形式化方法导引
 第5章 模型检测
 5.2 理论
 5．2．1 Fixpoint formulation｜5．2．2 BDD Algorithm

黄文超

https：／／faculty．ustc．edu．cn／huangwenchao
\longrightarrow 教学课程 \longrightarrow 形式化方法导引

2．理论本节内容

往节内容

－Model checking
－Modeling：Transition system
－Specification：LTL，CTL
－Tool
－NuSMV
本节内容：
－Basic idea of checking a model：fixpoint formulation
－Classical algorithms
－Binary decisions diagram（BDD）
－Bounded model checking（BMC）
－Basic Inductive Techniques

2．理论

2．1 Basic idea of checking a CTL formula｜state space

回顾：定义：Transition system

A transition system $\mathcal{M}=(S, \rightarrow, L)$ is
－S ：a set of states
－\rightarrow ：a transition relation：every $s \in S$ has some $s^{\prime} \in S$ with $s \rightarrow s^{\prime}$
－L ：a label function：$L: S \rightarrow \mathcal{P}$（Atoms）

定义：State space

The state space

$$
S=V_{1} \times \cdots \times V_{n}
$$

is implied by the variables v_{1}, \ldots, v_{n} from finite sets V_{1}, \ldots, V_{n}
问题：How to check an LTL or CTL property？

2．理论

2．1 Basic idea of checking a CTL formula｜Basic Idea

问：How to check an LTL property？
答：（SPIN，．．．）
问题：How to check a CTL property？

基本思路

（1）Compute the set S_{ϕ} consisting of all states that satisfy ϕ
－a state $s \in S$ satisfies ϕ if the set of all paths starting in s satisfies ϕ
（2）Then the property to check is $s \in S_{\phi}$

$$
M, s \vDash \phi \quad \Longleftrightarrow \quad s \in S_{\phi}
$$

2．理论

2．1 Basic idea of checking a CTL formula｜Basic Idea

问：How to compute S_{ϕ} ？
答：
（1）Basics：$S_{\perp}, S_{\top}, S_{p}, S_{\neg \phi}, S_{\phi \vee \psi}, S_{\phi \wedge \psi}$
（2）CTL Related：$\underline{S_{\mathrm{EX} \phi}}, \underline{S_{\mathrm{EG} \phi}}, \underline{S_{\mathrm{E}[\phi \mathrm{U} \psi]}}$

2．理论

2．1 Basic idea of checking a CTL formula｜Basic Idea

Compute S_{ϕ} ：Basics

－$S_{\perp}=\emptyset$
－$S_{\top}=S$
－For an atomic proposition p ：

$$
S_{p}=\{s \in S \mid p(s)\}
$$

－$S_{\neg \phi}=\left\{s \in S \mid s \notin S_{\phi}\right\}$
－$S_{\phi \vee \psi}=S_{\phi} \cup S_{\psi}$
－$S_{\phi \wedge \psi}=S_{\phi} \cap S_{\psi}$

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{EX} \phi}, S_{\mathrm{EG} \phi}, S_{\mathrm{E}[\phi \mathrm{U} \psi]}$

Compute $S_{\text {EX } \phi}$

A state s satisfies $E X \phi$ ，if there exists a path starting in s such that ϕ holds in the next state of that path．So：

$$
S_{\mathrm{EX} \phi}=\left\{s \in S \mid \exists t \in \underline{S_{\phi}}: s \rightarrow t\right\}
$$

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{EX} \phi}, S_{\mathrm{EG} \phi}, S_{\mathrm{E}[\phi \mathrm{U} \psi]}$
$E G$ and $E U$ are harder：they deal with properties of paths beyond a fixed finite part of the path

思路：Fixpoint formulation

Consider the first n steps for increasing n ，until the corresponding set does not change anymore．

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{EX} \phi}, S_{\mathrm{EG} \phi}, S_{\mathrm{E}[\phi \mathrm{U} \psi]}$

