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1.4 Verification by NuSMV | Introduction

NuSMV (sometimes called simply SMV): A language for
@ describing models
e specifying LTL / CTL formulas, etc.
@ check the validity of the formulas on the models
The output of model checking
@ True, if the specifications holds

@ a trace, otherwise
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NuSMV (sometimes called simply SMV) provides a language for describing
the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some speci-
fications (temporal logic formulas). It produces as output either the word
‘true’ if the specifications hold, or a trace showing why the specification
is false for the model represented by our program.
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1.4 Verification by NuSMV | Introduction

MODULE main

VAR NuSMV v.s. C, Java...
request : boolean; @ In Common
status : {ready,busy}; @ one, or more

ASSIGN modules
init(status) := ready; e main
next (status) := case o Differences

i:gl};e?t{;e:;;?éusy}; state' 'tran.sition
specification
esac;

non-deterministic
abstraction

LTLSPEC
G(request -> F status=busy)
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SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules
can declare variables and assign to them. Assignments usually give the
initial value of a variable and its next value as an expression in terms of
the current values of variables. This expression can be non-deterministic
(denoted by several expressions in braces, or no assignment at all). Non-
determinism is used to model the environment and for abstraction.

The SMV consists of a program and a specification. The program has
two variables, request of type boolean and status of enumeration type
ready, busy: 0 denotes “false” and 1 represents “true”. The initial and
subsequent values of variable request are not determined within this pro-
gram; this conservatively models that these values are determined by an
external environment. This under-specification of request implies that the
value of variable status is partially determined: initially, it is ready; and it
becomes busy whenever request is true. If request is false, the next value
of status is not determined.
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1.4 Verification by NuSMV | Introduction

MODULE main

VAR
request : boolean;
status : {ready,busyl;
ASSIGN
init(status) := ready;
next (status) := case
request : busy;
TRUE : {ready,bus
esac;

LTLSPEC
G(request -> F status=busy)

BITER:  $./NuSMV c-samplel.smv
— specification G (request -> F status = busy) is true
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1.4 Verification by NuSMV | Example | Mutual exclusion

f5]: Mutual exclusion (Eff, IRIERZLZE0))
o [O|fffi: KA critical sections (IIF5RX)
o [E]M: Z3k: Only one process can be in its critical section at a time

o [g]&l: to find a protocol for determining which process is allowed to
enter its critical section at which time

WMATF A NuSMV 3K fi b it ja) 3
© specify the properties of the protocol using NuSMV
@ design a protocol
© model the protocol using NuSMV

@ check the output of NuSMV

o if true, problem solved
e if not, goto step 2
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Let us now look at a larger example of verification using LTL, having
to do with mutual exclusion. When concurrent processes share a resource
(such as a file on a disk or a database entry), it may be necessary to ensure
that they do not have access to it at the same time. Several processes
simultaneously editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though
it should be as small as possible so that no unnecessary exclusion takes
place). The problem we are faced with is to find a protocol for determining
which process is allowed to enter its critical section at which time. Once we
have found one which we think works, we verify our solution by checking
that it has some expected properties, such as the following ones.
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1.4 Verification by NuSMV | Example | Mutual exclusion

1. Specify the properties of the protocol using NuSMV
@ Safety: Only one process is in its critical section at any time.

o Liveness: Whenever any process requests to enter its critical section,
it will eventually be permitted to do so.

