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@ Model checking

o Modeling: Transition system
e Specification: LTL, CTL

e Tool
o NuSMV

ABHE
@ Basic idea of checking a model: fixpoint formulation

o Classical algorithms

o Binary decisions diagram (BDD)
e Bounded model checking (BMC)
e Basic Inductive Techniques
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2. IBig

2.1 Basic idea of checking a CTL formula | state space

Ef: EM: Transition system

A transition system M = (S, —, L) is
@ S: a set of states
@ —: a transition relation: every s € S has some s’ € S with s — &’
e L: a label function: L : S — P(Atoms)

TEN.: State space

The state space

S=Vix---xV,
is implied by the variables v1, ..., v, from finite sets V,...,V,

[B]&X: How to check an LTL or CTL property?
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2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

[a]: How to check an LTL property?
% (SPIN,..)

[B]&: How to check a CTL property?

@ Compute the set Sy consisting of all states that satisfy ¢
e a state s € S satisfies ¢ if the set of all paths starting in s satisfies ¢

@ Then the property to check is s € S

M,sF¢ <<= s€8,
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2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

[@: How to compute S,7?
&k
x:

o Basics: SJ_, ST, Sp, Sﬁd), S¢V¢, S¢/\¢,
@ CTL Related: SEXd): SEg¢, SE[qud)]

E#8 https://faculty.ustc.edu.cn/hu: R FEFS
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2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

e S =0
4 ST =5
@ For an atomic proposition p:

Sp={s €5 |p(s)}

0 S y={seS|s&Sy}
° S¢V¢:S¢US¢
) S¢/\¢:S¢HS¢
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2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

Compute Sgxg

A state s satisfies EX ¢, if there exists a path starting in s such that ¢
holds in the next state of that path. So:

SEXd,:{SGS‘HtE%ZS—)t}
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2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

EG and EU are harder: they deal with properties of paths beyond a fixed
finite part of the path

B&: Fixpoint formulation
Consider the first n steps for increasing n, until the corresponding set does
not change anymore.
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2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

[ EGo
There exists a path sg — s; — s2--- on which ¢ globally holds, that is, ¢
holds in s; for all ¢

Forn=20,1,2,..., let T, = set of states sg, for which there exists a path
S0 = 81 — S92+ -+ on which ¢ holds for all s; with i <n

Then Ty = Sy, and for all n =0,1,..., we have

Toy1=T,N{s€ Sy | ecT,:s—t}
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2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sece

Compute Sggy by T;, (Fixpoint formulation)

Tp := Sy, n:=0;

repeat
Tot1:=ToN{s€Sy|FHteT,:s>t};n=n+1;

until 75, = T},—1

The loop terminates, since
@ the set T, is finite

@ |T,,| decreases in every step

After running this algorithm we have Sggy = T5,
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After finishing this algorithm we have T;, = T,,_1, yielding T}, = T; for all
>n

So then T;, states that for every i there is a path of which the first i states
satisfy ¢

S finite = this implies a path on which ¢ globally holds (take i = |S])

So after running this algorithm we have Sgqq¢ = 1),

The loop terminates since all sets are finite and |T,| decreases in every
step



2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

so satisfies E[¢ U 1] means: there exists n such that P, holds, for

@ P, = there exists a path sy — s1 — so--- on which ¥ holds in s,
and ¢ holds in s; for all i < n

U,, = set of states sy for which P; holds for some i < n

Then Uy = Sy, and for all n=0,1,..., we have
Un+1:UnU{SES¢‘3tEUnZS—>t}

Compute Sgjguy) by Un

Up := Sy;n :=0;
repeat

Upy1:=UpU{s€ Sy |FH€U,:5 =t} n=n+1;
until U, = U, _1
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https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

Concluding,
e For an arbitrary CTL formula ¢ we saw how to compute the set Sy,
being the set of states that satisfy ¢
e Basics: SJ_, ST, Sp, Sﬁd,, S¢>\/¢' S¢/\w
o CTL Related: SEX¢. SE(;,¢, SEW’UW
@ In this computation we only needed the computation of the sets
TUU, TNU, complements, and {s € T | 3t € U : s — t}, for given

sets T, U

[B)&&: In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

A& T Z: 2.2 Binary decisions diagram (BDD), 2.3 Bounded model
checking (BMC), 2.4 k-induction

