
形式化方法导引
第 5 章 模型检测

5.2 理论
5.2.1 Fixpoint formulation | 5.2.2 BDD Algorithm

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
本节内容

往节内容
Model checking

Modeling: Transition system
Specification: LTL, CTL

Tool
NuSMV

本节内容:
Basic idea of checking a model: fixpoint formulation
Classical algorithms

Binary decisions diagram (BDD)
Bounded model checking (BMC)
Basic Inductive Techniques

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | state space

回顾: 定义: Transition system
A transition system M = (S,→, L) is

S: a set of states
→: a transition relation: every s ∈ S has some s′ ∈ S with s → s′

L: a label function: L : S → P(Atoms)

定义: State space
The state space

S = V1 × · · · × Vn
is implied by the variables v1, . . . , vn from finite sets V1, . . . , Vn

问题: How to check an LTL or CTL property?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Basic Idea

问: How to check an LTL property?
答: (SPIN,...)

问题: How to check a CTL property?

基本思路
1 Compute the set Sϕ consisting of all states that satisfy ϕ

a state s ∈ S satisfies ϕ if the set of all paths starting in s satisfies ϕ

2 Then the property to check is s ∈ Sϕ

M, s ⊨ ϕ ⇐⇒ s ∈ Sϕ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Basic Idea

问: How to compute Sϕ?
答:

1 Basics: S⊥, S⊤, Sp, S¬ϕ, Sϕ∨ψ, Sϕ∧ψ
2 CTL Related: SEXϕ, SEGϕ, SE[ϕUψ]

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sϕ: Basics
S⊥ = ∅
S⊤ = S

For an atomic proposition p:

Sp = {s ∈ S | p(s)}

S¬ϕ = {s ∈ S | s ̸∈ Sϕ}
Sϕ∨ψ = Sϕ ∪ Sψ

Sϕ∧ψ = Sϕ ∩ Sψ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SEXϕ, SEGϕ, SE[ϕUψ]

Compute SEXϕ

A state s satisfies EX ϕ, if there exists a path starting in s such that ϕ
holds in the next state of that path. So:

SEXϕ = {s ∈ S | ∃t ∈ Sϕ : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SEXϕ, SEGϕ, SE[ϕUψ]

EG and EU are harder: they deal with properties of paths beyond a fixed
finite part of the path

思路: Fixpoint formulation
Consider the first n steps for increasing n, until the corresponding set does
not change anymore.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SEXϕ, SEGϕ, SE[ϕUψ]

回顾: EGϕ

There exists a path s0 → s1 → s2 · · · on which ϕ globally holds, that is, ϕ
holds in si for all i

定义: Tn
For n = 0, 1, 2, . . . , let Tn = set of states s0, for which there exists a path
s0 → s1 → s2 · · · on which ϕ holds for all si with i ≤ n

Then T0 = Sϕ, and for all n = 0, 1, . . . , we have

Tn+1 = Tn ∩ {s ∈ Sϕ | ∃t ∈ Tn : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SEGϕ

Compute SEGϕ by Tn (Fixpoint formulation)
T0 := Sϕ; n := 0;
repeat

Tn+1 := Tn ∩ {s ∈ Sϕ | ∃t ∈ Tn : s → t}; n = n+ 1;
until Tn = Tn−1

The loop terminates, since
the set Tn is finite
|Tn| decreases in every step

After running this algorithm we have SEGϕ = Tn

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SEGϕ

Compute SEGϕ by Tn (Fixpoint formulation)
T0 := Sϕ; n := 0;
repeat

Tn+1 := Tn ∩ {s ∈ Sϕ | ∃t ∈ Tn : s → t}; n = n+ 1;
until Tn = Tn−1

The loop terminates, since
the set Tn is finite
|Tn| decreases in every step

After running this algorithm we have SEGϕ = Tn20
24

-0
2-

13
形式化方法导引

2. 理论

After finishing this algorithm we have Tn = Tn−1, yielding Tn = Ti for all
i ≥ n

So then Tn states that for every i there is a path of which the first i states
satisfy ϕ
S finite ⇒ this implies a path on which ϕ globally holds (take i = |S|)
So after running this algorithm we have SEGϕ = Tn

