形式化方法导引 第 5 章 模型检测 5.2 理论 5.2.1 Fixpoint formulation | 5.2.2 BDD Algorithm

黄文超

 $\begin{array}{c} \texttt{https://faculty.ustc.edu.cn/huangwenchao} \\ & \longrightarrow \ \texttt{教学课程} \longrightarrow \ \texttt{Ktchilder} \\ \end{array}$

2. **理论** ^{本节内容}

往节内容

- Model checking
 - Modeling: Transition system
 - Specification: LTL, CTL
- Tool
 - NuSMV

本节内容:

- Basic idea of checking a model: fixpoint formulation
- Classical algorithms
 - Binary decisions diagram (BDD)
 - Bounded model checking (BMC)
 - Basic Inductive Techniques

2.1 Basic idea of checking a CTL formula | state space

回顾: 定义: Transition system

A transition system $\mathcal{M}=(S,\rightarrow,L)$ is

- S: a set of states
- \bullet $\rightarrow:$ a transition relation: every $s\in S$ has some $s'\in S$ with $s\rightarrow s'$
- L: a label function: $L: S \to \mathcal{P}(Atoms)$

定义: State space

The state space

$$S = V_1 \times \cdots \times V_n$$

is implied by the variables v_1,\ldots,v_n from finite sets V_1,\ldots,V_n

问题: How to check an LTL or CTL property?

2.1 Basic idea of checking a CTL formula | Basic Idea

```
问: How to check an LTL property?
答: (SPIN,...)
```

问题: How to check a CTL property?

基本思路

• Compute the set S_{ϕ} consisting of all states that satisfy ϕ

- $\bullet\,$ a state $s\in S$ satisfies ϕ if the set of all paths starting in s satisfies ϕ
- **2** Then the property to check is $s \in S_{\phi}$

$$M, s \vDash \phi \iff s \in S_{\phi}$$

问: How to compute
$$S_{\phi}$$
?
答:
 Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg\phi}$, $S_{\phi\lor\psi}$, $S_{\phi\wedge\psi}$
 CTL Related: $S_{\mathrm{EX}\phi}$, $S_{\mathrm{EG}\phi}$, $S_{\mathrm{E}[\phi\cup\psi]}$

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute S_{ϕ} : Basics

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{s \in S \mid p(s)\}$$

•
$$S_{\neg\phi} = \{s \in S \mid s \notin S_{\phi}\}$$

•
$$S_{\phi \lor \psi} = S_{\phi} \cup S_{\psi}$$

•
$$S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E[}\phi\mathrm{U}\psi\mathrm{]}}$

Compute $S_{\text{EX}\phi}$

A state *s* satisfies $EX \phi$, if there *exists* a path starting in *s* such that ϕ holds in the *next* state of that path. So:

$$S_{\mathrm{EX}\phi} = \{ s \in S \mid \exists t \in S_\phi : s \to t \}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi \cup \psi]}$

EG and *EU* are harder: they deal with properties of paths *beyond a fixed finite part of the path*

思路: Fixpoint formulation

Consider the first n steps for *increasing* n, *until* the corresponding set *does not change* anymore.

2.1 Basic idea of checking a CTL formula | Computing $S_{\text{EX}\phi}, S_{\text{EG}\phi}, S_{\text{E}[\phi U \psi]}$

回顾: $EG\phi$

There *exists* a path $s_0 \rightarrow s_1 \rightarrow s_2 \cdots$ on which ϕ globally holds, that is, ϕ holds in s_i for all i

定义: T_n

For n = 0, 1, 2, ..., let T_n = set of states s_0 , for which there exists a path $s_0 \rightarrow s_1 \rightarrow s_2 \cdots$ on which ϕ holds for all s_i with $i \leq n$

Then $T_0 = S_{\phi}$, and for all $n = 0, 1, \ldots$, we have

$$T_{n+1} = T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{{
m EG}\phi}$

Compute $S_{\text{EG}\phi}$ by T_n (Fixpoint formulation)

 $T_0 := S_{\phi}; n := 0;$

repeat

$$T_{n+1}:=T_n\cap\{s\in S_\phi\mid \exists t\in T_n:s\rightarrow t\};\ n=n+1;$$
 until $T_n=T_{n-1}$