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD)

=] 7

@ In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

o Key words: state spaces

Now we study BDD
@ a method of symbolic model checking.
@ adopted by NuSMV

HARBEE: Firstly, investigate desired requirements for alternative
representations for boolean functions

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao
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2.2 Binary decisions diagram (BDD) | Outline

QOutline of a BDD algorithm
@ Stage 1: Boolean variables

@ Stage 2: Boolean functions

© Stage 3: Decision Tree

@ Stage 4: Ordered decision tree

© Stage 5: Reduced ordered decision tree (elimination)
@ Stage 6: ROBDD (merging and elimination)

@ Stage 7: Compute ROBDD

@ Stage 7.1: Compute ROBDD(¢)
o Stage 7.2: Compute o(T,U)
© Stage 8: ROBDD-CTL
@ Stage 8.1: Express CTL operators
@ Stage 8.2: Compute EX, EG, EU
@ Stage 8.3: Compute V={seT |FHecU:s—t}
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2. it

2.2 Binary decisions diagram (BDD) | Outline

QOutline of a BDD algorithm
@ Stage 1: Boolean variables
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2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

£ 1 B: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular boolean or
integers with a restricted range, like

VAR
a: 1..100; J

We may assume we only have boolean variables

@ by representing variables in binary notation, e.g., using 7 bits for the
range 1..100,

@ Atomic propositions, e.g., a < b+ 5, can be expressed in binary
notation too
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 2: Boolean functions
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

£ 2 Boolean Functions:

Write B = {0, 1}, then for n boolean variables the state space is S = B"
We want to represent and manipulate subsets of S = B"
A subset U C B™ can be identified by a boolean function

fu:B"— B

defined by
selU<+ fu(s)=1
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2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

@ Many boolean functions have an efficient representation

e [a]: Why not for all boolean functions?
o Z: It is unavoidable that most of the boolean functions have
untractable (| ¥EH]) representation

Z22: BDD provide a data structure for boolean functions —Decision Tree
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Stage 2: Boolean functions

L2 1@ip

= Every boolean function has a unique representation (WLf5: [B]&& 2)
(does not hold for formula representation: p A (p A q¢) and ¢ A p are
distinct formulas representing the same boolean function)

= All operations needs for CTL model checking, including —,V, A
should be efficiently computable
(does not hold for explicit state representation: false corresponds to
the empty set, but — false = true corresponds to the set S = B"
having 2™ elements, infeasible for n > 30)
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Stage 2: Boolean functions

L2 1@ip

Why not for all boolean functions?
On n variables a truth table consists of 2™ lines
» Hence on n variables there are 22" distinct boolean functions

= Indeed, there are 254 = 20, 000, 000, 000, 000, 000, 000 distinct
boolean functions on six variables

= If all of these 22" distinct boolean functions should have a distinct
representation, then on average at least 2" bits are needed for that,
begin untractable for n > 30

So the best we may hope for is that we meet in practice is among the
minor part of all boolean functions that have an efficient representation



2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 3: Decision Tree
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2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [ Decision Tree:
TEN : A decision tree is a binary tree
in which
@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false
respectively

oy
oo
TR R

0 1 1 0

iE M : If every variable has a boolean
value then the corresponding
function value is obtained by

@ Start at the root

e For any node: go to the left if
the corresponding variable is
true;, otherwise, go to the right

@ Repeat until a /eaf has been
reached

o If the leaf is 1 then the result is
true, otherwise false

EH#B https://faculty.ustc.edu.cn/hu:
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2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else

Consider our example for the values A/QZ\
p: true @ ;(Q\
q: false

7 true 1 ﬂ 0 R
Hence, the result is 0
@ 11 0
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2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

@& 1: Does every boolean function on finitely many boolean variables

have a representation as decision tree?
% Yes: it can be defined by a truth table, and any truth table on n

variables having 2" lines can be represented as a decision tree with 2™

A RAR

leaves
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https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

[ &% 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

Z: No

0 1 1 0
()8R 2 By—FFfER 5 i%: Observe that in one case p is on top of ¢, while
in the other case ¢ is on top of p

@ Fix an order < on the boolean variables, like p < ¢
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Stage 3: Decision Tree