@ Non-blocking: A process can always request to enter its critical
section.

o No strict sequencing: Processes need not enter their critical section in
strict sequence.
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Some rather crude protocols might work on the basis that they cycle
through the processes, making each one in turn enter its critical section.
Since it might be naturally the case that some of them request access
to the shared resource more often than others, we should make sure our
protocol has the property
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A first-attempt model:
processes

e 1,2
states
@ n: in its non-critical state

@ t: trying to enter its critical
state

@ c: in its critical state

state transitions

o n;, =t —>c—mn;...
[a]E&E: Is the model correct?
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State s is the only initial state, indicated by the incoming edge with no
source. Either of them may now move to its trying state, but only one of
them can ever make a transition at a time (asynchronous interleaving). At
each step, an (unspecified) scheduler determines which process may run.
So there is a transition arrow from sg to s; and s5. From sy (i.e., process 1
trying, process 2 non-critical) again two things can happen: either process
1 moves again (we go to sa), or process 2 moves (we go to s3). Notice
that not every process can move in every state. For example, process 1
cannot move in state s7, since it cannot go into its critical section until
process 2 comes out of its critical section.
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A first-attempt model:

Safety: Only one process is in its
critical section at any time.

@ LTL specification:

G—'(Cl VAN 02)

o Satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:
Liveness: Whenever any process

requests to enter its critical
section, it will eventually be
permitted to do so.

o LTL specification:

G (tl —F Cl)

@ Not Satisfied
So —> 81 — 83 — S7 — S1 —~
S§3 — S7...
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1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model:
Non-blocking: A process can

always request to enter its critical
section.

@ In other words, for every
state satisfying nq, there is a
successor satisfying ¢;.

@ LTL specification? No

o CTL specification: 77
SRES/MENL, I PPT ETT

o Satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion

A first-attempt model: No strict sequencing: Processes
need not enter their critical
section in strict sequence
@ there is a path with two
distinct states satisfying c;
such that no state in
between them has that
property
@ LTL spec? Also no
@ A complement LTL? OK..
G (Cl —c1 W (—\Cl A —c1 W 62))
The complement LTL is false:
So)—> S5 —> 83 —> 84 —>85 —>83 >S4 — ...
So the original property is satisfied
How to design CTL spec? ([EHy, SEL&/IMEML)
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This says that anytime we get into a cl state, either that condition persists
indefinitely, or it ends with a non- cl state and in that case there is no
further cl state unless and until we obtain a c2 state.
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) [B]: Liveness is not satisfied:
A first-attempt model: Liveness: Whenever any process
requests to enter its critical
section, it will eventually be
permitted to do so.

@ LTL specification:
G (tl —F Cl>

@ Not Satisfied
So —> 81 — S3 — ST — S1 —~
S3 — S7...

J&EE&: The problem is that the state s3 does not distinguish between which

of the processes first went into its trying state.
iR 77iE: We can solve this by splitting s3 into two states. (W)
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1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

The second modeling attempt:

@ S3 — 53,59
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The two states s3 and sg both correspond to the state s3 in our first
modelling attempt. They both record that the two processes are in their
trying states, but in s3 it is im- plicitly recorded that it is process 1’ s turn,
whereas in s9 it is process 2" s turn. Note that states s3 and s9 both have
the labelling t1t2; the definition of transition systems does not preclude
this. We can think of there being some other, hidden, variables which are
not part of the initial labelling, which distinguish s3 and s9.

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same
state). We may wish to model that a process can stay in its critical state
for several ticks, but if we include an arrow from s4, or s7, to itself, we
will again violate liveness. This problem will be solved later in this chapter
when we consider ‘fairness constraints’
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Safety: Only one process is in its
critical section at any time.

@ LTL specification:

G—'(Cl VAN 02)

e Satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

Liveness: Whenever any process
requests to enter its critical
section, it will eventually be
permitted to do so.

@ LTL specification:

G (tl —F Cl)

o Now Satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

Non-blocking: A process can
always request to enter its critical
section.

@ In other words, for every
state satisfying nq, there is a
successor satisfying t;.

@ LTL specification? No
o CTL specification: 77
@ Satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

No strict sequencing: Processes
need not enter their critical
section in strict sequence

@ there is a path with two
distinct states satisfying c;
such that no state in
between them has that
property

@ LTL spec? Also no

@ A complement LTL? OK..