回顾：EG ϕ

There exists a path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots$ on which ϕ globally holds，that is，ϕ holds in s_{i} for all i

定义：T_{n}

For $n=0,1,2, \ldots$ ，let $T_{n}=$ set of states s_{0} ，for which there exists a path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots$ on which ϕ holds for all s_{i} with $i \leq n$

Then $T_{0}=S_{\phi}$ ，and for all $n=0,1, \ldots$ ，we have

$$
T_{n+1}=T_{n} \cap\left\{s \in S_{\phi} \mid \exists t \in T_{n}: s \rightarrow t\right\}
$$

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{EG} \phi}$

Compute $S_{\text {EG } \phi}$ by T_{n}（Fixpoint formulation）
$T_{0}:=S_{\phi} ; n:=0$ ；
repeat

$$
T_{n+1}:=T_{n} \cap\left\{s \in S_{\phi} \mid \exists t \in T_{n}: s \rightarrow t\right\} ; n=n+1
$$

until $T_{n}=T_{n-1}$
The loop terminates，since
－the set T_{n} is finite
－$\left|T_{n}\right|$ decreases in every step
After running this algorithm we have $S_{\mathrm{EG} \phi}=T_{n}$

After finishing this algorithm we have $T_{n}=T_{n-1}$ ，yielding $T_{n}=T_{i}$ for all $i \geq n$

So then T_{n} states that for every i there is a path of which the first i states satisfy ϕ
S finite \Rightarrow this implies a path on which ϕ globally holds（take $i=|S|$ ）
So after running this algorithm we have $S_{\mathrm{EG} \phi}=T_{n}$
The loop terminates since all sets are finite and $\left|T_{n}\right|$ decreases in every step

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{E}[\phi \mathrm{U} \psi]}$

s_{0} satisfies $E[\phi U \psi]$ means：there exists n such that P_{n} holds，for
－$P_{n}=$ there exists a path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots$ on which ψ holds in s_{n} ， and ϕ holds in s_{i} for all $i<n$

定义：U_{n}

$U_{n}=$ set of states s_{0} for which P_{i} holds for some $i \leq n$
Then $U_{0}=S_{\psi}$ ，and for all $\mathrm{n}=0,1, \ldots$ ，we have

$$
U_{n+1}=U_{n} \cup\left\{s \in S_{\phi} \mid \exists t \in U_{n}: s \rightarrow t\right\}
$$

Compute $S_{\mathrm{E}[\phi \mathrm{U} \psi]}$ by U_{n}

$U_{0}:=S_{\psi} ; n:=0 ;$
repeat

$$
U_{n+1}:=U_{n} \cup\left\{s \in S_{\phi} \mid \exists t \in U_{n}: s \rightarrow t\right\} ; n=n+1 ;
$$ until $U_{n}=U_{n-1}$

2．理论

2．1 Basic idea of checking a CTL formula｜Computing $S_{\mathrm{E}[\phi \mathrm{U} \psi]}$

Concluding，
－For an arbitrary CTL formula ϕ we saw how to compute the set S_{ϕ} ， being the set of states that satisfy ϕ
－Basics：$S_{\perp}, S_{\top}, S_{p}, S_{\neg \phi}, S_{\phi \vee \psi}, S_{\phi \wedge \psi}$
－CTL Related：$\underline{S_{\mathrm{EX} \phi}}, \underline{S_{\mathrm{EG} \phi}}, \underline{S_{\mathrm{E}[\phi \mathrm{U} \psi]}}$
－In this computation we only needed the computation of the sets $T \cup U, T \cap U$ ，complements，and $\{s \in T \mid \exists t \in U: s \rightarrow t\}$ ，for given sets T, U

问题：In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S

可选方案：2．2 Binary decisions diagram（BDD），2．3 Bounded model checking（BMC）， 2.4 k －induction

2．理论
2．2 Binary decisions diagram（BDD）

回顾：

－In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S
－Key words：state spaces