The loop terminates, since

- the set T_n is finite
- $|T_n|$ decreases in every step

After running this algorithm we have $S_{\mathrm{EG}\phi}=T_n$

└─2. 理论

形式化方法导引

After finishing this algorithm we have $T_n=T_{n-1},$ yielding $T_n=T_i$ for all $i\geq n$

So then T_n states that for every i there is a path of which the first i states satisfy ϕ

S finite \Rightarrow this implies a path on which ϕ globally holds (take i = |S|)

So after running this algorithm we have $S_{\mathrm{EG}\phi}=T_n$

The loop terminates since all sets are finite and $\left|T_{n}\right|$ decreases in every step

2. 理论

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi \cup \psi]}$

 s_0 satisfies $E[\phi \ U \ \psi]$ means: there *exists* n such that P_n holds, for

• P_n = there *exists* a path $s_0 \rightarrow s_1 \rightarrow s_2 \cdots$ on which ψ holds in s_n , and ϕ holds in s_i for all i < n

定义: U_n

 $U_n = \text{set of states } s_0 \text{ for which } P_i \text{ holds for some } i \leq n$

Then $U_0 = S_{\psi}$, and for all n=0,1,..., we have

$$U_{n+1} = U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}$$

Compute $S_{\mathrm{E}[\phi \mathrm{U}\psi]}$ by U_n

 $U_0 := S_{\psi}; n := 0;$

repeat

$$U_{n+1} := U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}; n = n+1;$$
until $U_n = U_{n-1}$

2. 理论

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi \mathrm{U} \psi]}$

Concluding,

- For an *arbitrary CTL formula* ϕ we saw how to compute the set S_{ϕ} , being the set of states that satisfy ϕ
 - Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg\phi}$, $S_{\phi\lor\psi}$, $S_{\phi\wedge\psi}$
 - CTL Related: $S_{\text{EX}\phi}$, $S_{\text{EG}\phi}$, $S_{\text{E}[\phi \cup \psi]}$
- In this computation we *only* needed the computation of the sets $T \cup U$, $T \cap U$, complements, and $\{s \in T \mid \exists t \in U : s \to t\}$, for given sets T, U

问题: In *explicit state based* model checking the complexity of this algorithm will be *at least the order of the size of the state space* S

可选方案: 2.2 Binary decisions diagram (BDD), 2.3 Bounded model checking (BMC), 2.4 k-induction

回顾:

- In *explicit state based* model checking the complexity of this algorithm will be *at least the order of the size of the state space* S
 - Key words: state spaces

Now we study BDD

- a method of *symbolic* model checking.
- adopted by NuSMV

基本思路: *Firstly*, investigate desired *requirements* for *alternative representations* for *boolean functions*

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

Outline of a BDD algorithm Stage 1: Boolean variables

- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

第1阶: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular *boolean* or *integers with a restricted range*, like

VAR

a : 1..100;

We may assume we only have boolean variables

- by representing variables in *binary* notation, e.g., using 7 *bits* for the range 1..100,
- Atomic propositions, e.g., a < b + 5, can be expressed in binary notation too

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm 2 Stage 2: Boolean functions • Stage 7.1: Compute $ROBDD(\phi)$ • Stage 7.2: Compute $\diamond(T, U)$ • Stage 8.1: Express CTL operators Stage 8.2: Compute EX, EG, EU • Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

第 2 阶: Boolean Functions:

Write $B = \{0, 1\}$, then for n boolean variables the state space is $S = B^n$ We want to represent and manipulate subsets of $S = B^n$ A subset $U \subseteq B^n$ can be identified by a **boolean function**

$$f_U: B^n \to B$$

defined by

$$s \in U \leftrightarrow f_U(s) = 1$$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后:问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - $\bullet~\mbox{Example:}~\perp$
 - Counterexample: \top
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is *unavoidable* that most of the boolean functions have *untractable* (困难的) representation

答案: BDD provide a *data structure* for *boolean functions* — Decision Tree

2024-04-19

- Every boolean function has a *unique representation* (见后: 问题 2) (does not hold for formula representation: $p \land (p \land q)$ and $q \land p$ are distinct formulas representing the same boolean function)
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 (does not hold for *explicit state representation*: false corresponds to the empty set, but ¬ false = true corresponds to the set S = Bⁿ having 2ⁿ elements, infeasible for n ≥ 30)

形式化方法导引 Stage 2: Boolean functions -2. 理论

Why not for all boolean functions?