The loop terminates since all sets are finite and |Tn| decreases in every
step

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SE[ϕUψ]

s0 satisfies E[ϕ U ψ] means: there exists n such that Pn holds, for
Pn = there exists a path s0 → s1 → s2 · · · on which ψ holds in sn,
and ϕ holds in si for all i < n

定义：Un

Un = set of states s0 for which Pi holds for some i ≤ n

Then U0 = Sψ, and for all n=0,1,…, we have
Un+1 = Un ∪ {s ∈ Sϕ | ∃t ∈ Un : s → t}

Compute SE[ϕUψ] by Un

U0 := Sψ;n := 0;
repeat
Un+1 := Un ∪ {s ∈ Sϕ | ∃t ∈ Un : s → t}; n = n+ 1;

until Un = Un−1

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Basic idea of checking a CTL formula | Computing SE[ϕUψ]

Concluding,
For an arbitrary CTL formula ϕ we saw how to compute the set Sϕ,
being the set of states that satisfy ϕ

Basics: S⊥, S⊤, Sp, S¬ϕ, Sϕ∨ψ, Sϕ∧ψ
CTL Related: SEXϕ, SEGϕ, SE[ϕUψ]

In this computation we only needed the computation of the sets
T ∪ U , T ∩ U , complements, and {s ∈ T | ∃t ∈ U : s → t}, for given
sets T,U

问题: In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

可选方案: 2.2 Binary decisions diagram (BDD), 2.3 Bounded model
checking (BMC), 2.4 k-induction

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD)

回顾:
In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

Key words: state spaces

Now we study BDD
a method of symbolic model checking.
adopted by NuSMV

基本思路: Firstly, investigate desired requirements for alternative
representations for boolean functions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

第 1 阶: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular boolean or
integers with a restricted range, like

VAR
a : 1..100;

We may assume we only have boolean variables
by representing variables in binary notation, e.g., using 7 bits for the
range 1..100,
Atomic propositions, e.g., a < b+ 5, can be expressed in binary
notation too

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

第 2 阶: Boolean Functions:

Write B = {0, 1}, then for n boolean variables the state space is S = Bn

We want to represent and manipulate subsets of S = Bn

A subset U ⊆ Bn can be identified by a boolean function

fU : Bn → B

defined by
s ∈ U ↔ fU (s) = 1

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to represent and manipulate boolean functions efficiently,
more precisely:

Every boolean function has a unique representation (见后: 问题 2)
Counterexample: p ∧ (p ∧ q) and q ∧ p

All operations needs for CTL model checking, including ¬,∨,∧ should
be efficiently computable

Example: ⊥
Counterexample: ⊤

Many boolean functions have an efficient representation
问: Why not for all boolean functions?
答: It is unavoidable that most of the boolean functions have
untractable (困难的) representation

答案: BDD provide a data structure for boolean functions —Decision Tree

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to represent and manipulate boolean functions efficiently,
more precisely:

Every boolean function has a unique representation (见后: 问题 2)
Counterexample: p ∧ (p ∧ q) and q ∧ p

All operations needs for CTL model checking, including ¬,∨,∧ should
be efficiently computable

Example: ⊥
Counterexample: ⊤

Many boolean functions have an efficient representation
问: Why not for all boolean functions?
答: It is unavoidable that most of the boolean functions have
untractable (困难的) representation

答案: BDD provide a data structure for boolean functions —Decision Tree

20
24

-0
2-

13
形式化方法导引

Stage 2: Boolean functions

2. 理论

• Every boolean function has a unique representation (见后: 问题 2)
(does not hold for formula representation: p ∧ (p ∧ q) and q ∧ p are
distinct formulas representing the same boolean function)

• All operations needs for CTL model checking, including ¬,∨,∧
should be efficiently computable
(does not hold for explicit state representation: false corresponds to
the empty set, but ¬ false = true corresponds to the set S = Bn

having 2n elements, infeasible for n ≥ 30)

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to represent and manipulate boolean functions efficiently,
more precisely:

Every boolean function has a unique representation (见后: 问题 2)
Counterexample: p ∧ (p ∧ q) and q ∧ p