G (01 —c W (—|Cl A —c; W 02))

The complement LTL is false:
So—>S81—>82 —>8)—>S81 —*>82—>S8) — ...
So the original property is satisfied
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1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

EH#B https://faculty.ustc.edu.cn/hu:

METE (O] REERRRR T 47 No

Fria]E& 1: What if a process can
stay in its critical state for several
ticks?, i.e,

@ we include an arrow from s4,
or s7, to itself

Liveness:
G (tl —F 61)

Not Satisfied again
7% Consider “fairness
constraints”, WG

R FEFS


https://faculty.ustc.edu.cn/huangwenchao

1. [z H

1.4 Verification by NuSMV | Example | Mutual exclusion | 2nd Attempt

Fhia]8A 2: How to distinguish
between states s3 and sg in
NuSMV?

Fi%: introduce a new variable,
named turn, 5
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1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

3rd attempt

MODULE main
VAR

prl: process prc(pr2.st, turn, FALSE);

pr2: process prc(prl.st, turn, TRUE);
turn: boolean;
ASSIGN

init(turn) := FALSE;

B8R 2 HYfRR A i%: introduce a new variable, named turn
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This code consists of two modules, main and prc. The module main has
the variable turn, which determines whose turn it is to enter the critical
section if both are trying to enter

The module main also has two instantiations of prc. In each of these
instantiations, st is the status of a process (saying whether it is in its critical
section, or not, or trying) and other-st is the status of the other process
(notice how this is passed as a parameter in the third and fourth lines of
main).

Because the boolean variable turn has been explicitly introduced to
distinguish between states s3 and s9, we now distinguish between certain
states (for example, ctO and ctl) which were identical before. However,
these states are not distinguished if you look just at the transitions from
them. Therefore, they satisfy the same LTL formulas which don’ t mention
turn. Those states are distinguished only by the way they can arise.
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MODULE prc(other-st, turn, myturn)
VAR
st: {n, t, c};
ASSIGN
init(st) := n;

So, the variables are: st of prcl, st of prc2, turn
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The value of st evolves in the way described in a previous section: when
it is n, it may stay as n or move to t. When it is t, if the other one is
n, it will go straight to c, but if the other one is t, it will check whose
turn it is before going to c. Then, when it is ¢, it may move back to n.
Each instantiation of prc gives the turn to the other one when it gets to
its critical section.
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MODULE prc(other-st, turn, myturn)

next (st) :=

case
(st = n) : {t,n};
(st = t) & (other-st
(st = t) & (other-st
(st = ¢) : {c,n};
TRUE : st

esac;

n) : c;
t) & (turn = myturn): c;
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We have eliminated an over-simplification made in the model of 2nd at-
tempt. Recall that we assumed the system would move to a different state
on every tick of the clock (there were no transitions from a state to itself).

Now we allow transitions from each state to itself, representing that a
process was chosen for execution and did some private computation, but
did not move in or out of its critical section. Of course, by doing this
we have introduced paths in which one process gets stuck in its critical
section, whence the need to invoke a fairness constraint to eliminate such
paths.
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MODULE prc(other-st, turn, myturn)

next (turn) :=

case
turn = myturn & st = c : !turn;
TRUE : turn;
esac;
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1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

MODULE prc(other-st, turn, myturn)

FAIRNESS running
FAIRNESS ! (st = c¢)

(o] 55 1 ByfRHR A% Consider “fairness constraints”:
@ We can restrict its search tree to execution paths along which an
arbitrary boolean formula about the state ¢ is true infinitely often.
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Because this is often used to model fair access to resources, it is called a
fairness constraint and introduced by the keyword FAIRNESS. Thus, the
occurrence of FAIRNESS ¢ means that SMV, when checking a specification
¢, will ignore any path along which ¢ is not satisfied infinitely often.
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1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