Now we study BDD
－a method of symbolic model checking．
－adopted by NuSMV
基本思路：Firstly，investigate desired requirements for alternative representations for boolean functions

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（1）Stage 1：Boolean variables
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $R O B D D(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论
 2．2 Binary decisions diagram（BDD）｜Outline

Outline of a BDD algorithm
（1）Stage 1：Boolean variables
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD (ϕ)
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论
 2．2 Binary decisions diagram（BDD）｜Stage 1：Boolean variables

第1阶：Boolean Variables：

In NuSMV，the variable types are finite sets，in particular boolean or integers with a restricted range，like

VAR
 a ：1．．100；

We may assume we only have boolean variables
－by representing variables in binary notation，e．g．，using 7 bits for the range 1．．100，
－Atomic propositions，e．g．，$a<b+5$ ，can be expressed in binary notation too

2．理论
 2．2 Binary decisions diagram（BDD）｜Outline

Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD（ ϕ ）
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 2：Boolean functions

第2阶：Boolean Functions：

Write $B=\{0,1\}$ ，then for n boolean variables the state space is $S=B^{n}$
We want to represent and manipulate subsets of $S=B^{n}$
A subset $U \subseteq B^{n}$ can be identified by a boolean function

$$
f_{U}: B^{n} \rightarrow B
$$

defined by

$$
s \in U \leftrightarrow f_{U}(s)=1
$$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 2：Boolean functions

问题：We want to represent and manipulate boolean functions efficiently， more precisely：
－Every boolean function has a unique representation（见后：问题 2）
－Counterexample：$p \wedge(p \wedge q)$ and $q \wedge p$
－All operations needs for CTL model checking，including \neg, \vee, \wedge should be efficiently computable
－Example：\perp
－Counterexample：\top
－Many boolean functions have an efficient representation

- 问：Why not for all boolean functions？
- 答：It is unavoidable that most of the boolean functions have untractable（困难的）representation

答案：BDD provide a data structure for boolean functions－Decision Tree
－Every boolean function has a unique representation（见后：问题 2） （does not hold for formula representation：$p \wedge(p \wedge q)$ and $q \wedge p$ are distinct formulas representing the same boolean function）
－All operations needs for CTL model checking，including \neg, \vee, \wedge should be efficiently computable （does not hold for explicit state representation：false corresponds to the empty set，but \neg false $=$ true corresponds to the set $S=B^{n}$ having 2^{n} elements，infeasible for $n \geq 30$ ）

Why not for all boolean functions？
On n variables a truth table consists of 2^{n} lines
－Hence on n variables there are $2^{2^{n}}$ distinct boolean functions
－Indeed，there are $2^{64} \approx 20,000,000,000,000,000,000$ distinct boolean functions on six variables
－If all of these $2^{2^{n}}$ distinct boolean functions should have a distinct representation，then on average at least 2^{n} bits are needed for that， begin untractable for $n>30$

So the best we may hope for is that we meet in practice is among the minor part of all boolean functions that have an efficient representation

2．理论
 2．2 Binary decisions diagram（BDD）｜Outline

Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 3：Decision Tree

第 3 阶：Decision Tree：

定义：A decision tree is a binary tree in which
－Every node is labeled by a boolean variable
－Every leaf is labeled by 1 or 0 ， representing true or false respectively

语义：If every variable has a boolean value then the corresponding function value is obtained by
－Start at the root
－For any node：go to the left if the corresponding variable is true；otherwise，go to the right
－Repeat until a leaf has been reached
－If the leaf is 1 then the result is true，otherwise false

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 3：Decision Tree

Hence every node is interpreted as an if－then－else

Consider our example for the values
p ：true
q ：false
r ：true
Hence，the result is 0

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 3：Decision Tree

问题 1：Does every boolean function on finitely many boolean variables have a representation as decision tree？
答：Yes：it can be defined by a truth table，and any truth table on n variables having 2^{n} lines can be represented as a decision tree with 2^{n} leaves