All operations needs for CTL model checking, including ¬,∨,∧ should
be efficiently computable

Example: ⊥
Counterexample: ⊤

Many boolean functions have an efficient representation
问: Why not for all boolean functions?
答: It is unavoidable that most of the boolean functions have
untractable (困难的) representation

答案: BDD provide a data structure for boolean functions —Decision Tree

20
24

-0
2-

13
形式化方法导引

Stage 2: Boolean functions

2. 理论

Why not for all boolean functions?
On n variables a truth table consists of 2n lines

• Hence on n variables there are 22n distinct boolean functions
• Indeed, there are 264 ≈ 20, 000, 000, 000, 000, 000, 000 distinct

boolean functions on six variables
• If all of these 22n distinct boolean functions should have a distinct

representation, then on average at least 2n bits are needed for that,
begin untractable for n > 30

So the best we may hope for is that we meet in practice is among the
minor part of all boolean functions that have an efficient representation

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶: Decision Tree:
定义: A decision tree is a binary tree
in which

Every node is labeled by a
boolean variable
Every leaf is labeled by 1 or 0,
representing true or false
respectively

p

q q

1 r 0 r

0 1 1 0

语义: If every variable has a boolean
value then the corresponding
function value is obtained by

Start at the root

For any node: go to the left if
the corresponding variable is
true; otherwise, go to the right

Repeat until a leaf has been
reached

If the leaf is 1 then the result is
true, otherwise false

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an
if-then-else

Consider our example for the values
p: true
q: false
r: true

Hence, the result is 0

p

q q

1 r 0 r

0 1 1 00

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 1: Does every boolean function on finitely many boolean variables
have a representation as decision tree?
答: Yes: it can be defined by a truth table, and any truth table on n
variables having 2n lines can be represented as a decision tree with 2n
leaves

p

q q

r r r r

0 1 1 0 0 1 1 0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

答: No

p

q 0

0 1

q

0 p

1 0
问题 2 的一种解决方法: Observe that in one case p is on top of q, while
in the other case q is on top of p

Fix an order < on the boolean variables, like p < q

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

答: No

p

q 0

0 1

q

0 p

1 0
问题 2 的一种解决方法: Observe that in one case p is on top of q, while
in the other case q is on top of p

Fix an order < on the boolean variables, like p < q

20
24

-0
2-

13
形式化方法导引

Stage 3: Decision Tree

2. 理论

The following two decision trees both represent the boolean function on
p, q that yields true in case p is true and q is false, and false otherwise

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

第 4 阶: Ordered decision tree: An ordered decision tree with respect to
< is a decision tree such that if node n is on top of node n′, then

label(n) < label(n′)

So the left one is ordered with respect to p < q, the right one is not

p

q 0

0 1

q

0 p

1 0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

问题 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a
variable less than the variables in T

Then T and

P

T T are two ordered decision trees
representing the same boolean function

解决方法: We are looking for a small representing, hence among these
two we prefer T and exclude the latter.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

第 5 阶: Reduced ordered decision tree:

Replacing

P

T T by T is called elimination

An ordered decision tree on which no elimination is possible is called a
reduced ordered decision tree

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

定理
For a fixed order < on boolean variables, every boolean function has a
unique representation as a reduced ordered decision tree

证明过程: 略

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

定理
For a fixed order < on boolean variables, every boolean function has a
unique representation as a reduced ordered decision tree

证明过程: 略

20
24

-0
2-

13
形式化方法导引

Stage 5: Reduced ordered decision tree (elimination)

2. 理论

Proof sketch:
• Existence: Start by the ordered decision tree reflecting the truth

table, and apply elimination anywhere in the decision tree as long as
possible

• Elimination Strictly decreases the size, so cannot go on forever
• During elimination orderedness is maintained
• So at the end we have a reduced ordered decision tree representing

the given boolean function

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

例: For the boolean function defined
by the formula p ∧ ¬q, for the order
p < q the ordered decision tree
reflecting the truth table is

p

q q

0 1 0 0

Applying elimination on the right q
yields

p

q 0

0 1

Now no elimination is possible any
more, so this is a reduced ordered
decision tree