// safety
LTLSPEC G!((prl.st = c) & (pr2.st = c))
// liveness
LTLSPEC G((prl.st t) -> F (pril.st c))
LTLSPEC G((pr2.st t) -> F (pr2.st = c))
// ‘megation’ of strict sequencing (desired to be false
LTLSPEC G(prl.st=c -> ( G prl.st=c | (prl.st=c U
( pri.st!=c & G pri.st!=c | (( prl.st!=c) U pr2.st=c)))
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1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

;L_ﬂ'ﬁ*% $ ./NuSMV c-sample2-mutex.smv
specification G !(prl.st = ¢ & pr2.st = c) 1is true
specification G (prl.st =t —> F prl.st =c) 1is true
specification G (pr2.st =t —> F pr2.st =c) 1is true

specification G (prl.st = ¢ —> ( G prl.st = ¢ | (prl.st
U ((prl.st !'==c & & G p pprl.s.sssst ! !l====l=I=t !=,st !
st !'= G prl.st !'=c & G plrl.st !=!=t !=c & G lsprls.st !
st clc=c ¢ & plG plrl.

—— as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
—> State: 1.1 <-
prl.st
pr2.st
turn =

=n
=n
FALSE

E#B https://faculty.ustc.edu.cn/hu: R FEFS 27/51
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1.4 Verification by NuSMV | Example | Mutual exclusion | 3rd Attempt

BITER:  $./NuSMV c-sample2-mutex.smv

—> State: 1.11 <-
-> Input: 1.6 <- pri.st = n

_process_selector_ = pr2 . . _
pr2.running = TRUE > Input: 1.12 <
prl.running = FALSE

_process_selector_ = prl 7>p§;a:$:_166 < prl.running = FALSE
running = FALSE cC —— Loop starts here
pr2.running = FALSE —> Input: 1.7 <= -> State: 1.12 <-
pril.running = TRUE —process_selector_ = prl —> Input: 1.13 <-

—> State: 1.2 <- pr2.running = FALSE process_selector

—> Input: 1.3 <— prl.ru?ning = TRUE running = FALSE
_process_selector_ = i prl.running = TRUE
pr2.running = TRUE o —— Loop starts here
prl.running = FALSE : -> State: 1.13 <-

. => Input: 1.14 <-
_process_selector_
pr2.running = TRUE
prl.running = FALSE

—— Loop starts here

—> State: 1.14 <-
_process_selector_ = prl . -> Input: 1.15 <-
pr2.running = FALSE o _process_selector_ = main
prl.running = TRUE - running = TRUE

<= 1 -—
—— Loop starts here 7>p£ié;§?nin25—<fALSE

_process_selector_ = main
running = TRUE
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

f5]: Foxes and Rabbits
W A NuSMV i#1TSAT Kf#?
@ Three foxes and three rabbits
have to cross a river

@ There is only one boat that can
carry at most two animals

@ When the boat is on the river,
at each of the sides the number
of foxes should be < the
number of rabbits, otherwise the
rabbits will be eaten

Is there a solution? which?
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

E A Automated Reasoning: Do not think about how to solve it, only
specify the rules, and let the tool to solve it

Several ways to encode
We prefer not to define the moves in both directions separately

Variables:

@ b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat

r: the number of rabbits at the side where the boat is

rb: the number of rabbits that goes into the boat

E#B https://faculty.ustc.edu.cn/hu: R FEFS
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat

r: the number of rabbits at the side where the boat is

rb: the number of rabbits that goes into the boat

MODULE main

VAR
r 0..3;
rb : 0..2;
f 0..3;
fb : 0..2;
b boolean;

E#8 https://faculty.ustc.edu.cn/hu: R FEFS
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat

r: the number of rabbits at the side where the boat is

rb: the number of rabbits that goes into the boat

INIT
b& f=3%&r =3

E#8 https://faculty.ustc.edu.cn/hu: R FEFS
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

b: a boolean expressing where the boat is
f: the number of foxes at the side where the boat is
fb: the number of foxes that goes into the boat

r: the number of rabbits at the side where the boat is

rb: the number of rabbits that goes into the boat

TRANS

next(b) = !b &

fb + rb <= 2 &

fb + rb >= 1 &

f - fb <= r - rb &

next (f) 3 -f + fb &

next(r) = 3 - r + rb

CTLSPEC 'EF(!'b & f = 3 & r = 3)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS
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1.4 Verification by NuSMV | Example | Foxes and Rabbits