L2 1@ip

The following two decision trees both represent the boolean function on
p, q that yields true in case p is true and q is false, and false otherwise



2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 4: Ordered decision tree
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2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

£ 4 By Ordered decision tree: An ordered decision tree with respect to
< is a decision tree such that if node n is on top of node n’, then

label(n) < label(n')

So the left one is ordered with respect to p < ¢, the right one is not
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2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[a) &% 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

% Still no:

Counterexample: Let T" be any ordered decision tree, and let p be a
variable less than the variables in T’

Then T and T T are two ordered decision trees
representing the same boolean function

R 7% We are looking for a small representing, hence among these
two we prefer T' and exclude the latter.
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 5: Reduced ordered decision tree (elimination)

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

£ 5 By Reduced ordered decision tree:

T

Replacing T by T is called elimination

An ordered decision tree on which no elimination is possible is called a
reduced ordered decision tree
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2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

For a fixed order < on boolean variables, every boolean function has a
unique representation as a reduced ordered decision tree

HERAIE A2 B
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Stage 5: Reduced ordered decision tree (elimination)

L2 1@ip

Proof sketch:

Existence: Start by the ordered decision tree reflecting the truth
table, and apply elimination anywhere in the decision tree as long as
possible

Elimination Strictly decreases the size, so cannot go on forever
During elimination orderedness is maintained

So at the end we have a reduced ordered decision tree representing
the given boolean function



2. 18t

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

Applying elimination on the right ¢
{5: For the boolean function defined yields
by the formula p A —q, for the order

p < q the ordered decision tree
reflecting the truth table is
Y N Y X Now no elimination is possible any

0 1 0 0 more, so this is a reduced ordered
decision tree
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 6: ROBDD (merging and elimination)
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2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

2 6 fi: ROBDD: Reduced Ordered Binary Decisions Diagrams
@ A particular example of Binary Decisions Diagrams (BDDs)

@ uniquely represent boolean functions by merging and elimination

The formula (p A ¢) V r describes the
boolean function that yields true if both p
and q are true, or r is true

With respect to the order p < g < r its
ROBDD is

Note:
@ Every node represents a boolean function itself.

@ All nodes of a ROBDD represent distinct boolean functions.
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In such a ROBDD, every node represents a boolean function itself

= The ROBDD of this function is the part of the original ROBDD of
which the indicated node is the root

All nodes of a ROBDD represent distinct boolean functions

= since if two would represent the same, then they can be shared by
applying merging and elimination steps, contradicting being
R(educed)



2. it

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < g < r the
ROBDD of p <> g < 1 is

yields true if and only if the number
of variables that is false, is even

EH#B https://faculty.ustc.edu.cn/hu:

Alternative notation to avoid curved
arrows: use solid arrows for
true-branches and dashed arrows for
false-branches
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2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

ia]: At AZE merging?

4 1@%@1 O@%@O

1 0 Z: 2n — 1 nodes vs 2" — 1 nodes
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L2 1@ip

Sharing really helps: without sharing (so the unique reduced ordered deci-
sion tree) for p <+ g <> r instead of, we would obtain

Doing the same for p; <> pay <> - - - <> p, yields a ROBDD of 2n—1 nodes,
and a reduced ordered decision tree of 2" — 1 nodes: an exponential gap



2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

[B1RR 4. fN{AT%EHE order? The ROBDD of (p1 V.q1) A (p2 V q2) A (p3 V q3)
with respect to

PL<q<p2<qs< wrt. pr <p2<p3<q <q <gqsitis:

S0 P\

o B
% \Wiclololofolefolo
where all ? nodes represent distinct boolean

1
functions on ¢, g2, g3, S0 cannot be shared
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2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)
More general, the ROBDD of

P1Va)NP2Vag)N---A(p3Vas)

with respect to the order

0PI < qr <p2< @< - <pp<gn: has exactly 2n nodes
0PI <P < < pp<qr<qa<---<qpn: has more than 2" nodes

So distinct orders may result in ROBDDs of sizes with an exponential gap
in between

choose the order in such a way that variables close to each other in the
formula are also close in the order
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD
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2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

[ &k 5. The methods in the former stages should not be used to compute
ROBDDs in practice