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams
A particular example of Binary Decisions Diagrams (BDDs)
uniquely represent boolean functions by merging and elimination

The formula (p ∧ q) ∨ r describes the
boolean function that yields true if both p
and q are true, or r is true

With respect to the order p < q < r its
ROBDD is

p

q

r

1 0
Note:

Every node represents a boolean function itself.
All nodes of a ROBDD represent distinct boolean functions.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams
A particular example of Binary Decisions Diagrams (BDDs)
uniquely represent boolean functions by merging and elimination

The formula (p ∧ q) ∨ r describes the
boolean function that yields true if both p
and q are true, or r is true

With respect to the order p < q < r its
ROBDD is

p

q

r

1 0
Note:

Every node represents a boolean function itself.
All nodes of a ROBDD represent distinct boolean functions.

20
24

-0
2-

13
形式化方法导引

Stage 6: ROBDD (merging and elimination)

2. 理论

In such a ROBDD, every node represents a boolean function itself
• The ROBDD of this function is the part of the original ROBDD of

which the indicated node is the root

All nodes of a ROBDD represent distinct boolean functions
• since if two would represent the same, then they can be shared by

applying merging and elimination steps, contradicting being
R(educed)

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < q < r the
ROBDD of p ↔ q ↔ r is

p

q q

r r

1 0

yields true if and only if the number
of variables that is false, is even

Alternative notation to avoid curved
arrows: use solid arrows for
true-branches and dashed arrows for
false-branches

p

q q

r r

1 0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

p

q q

r r

1 0

问: 为什么要 merging?

p

q q

r r r r

1 0 0 1 0 1 1 0

答: 2n− 1 nodes vs 2n − 1 nodes

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

p

q q

r r

1 0

问: 为什么要 merging?

p

q q

r r r r

1 0 0 1 0 1 1 0

答: 2n− 1 nodes vs 2n − 1 nodes20
24

-0
2-

13
形式化方法导引

Stage 6: ROBDD (merging and elimination)

2. 理论

Sharing really helps: without sharing (so the unique reduced ordered deci-
sion tree) for p ↔ q ↔ r instead of, we would obtain
Doing the same for p1 ↔ p2 ↔ · · · ↔ pn yields a ROBDD of 2n−1 nodes,
and a reduced ordered decision tree of 2n − 1 nodes: an exponential gap

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问题 4: 如何选择 order? The ROBDD of (p1 ∨ q1) ∧ (p2 ∨ q2) ∧ (p3 ∨ q3)
with respect to

p1 < q1 < p2 < q2 <
p3 < q3 is:

p1

q1

p2

q2

p3

q3

1 0

w.r.t. p1 < p2 < p3 < q1 < q2 < q3 it is:

p1

p2 p2

p3 p3 p3 p3

? ? ? ? ? ? ? ?
· ·

where all ? nodes represent distinct boolean
functions on q1, q2, q3, so cannot be shared

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

(p1 ∨ q1) ∧ (p2 ∨ q2) ∧ · · · ∧ (p3 ∨ q3)

with respect to the order
p1 < q1 < p2 < q2 < · · · < pn < qn: has exactly 2n nodes
p1 < p2 < · · · < pn < q1 < q2 < · · · < qn: has more than 2n nodes

So distinct orders may result in ROBDDs of sizes with an exponential gap
in between

Heuristic
choose the order in such a way that variables close to each other in the
formula are also close in the order

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

问题 5: The methods in the former stages should not be used to compute
ROBDDs in practice

since the size of this decision tree is always exponential, so unfeasible

解决方法: operate directly on the formula ϕ, instead of decision tree

Observation: Every formula is of the shape:
false or true, or
p for a variable p, or
¬ϕ, or
ϕ ⋄ ψ for ⋄ ∈ {∨,∧,→,↔}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 39 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 40 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ). So, the ROBDD ROBDD(ϕ) of a
formula ϕ will be constructed recursively according this recursive structure
of the formulas: Basic Idea

ROBDD(F)=0, ROBDD(T)=1

ROBDD(p)=

p

1 0

ROBDD(¬ϕ)=ROBDD(ϕ → F)
ROBDD(ϕ ⋄ ψ)= apply(ROBDD(ϕ), ROBDD(ψ), ⋄)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 41 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