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 3：Decision Tree

问题 2：Does every boolean function on finitely many boolean variables have a unique representation as decision tree？

答：No

问题2的一种解决方法：Observe that in one case p is on top of q ，while in the other case q is on top of p
－Fix an order $<$ on the boolean variables，like $p<q$

The following two decision trees both represent the boolean function on p, q that yields true in case p is true and q is false，and false otherwise

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
4 Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD（ ϕ ）
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 4：Ordered decision tree

第 4 阶：Ordered decision tree：An ordered decision tree with respect to $<$ is a decision tree such that if node n is on top of node n^{\prime} ，then

$$
\operatorname{label}(n)<\operatorname{label}\left(n^{\prime}\right)
$$

So the left one is ordered with respect to $p<q$ ，the right one is not

2．理论
2．2 Binary decisions diagram（BDD）｜Stage 4：Ordered decision tree
问题 3：Fixing the order $<$ on the boolean variables，does every boolean function have a unique representation as an ordered decision tree with respect to $<$ ？

答：Still no：
Counterexample：Let T be any ordered decision tree，and let p be a variable less than the variables in T

Then T and T
 representing the same boolean function

解决方法：We are looking for a small representing，hence among these two we prefer T and exclude the latter．

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD（ ϕ ）
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 5：Reduced ordered decision tree （elimination）

第5阶：Reduced ordered decision tree：

An ordered decision tree on which no elimination is possible is called a reduced ordered decision tree

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 5：Reduced ordered decision tree （elimination）

定理

For a fixed order＜on boolean variables，every boolean function has a unique representation as a reduced ordered decision tree

证明过程：略

2．理论

Proof sketch：
－Existence：Start by the ordered decision tree reflecting the truth table，and apply elimination anywhere in the decision tree as long as possible
－Elimination Strictly decreases the size，so cannot go on forever
－During elimination orderedness is maintained
－So at the end we have a reduced ordered decision tree representing the given boolean function

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 5：Reduced ordered decision tree （elimination）

Applying elimination on the right q yields

Now no elimination is possible any more，so this is a reduced ordered decision tree

2．理论
 2．2 Binary decisions diagram（BDD）｜Outline

Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论
2．2 Binary decisions diagram（BDD）｜Stage 6：ROBDD（merging and elimination）
第 6 阶：ROBDD：Reduced Ordered Binary Decisions Diagrams
－A particular example of Binary Decisions Diagrams（BDDs）
－uniquely represent boolean functions by merging and elimination

The formula $(p \wedge q) \vee r$ describes the boolean function that yields true if both p and q are true，or r is true

With respect to the order $p<q<r$ its ROBDD is

Note：
－Every node represents a boolean function itself．
－All nodes of a ROBDD represent distinct boolean functions．

In such a ROBDD，every node represents a boolean function itself
－The ROBDD of this function is the part of the original ROBDD of which the indicated node is the root

All nodes of a ROBDD represent distinct boolean functions
－since if two would represent the same，then they can be shared by applying merging and elimination steps，contradicting being R（educed）

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 6：ROBDD（merging and elimination）

Merge and share：For $p<q<r$ the ROBDD of $p \leftrightarrow q \leftrightarrow r$ is

yields true if and only if the number of variables that is false，is even

Alternative notation to avoid curved arrows：use solid arrows for true－branches and dashed arrows for false－branches

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 6：ROBDD（merging and elimination）

问：为什么要 merging？

答： $2 n-1$ nodes vs $2^{n}-1$ nodes

形式化方法导引 Stage 6：ROBDD（merging and elimination）
 －2．理论

Sharing really helps：without sharing（so the unique reduced ordered deci－ sion tree）for $p \leftrightarrow q \leftrightarrow r$ instead of，we would obtain
Doing the same for $p_{1} \leftrightarrow p_{2} \leftrightarrow \cdots \leftrightarrow p_{n}$ yields a ROBDD of $2 n-1$ nodes， and a reduced ordered decision tree of $2^{n}-1$ nodes：an exponential gap