@ since the size of this decision tree is always exponential, so unfeasible

iR 5% operate directly on the formula ¢, instead of decision tree

Observation: Every formula is of the shape:
o false or true, or
@ p for a variable p, or
e —¢, or
@ pot)foroe {V,A —, <}
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD
@ Stage 7.1: Compute ROBDD(¢)
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2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

e ROBDD(F)=0, ROBDD(T)=1

POoN

o ROBDD(p)= 1 0
o ROBDD(—¢)=ROBDD(¢ — F)
o ROBDD(¢ o 1))= apply(ROBDD($), ROBDD(¥), o)

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

4%: So it remains to find an algorithm apply having two ROBDDs and a
binary operation ¢ € {V, A, —, <>} as input, and having the desired
ROBDD as its output

the BDD having root p for which the left branch is 7" and the right branch
is U

apply (T, U, o)
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2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD

o Stage 7.2: Compute o(T,U)
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2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©

@ if T, U not both in {T,F}: let p be the smallest variable occurring in
T and U.

@ pis on top of both T and U

o(p(T1, 1), p(Ur, Uz)) = p(o(T1,Ur),o(T>, Us))

@ pis on top of T but does not occur in U

o(p(Ty,T),U) = p(o(T1,U),o(Tz,U)), if p does not occur in U

@ pis on top of U but does not occur in T'

o(T, p(Uy,Us)) = p(o(T,Uy),o(T, Us)), if p does not occur in T
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2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of both 7" and U

o(p(T1, T»), p(Ur, U2)) = p(o(T1, Ur), o(12, Uz))

(1) Replace

o

Ty Ty Uy Us by 11 15 Uy Uy
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I—Stage 7: Compute ROBDD 01 1
|Stage 7.2: Compute o(T,U) LRSS
2 ) A A
2. @i N

Intuitively: for two BDDs T',U computing ¢(7',U) is done by pushing ¢
downwards, meanwhile combining T and U, until ¢ applied to T/F has to
be computed, which is replaced by its value according to the truth table



2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of T" but does not occur in U

o(p(T1,T2),U) = p(o(T1,U),o(T2,U)), if p does not occur in U
(2) If p not in U, then Replace

o

Ty b U by 11 T U
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2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of U but does not occur in T'

o(T, p(Ur,Us)) = p(o(T,Uy), (T, Us)), if p does not occur in T
(3)If p not in T, then replace

2

T U, Us by T U, Us
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

5]F: We choose the formula

(p—=1)A (g (rVp))

and the order p < ¢ < r. in a picture:

SECY
4 B &
AR

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:
2
SIS 9 nooR
RRRT KRR
1 01 0 1 0 1 01 1 1 0
E:(2) If p not in U, then Replace
7\

Ty T3 U Ty T U

E#8 https://faculty.ustc.edu.cn/hu: ° R FEFS
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

ORI O O
&&R%@@

[E]J@:(3)If p not in T, then replace

T Uy Uz T Uy Us
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (££_ET):

O (o)
E5 AT
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Now we have computed the ROBDDs of both arguments of A in the
original formula, and it remains to apply A on these two

Jal
@@@ @@@ 280
AR T AR

1

[E] (1) Replace

/@\ QQ
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example
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2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

@ We computed the ROBDD of the formula

(a) (9) (p—7)Alg e (rVp))

w.r.t the order p < g < 7.

E#B https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2024-02-13

R FESSI
I—Stage 7: Compute ROBDD 2
LStage 7.2: Compute o(T,U)
L2 mip ™

Doing this by hand in all detail is quite some work, but the steps are very
systematic and suitable for implementation




2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

o LPIREK: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(f,,), until ROBDD(f,,)=ROBDD(f,_1)

f5ll: Compute Sgay by fi

Here, fu(s) =1+ se T,
@ For convenience, define ROBDD(7},) = ROBDD( f,,)
o #a]: How to compute ROBDD(T,,N{s € Sy | I € T}, : s = t})?
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2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL
@ Stage 8.1: Express CTL operators
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2. IZig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.1

All CTL operators can be expressed in
@ boolean operators (-, A, —, V) and
e solved in stage 7

Q@ EX, EG, EU
e to be solved in Stage 8.2 )
E)R
-AF ¢ = EG —¢
—-EF ¢ = AG —¢
-AX ¢ = EX —¢
AF ¢ = A[T U ¢

