,
and put next(x)=x in TRANS

总结: NuSMV for model checking, which can be used to
model and verify a model
solve an SAT problem

与普通编程语言的区别:
Do not think about functions, think about states and transitions of
states
Do not think about how to solve it, only specify the rules, and let the
tool to solve it

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 50 / 51

https://faculty.ustc.edu.cn/huangwenchao

作业

实验小作业: 使用 NuSMV 实现 PPT 中 first-attempt model, 要求
用 CTL 设计 Non-blocking, No strict sequencing, 并验证所有四个性
质
给出源码、实验报告

实验大作业（可选）: 选择一篇 CCF A 类论文，自己用 NuSMV 设计论
文中的模型，并验证，附完整文档。
(也可选择 NuSMV 中 example 中的 A 类论文, 对已给出的模型进行阅
读，并附完整的阅读、试验报告、以及心得体会)

实验大作业（可选）: 实现 PPT 中的 deadlock 验证，并针对
complicated example 中所给的结论进行验证。要求

附上源码和实验报告

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 51 / 51

https://faculty.ustc.edu.cn/huangwenchao