On n variables a truth table consists of 2^n lines

- Hence on *n* variables there are 2^{2^n} distinct boolean functions
- Indeed, there are $2^{64} \approx 20,000,000,000,000,000,000$ distinct • boolean functions on six variables
- If all of these 2^{2^n} distinct boolean functions should have a distinct representation, then on average at least 2^n bits are needed for that, begin untractable for n > 30

理论

more precisely:

be efficiently computable ■ Example: ⊥ a Counterexample: T

ing: We want to represent and manipulate boolean functions efficiently

 Every boolean function has a unique representation (见后: 问题 2) • Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$ All operations needs for CTL model checking, including ¬, ∨, ∧ should

· Many boolean functions have an efficient representation . R: Why not for all boolean functions? #: It is unavoidable that most of the boolean functions have untractable (研測的) representation 英字: RDD provide a data structure for hoolean functions -- Decision Tree

So the *best* we may hope for is that we meet *in practice* is among the minor part of all boolean functions that have an efficient representation

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第3阶: Decision Tree:

定义: A decision tree is a binary tree in which

- Every *node* is labeled by a *boolean variable*
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

语义: If every variable has a boolean value then the corresponding function value is obtained by

- Start at the root
- For any node: go to the *left* if the corresponding variable is *true*; *otherwise*, go to the *right*
- Repeat until a *leaf* has been reached
- If the leaf is 1 then the result is true, otherwise false

Hence every node is interpreted as an if-then-else

Consider our example for the values

- p: true
- q: false
- r: true

Hence, the result is 0

问题 1: Does every boolean function on finitely many boolean variables have a representation as decision tree?

答: Yes: it can be defined by a *truth table*, and any truth table on n variables having 2^n lines can be represented as a decision tree with 2^n leaves

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 2: Does every boolean function on finitely many boolean variables have a *unique representation* as decision tree?

答: No

• Fix an order < on the boolean variables, like p < q

形式化方法导引

The following two decision trees both represent the boolean function on p, q that yields *true* in case p *is true* and q *is false*, and false otherwise

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

第 4 阶: Ordered decision tree: An ordered decision tree with respect to < is a decision tree such that if node n is on top of node n', then

label(n) < label(n')

So the left one is ordered with respect to p < q, the *right one is not*

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

<u>问题 3</u>: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in ${\cal T}$

Then T and T T are two ordered decision trees representing the same boolean function

解决方法: We are looking for a *small* representing, hence among these two we *prefer* T and exclude the latter.

形式化方法导引

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- 1 Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- Stage 5: Reduced ordered decision tree (elimination)
- Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2. 理论

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

第 5 阶: Reduced ordered decision tree:

An ordered decision tree on which no elimination is possible is called a *reduced ordered decision tree*

2. 理论

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

定理

For a fixed order < on boolean variables, every boolean function has a *unique* representation as a *reduced ordered decision tree*

证明过程: 略

Proof sketch:

- Existence: Start by the ordered decision tree reflecting the truth table, and apply elimination anywhere in the decision tree as long as possible
- Elimination Strictly decreases the size, so cannot go on forever
- During elimination orderedness is maintained
- So at the end we have a reduced ordered decision tree representing the given boolean function

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree (elimination)

例: For the boolean function defined by the formula $p \land \neg q$, for the order p < q the ordered decision tree reflecting the truth table is

Applying elimination on the right \boldsymbol{q} yields

Now no elimination is possible any more, so this is a *reduced ordered decision tree*

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
 - Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams

- A particular example of Binary Decisions Diagrams (BDDs)
- uniquely represent boolean functions by *merging* and *elimination*
- The formula $(p \land q) \lor r$ describes the boolean function that yields true if both p and q are true, or r is true

With respect to the order p < q < r its $\ensuremath{\mathsf{ROBDD}}$ is

Note:

- Every node represents a boolean function itself.
- All nodes of a ROBDD represent *distinct* boolean functions.