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 6：ROBDD（merging and elimination）

问题 4：如何选择 order？The ROBDD of $\left(p_{1} \vee q_{1}\right) \wedge\left(p_{2} \vee q_{2}\right) \wedge\left(p_{3} \vee q_{3}\right)$ with respect to
$p_{1}<q_{1}<p_{2}<q_{2}<$ $p_{3}<q_{3}$ is：

w．r．t．$p_{1}<p_{2}<p_{3}<q_{1}<q_{2}<q_{3}$ it is：

where all ？nodes represent distinct boolean functions on q_{1}, q_{2}, q_{3} ，so cannot be shared

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 6：ROBDD（merging and elimination）

More general，the ROBDD of

$$
\left(p_{1} \vee q_{1}\right) \wedge\left(p_{2} \vee q_{2}\right) \wedge \cdots \wedge\left(p_{3} \vee q_{3}\right)
$$

with respect to the order
－$p_{1}<q_{1}<p_{2}<q_{2}<\cdots<p_{n}<q_{n}$ ：has exactly $2 n$ nodes
－$p_{1}<p_{2}<\cdots<p_{n}<q_{1}<q_{2}<\cdots<q_{n}$ ：has more than 2^{n} nodes
So distinct orders may result in ROBDDs of sizes with an exponential gap in between

Heuristic

choose the order in such a way that variables close to each other in the formula are also close in the order

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD (ϕ)
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

第 7 阶：How to compute the Reduced Ordered Binary Decision Diagram （ROBDD）of a given formula？

问题 5：The methods in the former stages should not be used to compute ROBDDs in practice
－since the size of this decision tree is always exponential，so unfeasible
解决方法：operate directly on the formula ϕ ，instead of decision tree Observation：Every formula is of the shape：
－false or true，or
－p for a variable p ，or
－$\neg \phi$ ，or
－$\phi \diamond \psi$ for $\diamond \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$ ．So，the ROBDD $\operatorname{ROBDD}(\phi)$ of a formula ϕ will be constructed recursively according this recursive structure of the formulas：
－ $\operatorname{ROBDD}(\mathbf{F})=0, \operatorname{ROBDD}(\mathbf{T})=1$
－ $\operatorname{ROBDD}(\underline{p})=1$

－$R O B D D(\neg \phi)=R O B D D(\phi \rightarrow \mathbf{F})$
－ $\operatorname{ROBDD}(\phi \diamond \psi)=\operatorname{apply}(R O B D D(\phi), R O B D D(\psi), \diamond)$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

续：So it remains to find an algorithm apply having two ROBDDs and a binary operation $\diamond \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ as input，and having the desired ROBDD as its output

缩写：$p(T, U)$

the BDD having root p for which the left branch is T and the right branch is U

缩写：$\diamond(T, U)$
$\operatorname{apply}(T, U, \diamond)$

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD（ ϕ ）
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

Stage 7．2：Compute $\diamond(T, U)$ recursively for cases：
（1）if $T, U \in\{\mathbf{T}, \mathbf{F}\}$ ：return value according the truth table of \diamond
（2）if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$ ：let p be the smallest variable occurring in T and U ．
（1）p is on top of both T and U

```
Details
```

$$
\diamond\left(p\left(T_{1}, T_{2}\right), p\left(U_{1}, U_{2}\right)\right)=p\left(\diamond\left(T_{1}, U_{1}\right), \diamond\left(T_{2}, U_{2}\right)\right)
$$

（2）p is on top of T but does not occur in U

$$
\diamond\left(p\left(T_{1}, T_{2}\right), U\right)=p\left(\diamond\left(T_{1}, U\right), \diamond\left(T_{2}, U\right)\right) \text {, if } p \text { does not occur in } U
$$