EF ¢ = E[T U ¢]
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2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL

@ Stage 8.2: Compute EX, EG, EU
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.2

For computing EX, EG, EU, we only needed the building blocks:
@ set set
@ union U, intersection N wunion U, intersection N

@ computing computing

{seT|FHeU:s—t}

for a given transition relation — and given sets T, U

v

EAXHEFE: Sets are described by boolean functions: an element is in the
set if and only if the boolean function yields true fi; : B* — B

selU+ fu(s)=1
ROBDD(U) = ROBDD(fy(s)), ak.a., ROBDD(S,) = ROBDD(g)
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2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL

@ Stage 8.3: Compute V={seT |FHecU:s—t}
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3

Computing

V={seT|3teU:s—t}

for a given transition relation — and given sets T, U

HEF 1

Write a as shorthand for next(a;), and assume

e s=(a,...,an)
o t=(dy,...,al)

The transition relation — is given by a boolean function (P) on
ai,...,an,ay,...,al, again in ROBDD representation
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8 HIB/ING:
@ Stage 8.1: Express all CTL operators in

@ boolean operators (=, \,—, V)
o Compute ROBDD of boolean operators:

Q@ EX EG, EU
@ Stage 8.2: Compute ROBDD of EX, EG, EU

o solved: tg, Sy, N

o problems left: ROBDD(V), where V ={s €T |3t e U :s—t}
@ Stage 8.3:

o step 1: compute ROBDD(P), where P = P, A P,

P = (a1,...,an) = (d},...,a,), Po=(d},...,a,) €U

r'n

e step 2: compute ROBDD(Sp, ), where

Sp, ={(a1,...,a,) | d},...,a), : Pla,...,an,ady,...,a,)}

e step 3: compute ROBDD(V), where
o V=TnNSp,
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

f5): ROBDD-CTL k%
Given a transition system M = (S, —, L), where
S = {s0, 81, 52, 53} == {(s0, 50), (80 51), (0, 52),

(51,83), (52,51), (52, 83), (53,50)}, L(s3) = {p}.
Verify: M, so E AF p 53

82
Stage 8.1: compute ROBDD(AF p)
@ AF p = —EGp
@ ROBDD(AF p) = ROBDD(EG—p — F)
—apply(ROBDD(EG-p), ROBDD(F), —)
© compute ROBDD(EG—p) in Stage 8.2

Stage 8.2: Compute ROBDD(EG—p) @

@ Define a state as a pair of variables (aj, as),
where a1, a2 € {0,1} \

WAL B ESE|

HI _ o0 _
EH#B https://faculty.ustc.edu.cn/hu:
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t} 30 st
o T'={(0,0),(0,1),(1,0)}, ROBDD(U)=
Step 1:

° Pl ( ar,az) — (al,ah)
= {(s0,50); (50, 51), (S0, 52), (51, 83),

(32781) (82783)7 (83; SO)} =
{0000, 0001, 0010,0111, 1001, 1011, 1100}

o Py =(a)},ay) €U @
o Oth iteration: K
»

o ROBDD(P)=ROBDD(P; A
Py)=apply(ROBDD(P;), ROBDD(P), A) @
“/

o Oth iteration: a a J a
ROBDD o :

53
52

QMDD Oth D
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t5... ({EMk: $TE& to,t3)

S o, a]

to t1 to t3
Observe that t9 = t3
Back to Stage 8.1: ROBDD(EG —p)=t»
Suc-p = {(0,0)} = {so}

Sarp = S-EG—p = {51, 52,53}
So, M, so ¥ AF p
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2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL EiSEEE8)

Stage 8 /\&E:
@ Combining this gives an algorithm to compute the ROBDD of the set
states satisfying any CTL formula
@ This is essentially the algorithm as it is used in tools like NuSMV to
do symbolic model checking
@ In contrast to explicit state based model checking, it can deal with
very large state spaces.
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1Elb: #8{7 ¢ KEERE, FITER 6.6, KHEEIE.

KB AR (FTiE): 3EEL ROBDD Hi%, E3k:
o WAL ZEARF stage, filan, AILHZE ROBDD, 5 ROBDD-CTL,
LHMHBTE, BHHES.
o {RELRNED. WHATIER. WX, #HRIH
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