续: So it remains to find an algorithm apply having two ROBDDs and a
binary operation ⋄ ∈ {∨,∧,→,↔} as input, and having the desired
ROBDD as its output

缩写: p(T, U)
the BDD having root p for which the left branch is T and the right branch
is U

p

T U

缩写: ⋄(T, U)
apply(T,U, ⋄)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 42 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 43 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute ⋄(T,U) recursively for cases:
1 if T,U ∈ {T,F}: return value according the truth table of ⋄
2 if T,U not both in {T,F}: let p be the smallest variable occurring in
T and U .

1 p is on top of both T and U Details

⋄(p(T1, T2), p(U1, U2)) = p(⋄(T1, U1), ⋄(T2, U2))

2 p is on top of T but does not occur in U Details

⋄(p(T1, T2), U) = p(⋄(T1, U), ⋄(T2, U)), if p does not occur in U

3 p is on top of U but does not occur in T Details

⋄(T, p(U1, U2)) = p(⋄(T,U1), ⋄(T,U2)), if p does not occur in T

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 44 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of both T and U

⋄(p(T1, T2), p(U1, U2)) = p(⋄(T1, U1), ⋄(T2, U2))

(1) Replace
⋄

p p

T1 T2 U1 U2 by

p

⋄ ⋄

T1 T2 U1 U2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 45 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of both T and U

⋄(p(T1, T2), p(U1, U2)) = p(⋄(T1, U1), ⋄(T2, U2))

(1) Replace
⋄

p p

T1 T2 U1 U2 by

p

⋄ ⋄

T1 T2 U1 U220
24

-0
2-

13
形式化方法导引

Stage 7: Compute ROBDD
Stage 7.2: Compute ⋄(T,U)

2. 理论

Intuitively: for two BDDs T,U computing ⋄(T,U) is done by pushing ⋄
downwards, meanwhile combining T and U , until ⋄ applied to T/F has to
be computed, which is replaced by its value according to the truth table

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of T but does not occur in U

⋄(p(T1, T2), U) = p(⋄(T1, U), ⋄(T2, U)), if p does not occur in U

(2) If p not in U , then Replace
⋄

p

T1 T2 U by

p

⋄ ⋄

T1 T2 U

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of U but does not occur in T

⋄(T, p(U1, U2)) = p(⋄(T,U1), ⋄(T,U2)), if p does not occur in T

(3)If p not in T , then replace
⋄

p

U1 U2T by

p

⋄ ⋄

T U1 U2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 47 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

例子: We choose the formula

(p → r) ∧ (q ↔ (r ∨ p))

and the order p < q < r. in a picture:

∧

→ ↔

p r q ∨

1 0 1 0 1 0 r p

1 0 1 0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

→

p r

1 0 1 0

p

→ →

1 r

1 0

p

r r

1 0 1 1

p

r 1

1 0———————————————————————————————
回顾:(2) If p not in U , then Replace

⋄

p

T1 T2 U by

p

⋄ ⋄

T1 T2 U 回顾:(3)If
p not in T , then replace

⋄

p

U1 U2T by

p

⋄ ⋄

T U1 U2 回

顾:Replacing

P

T T by T is called elimination

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 49 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:
↔

q ∨

1 0 r p

1 0 1 0

↔

q p

1 0 1 r

1 0

p

↔ ↔

q r

1 0 1 0———————————————————————————————
回顾:(3)If p not in T , then replace

⋄

p

U1 U2T by

p

⋄ ⋄

T U1 U2
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 50 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

p

↔ ↔

q r

1 0 1 0

p

↔

q r

1 0 1 0

p

q

↔ ↔

1 0

q

r
1 0

1 0
p

q q

1 0 r r

1 0 0 1———————————————————————————————
回顾:(2) If p not in U , then Replace

⋄

p

T1 T2 U by

p

⋄ ⋄

T1 T2 U

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 51 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

Now we have computed the ROBDDs of both arguments of ∧ in the
original formula, and it remains to apply ∧ on these two