（3）p is on top of U but does not occur in $T \subset$ Details

$$
\diamond\left(T, p\left(U_{1}, U_{2}\right)\right)=p\left(\diamond\left(T, U_{1}\right), \diamond\left(T, U_{2}\right)\right), \text { if } p \text { does not occur in } T
$$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

If p is on top of both T and U

$$
\diamond\left(p\left(T_{1}, T_{2}\right), p\left(U_{1}, U_{2}\right)\right)=p\left(\diamond\left(T_{1}, U_{1}\right), \diamond\left(T_{2}, U_{2}\right)\right)
$$

（1）Replace

Intuitively：for two BDDs T, U computing $\diamond(T, U)$ is done by pushing \diamond downwards，meanwhile combining T and U ，until \diamond applied to \mathbf{T} / \mathbf{F} has to be computed，which is replaced by its value according to the truth table

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

If p is on top of T but does not occur in U

$$
\diamond\left(p\left(T_{1}, T_{2}\right), U\right)=p\left(\diamond\left(T_{1}, U\right), \diamond\left(T_{2}, U\right)\right) \text {, if } p \text { does not occur in } U
$$

（2）If p not in U ，then Replace

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 7：Compute ROBDD

If p is on top of U but does not occur in T

$$
\diamond\left(T, p\left(U_{1}, U_{2}\right)\right)=p\left(\diamond\left(T, U_{1}\right), \diamond\left(T, U_{2}\right)\right), \text { if } p \text { does not occur in } T
$$

（3）If p not in T ，then replace

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

例子：We choose the formula

$$
(p \rightarrow r) \wedge(q \leftrightarrow(r \vee p))
$$

and the order $p<q<r$ ．in a picture：

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

Left argument：

回顾：（2）If p not in U ，then Replace

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

Right argument：

回顾：（3）If p not in T ，then replace

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

Right argument：（续上页）：

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

Now we have computed the ROBDDs of both arguments of \wedge in the original formula，and it remains to apply \wedge on these two

回顾：（1）Replace

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

2．理论

2．2 Binary decisions diagram（BDD）｜BDD algorithm example

We computed the ROBDD of the formula

$$
(p \rightarrow r) \wedge(q \leftrightarrow(r \vee p))
$$

w．r．t the order $p<q<r$ ．

Doing this by hand in all detail is quite some work，but the steps are very systematic and suitable for implementation

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute ROBDD (ϕ)
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL
第 8 阶：CTL model checking by ROBDDs
How can we do CTL model checking by representing large sets of states by ROBDDs？
－原先算法（Fixpoint）：the abstract algorithm for CTL model checking －Basic Idea
－当前思路：Iteratively update ROBDD of a boolean function，e．g．， $\operatorname{ROBDD}\left(f_{n}\right)$ ，until $\operatorname{ROBDD}\left(f_{n}\right)=\operatorname{ROBDD}\left(f_{n-1}\right)$

例：Compute $S_{\text {EG } \phi}$ by f_{n}

Here，$f_{n}(s)=1 \leftrightarrow s \in T_{n}$
－For convenience，define $\operatorname{ROBDD}\left(T_{n}\right) \equiv \operatorname{ROBDD}\left(f_{n}\right)$
－新问题：How to compute $\operatorname{ROBDD}\left(T_{n} \cap\left\{s \in S_{\phi} \mid \exists t \in T_{n}: s \rightarrow t\right\}\right)$ ？

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL＞ 8.1

Stage 8.1

All CTL operators can be expressed in
（1）boolean operators $(\neg, \wedge, \rightarrow, \vee)$ and
－solved in stage $7>$ Stage $7.1 \geqslant$ Stage 7.2
（2）$E X, E G, E U$
－to be solved in Stage 8.2 Stage 8.2
回顾：

$$
\begin{aligned}
& \neg \mathrm{AF} \phi \equiv \mathrm{EG} \neg \phi \\
& \neg \mathrm{EF} \phi \equiv \mathrm{AG} \neg \phi \\
& \neg \mathrm{AX} \phi \equiv \mathrm{EX} \neg \phi \\
& \mathrm{AF} \phi \equiv \mathrm{~A}[\mathrm{~T} \mathrm{U} \phi] \\
& \mathrm{EF} \phi \equiv \mathrm{E}[\mathrm{~T} \mathrm{U} \phi]
\end{aligned}
$$