形式化方法导引

In such a ROBDD, every node represents a boolean function itself

• The ROBDD of this function is the part of the original ROBDD of which the indicated node is the *root*

All nodes of a ROBDD represent *distinct* boolean functions

 since if two would represent the same, then they can be shared by applying *merging* and *elimination* steps, contradicting being *R*(educed)

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

 $\begin{array}{l} \mbox{Merge and share: For } p < q < r \mbox{ the } \\ \mbox{ROBDD of } p \leftrightarrow q \leftrightarrow r \mbox{ is } \end{array}$

yields *true* if and only if the *number* of variables that is false, is *even*

Alternative notation to avoid curved arrows: use *solid* arrows for true-branches and *dashed* arrows for false-branches

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Sharing really helps: without sharing (so the unique reduced ordered decision tree) for $p \leftrightarrow q \leftrightarrow r$ instead of, we would obtain Doing the same for $p_1 \leftrightarrow p_2 \leftrightarrow \cdots \leftrightarrow p_n$ yields a ROBDD of 2n-1 nodes, and a reduced ordered decision tree of $2^n - 1$ nodes: an *exponential* gap 2. 理论

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问题 4: 如何选择 order? The ROBDD of $(p_1 \lor q_1) \land (p_2 \lor q_2) \land (p_3 \lor q_3)$ with respect to

 $p_1 < q_1 < p_2 < q_2 <$ w.r.t. $p_1 < p_2 < p_3 < q_1 < q_2 < q_3$ it is:

 $p_3 < q_3$ is:

where all ? nodes represent distinct boolean functions on q_1, q_2, q_3 , so cannot be shared

形式化方法导引

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

$$(p_1 \lor q_1) \land (p_2 \lor q_2) \land \cdots \land (p_3 \lor q_3)$$

with respect to the order

- $p_1 < q_1 < p_2 < q_2 < \cdots < p_n < q_n$: has exactly 2n nodes
- $p_1 < p_2 < \cdots < p_n < q_1 < q_2 < \cdots < q_n$: has more than 2^n nodes

So *distinct orders* may result in ROBDDs of sizes with an *exponential* gap in between

Heuristic

choose the order in such a way that *variables close to each other* in the formula are also *close in the order*

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)

Stage 7: Compute ROBDD

- Stage 7.1: Compute $ROBDD(\phi)$
- Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第7阶: How to *compute* the Reduced Ordered Binary Decision Diagram (ROBDD) of a given formula?

问题 *5*: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the size of this decision tree is always exponential, so unfeasible

解决方法: operate directly on the *formula* ϕ , instead of *decision tree*

Observation: Every formula is of the shape:

- false or true, or
- p for a variable p, or
- $\neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula ϕ will be constructed recursively according this recursive structure of the formulas: • Basic Idea

• ROBDD(F)=0, ROBDD(T)=1

- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow F)$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

续: So it remains to find an algorithm *apply* having two ROBDDs and a binary operation $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ as input, and having the desired ROBDD as its output

形式化方法导引

2. 理论
 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- 1 Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* $\diamond(T, U)$ recursively for cases:

- **()** if $T, U \in \{\mathbf{T}, \mathbf{F}\}$: return value according the *truth table of* \diamond
- **2** if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.

() p is on top of both T and U \bigcirc Details

$$\diamond(p(T_1,T_2),p(U_1,U_2))=p(\diamond(T_1,U_1),\diamond(T_2,U_2))$$

2 p is on top of T but does not occur in U Details

 $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)),$ if p does not occur in U

3 p is on top of U but does not occur in T \bigcirc Details

 $\diamond(T,p(U_1,U_2))=p(\diamond(T,U_1),\diamond(T,U_2)),$ if p does not occur in T

If p is on top of both T and U

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

Intuitively: for two BDDs T, U computing $\diamond(T, U)$ is done by pushing \diamond *downwards*, meanwhile *combining* T *and* U, until \diamond applied to T/F has to be computed, which is replaced by its value according to the truth table

If p is on top of T but does not occur in \boldsymbol{U}

 $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)),$ if p does not occur in U

If p is on top of U but does not occur in ${\cal T}$

 $\diamond(T,p(U_1,U_2))=p(\diamond(T,U_1),\diamond(T,U_2)),$ if p does not occur in T