∧

p

r 1

p

q q

1 0 1 0 r r

1 0 0 1

p

∧ ∧

r q 1 q

1 0 1 0 r r

1 0 0 1———————————————————————————————
回顾:(1) Replace

⋄

p p

T1 T2 U1 U2 by

p

⋄ ⋄

T1 T2 U1 U2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 52 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

p

∧ ∧

r q 1 q

1 01 0 r r

1 0 0 1

p

q

r 0

q

1 0

r r

1 0 0 1

p

q q

r r

1 0

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 53 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

p

q q

r r

1 0

We computed the ROBDD of the formula

(p → r) ∧ (q ↔ (r ∨ p))

w.r.t the order p < q < r.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 54 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | BDD algorithm example

p

q q

r r

1 0

We computed the ROBDD of the formula

(p → r) ∧ (q ↔ (r ∨ p))

w.r.t the order p < q < r.

20
24

-0
2-

13
形式化方法导引

Stage 7: Compute ROBDD
Stage 7.2: Compute ⋄(T,U)

2. 理论

Doing this by hand in all detail is quite some work, but the steps are very
systematic and suitable for implementation

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 55 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

原先算法 (Fixpoint): the abstract algorithm for CTL model checking
Basic Idea

当前思路: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(fn), until ROBDD(fn)=ROBDD(fn−1)

例: Compute SEGϕ by fn

Here, fn(s) = 1 ↔ s ∈ Tn

For convenience, define ROBDD(Tn) ≡ ROBDD(fn)
新问题: How to compute ROBDD(Tn ∩ {s ∈ Sϕ | ∃t ∈ Tn : s → t})?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 56 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 57 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL 8.1 8.2 8.3

Stage 8.1
All CTL operators can be expressed in

1 boolean operators (¬,∧,→,∨) and
solved in stage 7 Stage 7.1 Stage 7.2

2 EX, EG, EU
to be solved in Stage 8.2 Stage 8.2

回顾:
¬AF ϕ ≡ EG ¬ϕ
¬EF ϕ ≡ AG ¬ϕ
¬AX ϕ ≡ EX ¬ϕ
AF ϕ ≡ A[⊤ U ϕ]
EF ϕ ≡ E[⊤ U ϕ]

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 58 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 59 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL 8.1 8.2 8.3

Stage 8.2
For computing EX, EG, EU, we only needed the building blocks:

set set
union ∪, intersection ∩ union ∪, intersection ∩
computing computing

{s ∈ T | ∃t ∈ U : s → t}

for a given transition relation → and given sets T,U

基本思路: Sets are described by boolean functions: an element is in the
set if and only if the boolean function yields true fU : Bn → B

s ∈ U ↔ fU (s) = 1
ROBDD(U) ≡ ROBDD(fU (s)), a.k.a., ROBDD(Sϕ) ≡ ROBDD(ϕ)
基本思路: Union and intersection correspond to ∨ and ∧, for which we
already gave an algorithm for ROBDD representations

Sϕ∨ψ = Sϕ ∪ Sψ, Sϕ∧ψ = Sϕ ∩ Sψ
ROBDD(Sϕ ∪ Sψ) = ROBDD(Sϕ∨ψ) ≡ ROBDD(ϕ ∨ ψ)
ROBDD(Sϕ ∩ Sψ) = ROBDD(Sϕ∧ψ) ≡ ROBDD(ϕ ∧ ψ)
to be solve in Stage 8.3 Stage 8.3

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm
1 Stage 1: Boolean variables
2 Stage 2: Boolean functions
3 Stage 3: Decision Tree
4 Stage 4: Ordered decision tree
5 Stage 5: Reduced ordered decision tree (elimination)
6 Stage 6: ROBDD (merging and elimination)
7 Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(ϕ)
Stage 7.2: Compute ⋄(T,U)

8 Stage 8: ROBDD-CTL
Stage 8.1: Express CTL operators
Stage 8.2: Compute EX, EG, EU
Stage 8.3: Compute V = {s ∈ T | ∃t ∈ U : s → t}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 61 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL 8.1 8.2 8.3