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
6 Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL

Stage 8.2
For computing EX，EG，EU，we only needed the building blocks：
－set set
－union \cup ，intersection \cap union \cup ，intersection \cap
－computing computing

$$
\{s \in T \mid \exists t \in U: s \rightarrow t\}
$$

for a given transition relation \rightarrow and given sets T, U
基本思路：Sets are described by boolean functions：an element is in the set if and only if the boolean function yields true $f_{U}: B^{n} \rightarrow B$

$$
\begin{aligned}
& s \in U \leftrightarrow f_{U}(s)=1 \\
& \operatorname{ROBDD}(U) \equiv \operatorname{ROBDD}\left(f_{U}(s)\right) \text {, a.k.a., } \operatorname{ROBDD}\left(S_{\phi}\right) \equiv \operatorname{ROBDD}(\phi)
\end{aligned}
$$

2．理论

2．2 Binary decisions diagram（BDD）｜Outline
Outline of a BDD algorithm
（2）Stage 2：Boolean functions
（3）Stage 3：Decision Tree
（4）Stage 4：Ordered decision tree
（5）Stage 5：Reduced ordered decision tree（elimination）
（6）Stage 6：ROBDD（merging and elimination）
（7）Stage 7：Compute ROBDD
－Stage 7．1：Compute $\operatorname{ROBDD}(\phi)$
－Stage 7．2：Compute $\diamond(T, U)$
（8）Stage 8：ROBDD－CTL
－Stage 8．1：Express CTL operators
－Stage 8．2：Compute EX，EG，EU
－Stage 8．3：Compute $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$

2．理论

2．2 Binary de

Computing

$$
V=\{s \in T \mid \exists t \in U: s \rightarrow t\}
$$

for a given transition relation \rightarrow and given sets T, U

准备 1

Write a_{i}^{\prime} as shorthand for $\operatorname{next}\left(a_{i}\right)$ ，and assume
－$s \equiv\left(a_{1}, \ldots, a_{n}\right)$
－$t \equiv\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$

准备 2

The transition relation \rightarrow is given by a boolean function (P) on $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ ，again in ROBDD representation

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL

Stage 8 步骤小结：

－Stage 8．1：Express all CTL operators in
（1）boolean operators $(\neg, \wedge, \rightarrow, \vee)$
－Compute ROBDD of boolean operators：
Stage 7.1
－Stage 7.2
（2）$E X, E G, E U$
－Stage 8．2：Compute ROBDD of $E X, E G, E U \subset$ Example：$S_{\text {EG }}$＝t_{n}
－solved：t_{0}, S_{ϕ}, \cap
－problems left： $\operatorname{ROBDD}(V)$ ，where $V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$
－Stage 8．3：
－step 1：compute $\operatorname{ROBDD}(P)$ ，where $P=P_{1} \wedge P_{2}$ ， $\overline{P_{1}}=\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), P_{2}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in U$
－step 2：compute $\operatorname{ROBDD}\left(S_{P_{e}}\right)$ ，where

$$
S_{P_{e}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists a_{1}^{\prime}, \ldots, a_{n}^{\prime}: P\left(a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right\}
$$

－step 3：compute $\operatorname{ROBDD}(V)$ ，where

$$
\text { - } V=T \cap S_{P_{e}}
$$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL｜Example－Stage 8

例：ROBDD－CTL 求解

Given a transition system $\mathcal{M}=(S, \rightarrow, L)$ ，where $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\} \rightarrow=\left\{\left(s_{0}, s_{0}\right),\left(s_{0}, s_{1}\right),\left(s_{0}, s_{2}\right)\right.$ ， $\left.\left(s_{1}, s_{3}\right),\left(s_{2}, s_{1}\right),\left(s_{2}, s_{3}\right),\left(s_{3}, s_{0}\right)\right\}, L\left(s_{3}\right)=\{p\}$ ．
Verify： $\mathcal{M}, s_{0} \vDash$ AF p
Stage 8．1：compute ROBDD（AF p ）