BITER:  $./NuSMV c-sample3-fox.smv

-— specification !(EF ((!'b & f = 3) & r = 3)) 1is false
—— as demonstrated by the following execution sequence
Trace Description: CTL Counterexample

Trace Type: Counterexample

—> State:
r=3
rb =1
f=3
fb =1
b = TRUE
—> State:

r
r
f
b

- S

n e nn

T —+h—+h =

1.1 <=

1.2 <

EH#B https://faculty.ustc.edu.cn/hu:

—> State: 1.4 <-

r
f
fb =1
b = FALSE

-> State: 1.5 <-

r =2

rb =1

b = TRUE

—-> State: 1.6 <—
rb = @
b = FALSE

-> State: 1.7 <-
r=1
fb = 2
b = TRUE

R FEFS

b=FALSE, =3,
r=3

indeed showing
that the final state
where all animals

34 /51
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1.4 Verification by NuSMV | Example | Checking deadlocks

waiting for DEADLOCK

%W?/
B

Assigned to

Resource 1

@D
&
Assigned to @D

Resource 2

[6]8h: What is a deadlock here?
@ a state that cannot be changed by applying the rules
Occurs very often in hardware, network protocols, ...

Waiting for

EMN: Deadlock
In a transition system, a state s is a deadlock state, if not state s’ # s
exists such that s — &’

Typical desired property to be verified: No deadlock state is reachable
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1.4 Verification by NuSMV | Example | Checking deadlocks

FERE PR Build a Network as a Graph
Messages in the Network:

@ sent C 3

@ processed

@ received

2 4
Edges are channels: : :
1

@ either empty
o or filled by a message and a destination

e So no two messages can be in the same
channel )

iE: XA graph SEBGENFHY transition system HEEVE) IR AE

E#B https://faculty.ustc.edu.cn/hu: R FEFS
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1.4 Verification by NuSMV | Example | Checking deadlocks

R Initialization
As the set of initial states, we choose the single
state where every channel is empty

FERE R Running
Our computation / processing is asynchronous

@ That is, it is not controlled by a central clock,
but at any moment a send step, a processing
step or a receiving step can be done

I&F B B&: Specification
We wonder whether in a particular network, a
deadlock state is reachable
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I (1) Define the state space

@ message: For investigating deadlocks, the contents of the message
does not play a role: it will be ignored

@ node ID: Number the nodes from 1 to n

@ channel: So the contents of a channel is identified by
e the destination node of the corresponding message, or
e 0, if it is empty
@ so, for every channel c declare

@ c:0.n

This yields state space {0,1,...,n}*, for k = number of channels
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HEJ&: Determined outgoing channel

For every node n and destination m, it should be determined which
outgoing channel ¢ from n is allowed to be chosen for passing a message
tom

S (2) Define OK(n, m, c)
Write OK(n, m, c), if this is allowed

iFi: Typically, OK(n, m, c) yields true, if and only if c is the first edge of
a shortest path from n to m
@ Then the messages will always follow a shortest path to its destination
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I: (3) Define the transitions of states - send

@ send steps: replace the value 0 in an empty outgoing channel c from
n by the value m, if OK(n, m, c)

C) 0 C)
replace ¢ O by r‘? Q

c=0 next(c)=m
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SCER: (3) Define the transitions of states - receive

@ receive steps: if channel ¢ to node m contains the value m, then it
may be replaced by 0

eptace. O () y O
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)