Stage 8.3
Computing

V = {s ∈ T | ∃t ∈ U : s → t}

for a given transition relation → and given sets T,U

准备 1
Write a′

i as shorthand for next(ai), and assume
s ≡ (a1, . . . , an)
t ≡ (a′

1, . . . , a
′
n)

准备 2
The transition relation → is given by a boolean function (P) on
a1, . . . , an, a

′
1, . . . , a

′
n, again in ROBDD representation

P (a1, . . . , an, a
′
1, . . . , a

′
n) ⇔ P1 ∧ P2

where
P1 = (a1, . . . , an) → (a′

1, . . . , a
′
n) ∼ s → t

P2 = (a′
1, . . . , a

′
n) ∈ U ∼ t ∈ U

Step 1: Compute ROBDD(P)

P (a1, . . . , an, a
′
1, . . . , a

′
n) ⇔ P1 ∧ P2

where
P1 = (a1, . . . , an) → (a′

1, . . . , a
′
n) ∼ s → t

ROBDD(P1) was given by translation relation →
P2 = (a′

1, . . . , a
′
n) ∈ U ∼ t ∈ U

When using the order a1 < · · · < an < a′
1 < · · · < a′

n, ROBDD(P2) is
obtained by just replacing every ai by a′

i in ROBDD(U)
Now, ROBDD(P)=ROBDD(P1 ∧ P2)=apply(ROBDD(P1),
ROBDD(P2), ∧)

Step 2: Compute ROBDD(SPe), where

SPe = {(a1, . . . , an) | ∃a′
1, . . . , a

′
n : P (a1, . . . , an, a

′
1, . . . , a

′
n)}

Observe that for every boolean variable x:

∃x : ϕ ≡ ϕ[x := T] ∨ ϕ[x := F]︸ ︷︷ ︸
computable

Applying this n times, for x = a′
1, a

′
2, . . . , a

′
n, all ’∃’s are eliminated,

yielding an ROBDD over a1, . . . , an

Step 3: Compute ROBDD of V , where

V = T ∩ SPe

ROBDD(V)=ROBDD(T ∩ SPe)=apply(ROBDD(T), ROBDD(SPe), ∧)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 62 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL 8.1 8.2 8.3

Stage 8 步骤小结:
Stage 8.1: Express all CTL operators in

1 boolean operators (¬,∧,→,∨)
Compute ROBDD of boolean operators: Stage 7.1 Stage 7.2

2 EX, EG, EU
Stage 8.2: Compute ROBDD of EX, EG, EU Example: SEGϕ = tn

solved: t0, Sϕ, ∩
problems left: ROBDD(V), where V = {s ∈ T | ∃t ∈ U : s → t}

Stage 8.3:
step 1: compute ROBDD(P), where P = P1 ∧ P2,
P1 = (a1, . . . , an) → (a′

1, . . . , a
′
n), P2 = (a′

1, . . . , a
′
n) ∈ U

step 2: compute ROBDD(SPe
), where

SPe
= {(a1, . . . , an) | ∃a′

1, . . . , a
′
n : P (a1, . . . , an, a

′
1, . . . , a

′
n)}

step 3: compute ROBDD(V), where
V = T ∩ SPe

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 63 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

例: ROBDD-CTL 求解
Given a transition system M = (S,→, L), where
S = {s0, s1, s2, s3} →= {(s0, s0), (s0, s1), (s0, s2),
(s1, s3), (s2, s1), (s2, s3), (s3, s0)}, L(s3) = {p}.
Verify: M, s0 ⊨ AF p

p

s0 s1

s2

s3

Stage 8.1: compute ROBDD(AF p)
1 AF p = ¬EG¬p
2 ROBDD(AF p) = ROBDD(EG¬p → F)

=apply(ROBDD(EG¬p), ROBDD(F), →)
3 compute ROBDD(EG¬p) in Stage 8.2

Stage 8.2: Compute ROBDD(EG¬p) SEGϕ = tn

1 Define a state as a pair of variables (a1, a2),
where a1, a2 ∈ {0, 1}

i.e., s0 = (0, 0), s1 = (0, 1), s2 = (1, 0),
s3 = (1, 1)