2. 理论

2.2 Binary decisions diagram (BDD) | BDD algorithm example

例子: We choose the formula

$$(p \to r) \land (q \leftrightarrow (r \lor p))$$

and the order p < q < r. in a picture:

2. 理论

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

回顾:(2) If p not in U, then Replace

2. 理论

2.2 Binary decisions diagram (BDD) | BDD algorithm example

回顾:(3) If p not in T, then replace

2. 理论

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

r

2. 理论

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Now we have computed the ROBDDs of both arguments of \wedge in the original formula, and it remains to apply \wedge on these two

2. 理论 2.2 Binary decisions diagram (BDD) | BDD algorithm example

2. 理论
 2.2 Binary decisions diagram (BDD) | BDD algorithm example

We computed the ROBDD of the formula

$$(p \to r) \land (q \leftrightarrow (r \lor p))$$

w.r.t the order p < q < r.

2. 理论 2.2 Binary decisions diagram (BDD) | BDD algorithm example

We computed the ROBDD of the formula $(n \rightarrow r) \land (n \leftrightarrow (r \lor n))$

w.r.t the order p < q < r.

Doing this by hand in all detail is quite some work, but the steps are very systematic and suitable for implementation

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- 1 Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$

8 Stage 8: ROBDD-CTL

- Stage 8.1: Express CTL operators
- Stage 8.2: Compute EX, EG, EU
- Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

第8阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Passic Idea
- 当前思路: Iteratively update ROBDD of a *boolean function*, e.g., ROBDD(f_n), until ROBDD(f_n)=ROBDD(f_{n-1})

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

Here, $f_n(s) = 1 \leftrightarrow s \in T_n$

- For convenience, define $\text{ROBDD}(T_n) \equiv \text{ROBDD}(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL • 8.1 • 8.2 • 8.3

Stage 8.1

All CTL operators can be expressed in

- **1** boolean operators $(\neg, \land, \rightarrow, \lor)$ and
 - solved in stage 7 Stage 7.1 Stage 7.2

EX, EG, EU

• to be solved in Stage 8.2 • Stage 8.2

回顾:

$$\neg AF \phi \equiv EG \neg \phi$$
$$\neg EF \phi \equiv AG \neg \phi$$
$$\neg AX \phi \equiv EX \neg \phi$$
$$AF \phi \equiv A[\top U \phi]$$
$$EF \phi \equiv E[\top U \phi]$$

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- 1 Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL • 8.1 • 8.2 • 8.3

Stage 8.2

For computing EX, EG, EU, we only needed the building blocks:

- set set
- union \cup , intersection \cap union \cup , intersection \cap
- computing *computing*

$$\{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T,U

基本思路: Sets are described by boolean functions: an element is in the set if and only if the boolean function yields true $f_U: B^n \to B$

 $s \in U \leftrightarrow f_U(s) = 1$

 $\operatorname{ROBDD}(U) \equiv \operatorname{ROBDD}(f_U(s)), \text{ a.k.a., } \operatorname{ROBDD}(S_{\phi}) \equiv \operatorname{ROBDD}(\phi)$

2. 理论 2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$

8 Stage 8: ROBDD-CTL

- Stage 8.1: Express CTL operators
- Stage 8.2: Compute EX, EG, EU
- Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T,U

准备 1

Write a'_i as shorthand for next (a_i) , and assume

•
$$s \equiv (a_1, \ldots, a_n)$$

•
$$t \equiv (a'_1, \ldots, a'_n)$$

准备 2

The transition relation \rightarrow is given by a boolean function (P) on $a_1, \ldots, a_n, a'_1, \ldots, a'_n$, again in ROBDD representation

形式化方法导引

 $a'_{1} \Leftrightarrow P_{1} \land P_{2}$

黄文超 https://faculty.ustc.edu.cn/hua

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL • 8.1 • 8.2 • 8.3

Stage 8 步骤小结:

• Stage 8.1: Express all CTL operators in

1 boolean operators $(\neg, \land, \rightarrow, \lor)$

• Compute ROBDD of boolean operators: • Stage 7.1 • Stage 7.2

EX, EG, EU

- Stage 8.2: Compute ROBDD of *EX*, *EG*, *EU* Example: $S_{EG\phi} = t_n$
 - solved: t_0 , S_{ϕ} , \cap
 - problems left: $\operatorname{ROBDD}(V)$, where $V = \{s \in T \mid \exists t \in U : s \to t\}$

• Stage 8.3:

- step 1: compute ROBDD(P), where $P = P_1 \land P_2$, $\overline{P_1 = (a_1, \dots, a_n)} \rightarrow (a'_1, \dots, a'_n), P_2 = (a'_1, \dots, a'_n) \in U$ • step 2: compute ROBDD(S_{P_e}), where $S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$
- step 3: compute ROBDD(V), where • $V = T \cap S_{P_{\bullet}}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

例: ROBDD-CTL 求解

Given a transition system $\mathcal{M} = (S, \rightarrow, L)$, where $S = \{s_0, s_1, s_2, s_3\} \rightarrow = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_3), (s_2, s_1), (s_2, s_3), (s_3, s_0)\}, L(s_3) = \{p\}.$ *Verify:* $\mathcal{M}, s_0 \models \mathsf{AF} p$

 a_1

Stage 8.1: compute ROBDD(AF p)

• AF
$$p = \neg EG \neg p$$

 ROBDD(AF p) = ROBDD(EG¬p → F) =apply(ROBDD(EG¬p), ROBDD(F), →)

Scompute ROBDD(EG¬p) in Stage 8.2

Stage 8.2: Compute ROBDD(EG $\neg p$) • $S_{EG\phi} = t_n$

• Define a state as a pair of variables (a_1, a_2) , where $a_1, a_2 \in \{0, 1\}$

形式化方法导引

2. 理论

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

$$\begin{array}{l} \underline{\text{Stage 8.3: compute ROBDD}(V), \text{ where}} \\ \bullet \ V = \{s \in T \mid \exists t \in U : s \to t\} \\ \bullet \ T = \{(0,0),(0,1),(1,0)\}, \text{ ROBDD}(U) = t_n \\ \underline{\text{Step 1:}} \\ \bullet \ P_1 = (a_1,a_2) \to (a_1',a_2') \\ \bullet \ P_1 = \{(s_0,s_0),(s_0,s_1),(s_0,s_2),(s_1,s_3),\\ (s_2,s_1),(s_2,s_3),(s_3,s_0)\} = \\ \{0000,0001,0010,0111,1001,1011,1100\} \\ \bullet \ P_2 = (a_1',a_2') \in U \end{array}$$

- Oth iteration:
- ROBDD(P)=ROBDD($P_1 \land P_2$)=apply(ROBDD(P_1), ROBDD(P_2), \land)

• Oth iteration:

Compute ROBDD(S_{P}) (0th step) Ston 2. 黄文超 https://faculty.ustc.edu.cn/hua 形式化方法导引

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Observe that $t_2 = t_3$ Back to Stage 8.1: ROBDD(EG $\neg p$)= t_2 $S_{\text{EG}\neg p} = \overline{\{(0,0)\}} = \{s_0\}$ $S_{\text{AF}p} = S_{\neg \text{EG}\neg p} = \{s_1, s_2, s_3\}$ So, $\mathcal{M}, s_0 \nvDash \text{AF } p$ (作业 2: 验证 $\mathcal{M}, s_0 \vDash \text{EG } p$) 2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL • Stage 8

Stage 8 小结:

- Combining this gives an algorithm to compute the ROBDD of the set states satisfying any CTL formula
- This is essentially the algorithm as it is used in tools like *NuSMV* to do *symbolic model checking*
- In contrast to *explicit state based model checking*, it can deal with very large state spaces.

作业 (1): 模仿 t_1 的求解过程,手工运算 t_2, t_3 ,给出运算过程. 作业 (2):利用 ROBDD,针对上述例子,验证 $\mathcal{M}, s_0 \vDash \text{EG } p$

实验大作业 (可选): 实现 ROBDD 算法, 要求:

- 可以实现至不同 stage, 例如, 可实现至 ROBDD, 或 ROBDD-CTL。 实现的越完整, 给分越高。
- 提供源代码、可执行程序、测试文件、相关文档