SEH: (3) Define the transitions of states - processing

@ processing steps: if channel ¢ to node n contains the value m, and the
channel ¢’ starting in n is empty and satisfies OK(n, m, c¢’), then the
destination m may be passed to c’

e that is, c gets the value 0 and ¢’ gets the value m

e OO0, OO0

c=m next(c)=0
c'=0 next(c')=m

E#B https://faculty.ustc.edu.cn/hu: R FEFS



https://faculty.ustc.edu.cn/huangwenchao

1. [z H

1.4 Verification by NuSMV | Example | Checking deadlocks

SCER: (3) Define the transitions of states - Disjunction

The transition relation is a big disjunction of all possible send, receive and
processing steps

| case ¢ =m & ¢' = 0 : next(c) = 0 & next(c') = m;

TRUE : next(c) = c & next(c') = c';
esac & P

where P is the conjunction of next(x)=x for all other channels x
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The ultimate NuSMV code consists of

e VAR

e c: 0..n for all channels c
o INIT

e ¢ = 0 for all channels c
@ TRANS

o the big disjunction of all possible steps, to be generated by a program
o CTLSPECEF D
e for D describing deadlock
e Deadlock D is obtained as !Q in which Q is the disjunction of all
non-TRUE branches in all these case statements
e In order to find the path to the deadlock, one should run CTLSPEC
IEF D, then the desired path is obtained from the counter example

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

1. [z H

1.4 Verification by NuSMV | Example | Checking deadlocks

[E]@: write OK(n, m, c), if it is allowed to pass the message to the
outgoing channel ¢ from n, when a message has to be sent from n to m

e send steps: if OK(n, m, c), then

:; 0 C )
replace ¢ Q by rg O

@ receive steps:

eptace O () oy O (™)

e processing steps: if OK(n, m, ¢’), then

OO O @0

replace
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Let M be the set of main nodes: nodes that are allowed to send messages,
and to which messages can be sent

Choose M = {1,2,3} in Then by our approach NuSMV finds a

c1 reachable deadlock by the five steps

send(3,2): C3:=2
C4 C2

process C3: C4:=2; C3:=0
c3 :

°
e send(3,1): C3:=1
°
°

send(1,3): C1:=3
send(2,1): C2:=1
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Let M be the set of main nodes: nodes that are allowed to send messages,
and to which messages can be sent

Hence the following Then by our approach NuSMV finds a
deadlock is reached reachable deadlock by the five steps

@ﬁ> send(3,2): C3:=2
process C3: C4:=2; C3:=0

C4:2 C2:1 send(3,1): C3:=1

send(1,3): C1:=3

send(2,1): C2:=1
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A more complicated example:

@H@_. %ﬁ) When taking M = {1,5,9,13}, no

deadlock is reachable

@ %6) But when taking M = {2,4,6}, a

deadlock is reachable

é—@—(? Doing this by hand is not feasible

anymore, just like in many other

examples and formats and as occurs
in practice
(SEREKAEN, mTiE, WE)
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Ef: EMX: Deadlock
In a transition system, a state s is a deadlock state, if not state s’ # s
exists such that s — ¢’

Typical desired property to be verified: No deadlock state is reachable
[Efpi: CTLSPEC EF D

@ Deadlock D is obtained as !Q in which Q is the disjunction of all
non-TRUE branches in all these case statements

An interesting variant of deadlock: local deadlock:
@ a particular variable will never change in the future

o for checking whether a channel ¢ having value x causes such a local
deadlock, we need a nested CTL formula

o CTLSPEC EF(AG c=x)
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stating that there exists a path to a state (EF) such that from that state
for every path on every state (AG), it holds that c=x

If we do not know x, we may declare it as a variable, do not initialize it,
and put next(x)=x in TRANS



245 NuSMV for model checking, which can be used to
@ model and verify a model
@ solve an SAT problem
S5&BREESHX A
@ Do not think about functions, think about states and transitions of

states
@ Do not think about how to solve it, only specify the rules, and let the
tool to solve it
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