2 Sϕ = S¬p = {s0, s1, s2} = {(0, 0), (0, 1), (1, 0)}
3 t0 = ROBDD(Sϕ)

a1

a2

0 1
t0

Stage 8.2: Compute ROBDD(EG¬p) SEGϕ = tn

4 Iteratively compute tn+1, where
tn+1 :=apply(tn,ROBDD(V), ∧)
V = {s ∈ T | ∃t ∈ U : s → t} (ROBDD(V) computed in Stage 8.2)

T = Sϕ = S¬p = {s0, s1, s2} = {(0, 0), (0, 1), (1, 0)}
ROBDD(U)=tn

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 64 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where
V = {s ∈ T | ∃t ∈ U : s → t}
T = {(0, 0), (0, 1), (1, 0)}, ROBDD(U)=tn

Step 1:
P1 = (a1, a2) → (a′

1, a
′
2)

P1 = {(s0, s0), (s0, s1), (s0, s2), (s1, s3),
(s2, s1), (s2, s3), (s3, s0)} =
{0000, 0001, 0010, 0111, 1001, 1011, 1100}

P2 = (a′
1, a

′
2) ∈ U

0th iteration:
ROBDD(P)=ROBDD(P1 ∧
P2)=apply(ROBDD(P1), ROBDD(P2), ∧)

0th iteration:
Step 2: Compute ROBDD(SPe) (0th step)
SPe = {(a1, a2) | ∃a′

1, a
′
2 : P (a1, a2, a

′
1, a

′
2)}

SPe = {(0, 0), (1, 0), (1, 1)}
Step 3: ROBDD(V)=apply(ROBDD(T),
ROBDD(SPe), ∧)

T = {(0, 0), (0, 1), (1, 0)}
Back to Stage 8.2: t1 :=apply(t0,ROBDD(V),
∧)

p

s0 s1

s2

s3

a1

a2 a2

a′
1 a′

1 a′
1

a′
2 a′

2

1 0
ROBDD(P1)

a1

a2

0 1
t0

a′
1

a′
2

0 1
ROBDD(P2)

a1

a2 a2

a′
1 a′

1 a′
1

a′
2 a′

2

1 0
ROBDD(P)

a1

a2

0 1
ROBDD(SPe)

a1

a2

0 1
ROBDD(T)

a2

0 1
ROBDD(V)

a1

a2

0 1
t0

a2

0 1
t1

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 65 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Similarly, compute t2,t3... (作业: 计算 t2, t3)
a1

a2

0 1
t0

a2

0 1
t1

a1

a2

1 0
t2

a1

a2

1 0
t3

Observe that t2 = t3
Back to Stage 8.1: ROBDD(EG ¬p)=t2
SEG¬p = {(0, 0)} = {s0}
SAFp = S¬EG¬p = {s1, s2, s3}
So, M, s0 ⊭ AF p

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 66 / 68

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL Stage 8

Stage 8 小结:
Combining this gives an algorithm to compute the ROBDD of the set
states satisfying any CTL formula
This is essentially the algorithm as it is used in tools like NuSMV to
do symbolic model checking
In contrast to explicit state based model checking, it can deal with
very large state spaces.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 67 / 68

https://faculty.ustc.edu.cn/huangwenchao

作业

作业: 模仿 t1 的求解过程，手工运算 t2, t3，给出运算过程.

实验大作业 (可选): 实现 ROBDD 算法, 要求:
可以实现至不同 stage，例如，可实现至 ROBDD, 或 ROBDD-CTL。
实现的越完整，给分越高。
提供源代码、可执行程序、测试文件、相关文档

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 68 / 68

https://faculty.ustc.edu.cn/huangwenchao

	Stage 1: Boolean variables
	Stage 2: Boolean functions
	Stage 3: Decision Tree
	Stage 4: Ordered decision tree
	Stage 5: Reduced ordered decision tree (elimination)
	Stage 6: ROBDD (merging and elimination)
	Stage 7: Compute ROBDD
	Stage 7.1: Compute ROBDD()
	Stage 7.2: Compute (T,U)

	Stage 8: ROBDD-CTL
	Stage 8.1: Express CTL operators
	Stage 8.2: Compute EX, EG, EU
	Stage 8.3: Compute V={s T t U : s t}