（1） $\mathrm{AF} p=\neg \mathrm{EG} \neg p$
（2） $\operatorname{ROBDD}(\mathrm{AF} p)=\operatorname{ROBDD}(\mathrm{EG} \neg p \rightarrow \mathbf{F})$
$=$ apply $(\operatorname{ROBDD}(\mathrm{EG} \neg p), \operatorname{ROBDD}(\mathbf{F}), \rightarrow)$
（3）compute ROBDD（EG $\neg p)$ in Stage 8.2
Stage 8．2：Compute $\operatorname{ROBDD}(\mathrm{EG} \neg p) \subset S_{\text {EG }}=t_{n}$
（1）Define a state as a pair of variables $\left(a_{1}, a_{2}\right)$ ， where $a_{1}, a_{2} \in\{0,1\}$

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL｜Example－Stage 8

Stage 8．3：compute $\operatorname{ROBDD}(V)$ ，where
－$V=\{s \in T \mid \exists t \in U: s \rightarrow t\}$
－$T=\{(0,0),(0,1),(1,0)\}, \operatorname{ROBDD}(U)=t_{n}$ Step 1：
－$P_{1}=\left(a_{1}, a_{2}\right) \rightarrow\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$

$$
\begin{aligned}
& -\frac{P_{1}}{}=\left\{\left(s_{0}, s_{0}\right),\left(s_{0}, s_{1}\right),\left(s_{0}, s_{2}\right),\left(s_{1}, s_{3}\right)\right. \\
& \left.\quad\left(s_{2}, s_{1}\right),\left(s_{2}, s_{3}\right),\left(s_{3}, s_{0}\right)\right\}= \\
& \quad\{0000,0001,0010,0111,1001,1011,1100\}
\end{aligned}
$$

－$P_{2}=\left(a_{1}^{\prime}, a_{2}^{\prime}\right) \in U$
－Oth iteration：
－ROBDD $(P)=\operatorname{ROBDD}\left(P_{1} \wedge\right.$ $\left.P_{2}\right)=\operatorname{apply}\left(R O B D D\left(P_{1}\right), R O B D D\left(P_{2}\right), \wedge\right)$
－Oth iteration：

2．理论

2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL｜Example－Stage 8

Similarly，compute $t_{2}, t_{3} \ldots$（作业：计算 t_{2}, t_{3} ）

t_{3}
Observe that $t_{2}=t_{3}$
Back to Stage 8．1： $\operatorname{ROBDD}(\mathrm{EG} \neg p)=t_{2}$
$S_{\mathrm{EG} \neg p}=\{(0,0)\}=\left\{s_{0}\right\}$
$S_{\mathrm{AFp}}=S_{\neg \mathrm{EG} \neg p}=\left\{s_{1}, s_{2}, s_{3}\right\}$
So， $\mathcal{M}, s_{0} \not \models$ AF p

2．理论
2．2 Binary decisions diagram（BDD）｜Stage 8：ROBDD－CTL＞Stage 8

Stage 8 小结：
－Combining this gives an algorithm to compute the ROBDD of the set states satisfying any CTL formula
－This is essentially the algorithm as it is used in tools like NuSMV to do symbolic model checking
－In contrast to explicit state based model checking，it can deal with very large state spaces．

作业

作业：模仿 t_{1} 的求解过程，手工运算 t_{2}, t_{3} ，给出运算过程．
实验大作业（可选）：实现 ROBDD 算法，要求：
－可以实现至不同 stage，例如，可实现至 ROBDD，或 ROBDD－CTL。实现的越完整，给分越高。
－提供源代码，可执行程序，测试文件，相关文档

