T A=
% 5 = HAE

52 IEig
5.2.1 Fixpoint formulation | 5.2.2 BDD Algorithm

BB

https://faculty.ustc.edu.cn/huangwenchao
— BFIRE — EXUFTESSI

https://faculty.ustc.edu.cn/huangwenchao

EFTAE

@ Model checking
o Modeling: Transition system
e Specification: LTL, CTL

e Tool
e NuSMV

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

EFTAE

@ Model checking

o Modeling: Transition system
e Specification: LTL, CTL

e Tool
o NuSMV

ABHE
@ Basic idea of checking a model: fixpoint formulation

o Classical algorithms

o Binary decisions diagram (BDD)
e Bounded model checking (BMC)
e Basic Inductive Techniques

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | state space

Ef: EM: Transition system

A transition system M = (S, —, L) is

@ S: a set of states
@ —: a transition relation: every s € S has some s’ € S with s — &’
e L: alabel function: L : S — P(Atoms)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | state space

E]f: EMX: Transition system
A transition system M = (S, —, L) is

@ S: a set of states

@ —: a transition relation: every s € S has some s’ € S with s — &’

e L: a label function: L : S — P(Atoms)

TEN.: State space

The state space
S=Vix---xV,
is implied by the variables v1, ..., v, from finite sets V,...,V,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | state space

Ef: EM: Transition system

A transition system M = (S, —, L) is
@ S: a set of states
@ —: a transition relation: every s € S has some s’ € S with s — &’
e L: a label function: L : S — P(Atoms)

TEN.: State space

The state space

S=Vix---xV,
is implied by the variables v1, ..., v, from finite sets V,...,V,

[B]&X: How to check an LTL or CTL property?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Basic Idea

[a]: How to check an LTL property?
% (SPIN,..)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

[a]: How to check an LTL property?
% (SPIN,..)

[B]&: How to check a CTL property?

@ Compute the set Sy consisting of all states that satisfy ¢
e a state s € S satisfies ¢ if the set of all paths starting in s satisfies ¢

@ Then the property to check is s € S

M,sF¢ <<= s€8,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

[@: How to compute S,7?
&k
x:

o Basics: SJ_, ST, Sp, Sﬁd), S¢V¢, S¢/\¢,
@ CTL Related: SEXd): SEg¢, SE[qud)]

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

oS =0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

oS =0
OST:S

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

e S =0
4 ST =5
@ For an atomic proposition p:

Sp={s €5 |p(s)}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

e S =0
4 ST =5
@ For an atomic proposition p:

Sp={s €5 |p(s)}

0 S y={seS|s&Sy}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

e S =0
4 ST =5
@ For an atomic proposition p:

Sp={s €5 |p(s)}

S-s= {5 €S |5 ¢S5}
S¢V¢:S¢US¢

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Basic Idea

Compute Sy: Basics

e S =0
4 ST =5
@ For an atomic proposition p:

Sp={s €5 |p(s)}

0 S y={seS|s&Sy}
° S¢V¢:S¢US¢
) S¢/\¢:S¢HS¢

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

Compute Sgxg

A state s satisfies EX ¢, if there exists a path starting in s such that ¢
holds in the next state of that path. So:

SEXd,:{SGS‘HtE%ZS—)t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

EG and EU are harder: they deal with properties of paths beyond a fixed
finite part of the path

B&: Fixpoint formulation
Consider the first n steps for increasing n, until the corresponding set does
not change anymore.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

[EGo
There exists a path sg — s; — s2--- on which ¢ globally holds, that is, ¢
holds in s; for all ¢

v

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

[EGo
There exists a path sg — s; — s2--- on which ¢ globally holds, that is, ¢
holds in s; for all ¢

Forn=20,1,2,..., let T, = set of states sg, for which there exists a path
S0 = 81 — S92+ -+ on which ¢ holds for all s; with i <n

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sgxe, SEGs; SE[sUY]

[EGo
There exists a path sg — s; — s2--- on which ¢ globally holds, that is, ¢
holds in s; for all ¢

Forn=20,1,2,..., let T, = set of states sg, for which there exists a path
S0 = 81 — S92+ -+ on which ¢ holds for all s; with i <n

Then Ty = Sy, and for all n =0,1,..., we have

Toy1=T,N{s€ Sy | ecT,:s—t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sece

Compute Sggy by T;, (Fixpoint formulation)

Tp := Sy, n:=0;

repeat
Tot1:=ToN{s€Sy|FHteT,:s>t};n=n+1;

until 75, = T},—1

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sece

Compute Sggy by T;, (Fixpoint formulation)

Tp := Sy, n:=0;

repeat
Tot1:=ToN{s€Sy|FHteT,:s>t};n=n+1;

until 75, = T},—1

The loop terminates, since
@ the set T, is finite

@ |T,,| decreases in every step

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sece

Compute Sggy by T;, (Fixpoint formulation)

Tp := Sy, n:=0;

repeat
Tot1:=ToN{s€Sy|FHteT,:s>t};n=n+1;

until 75, = T},—1

The loop terminates, since
@ the set T, is finite

@ |T,,| decreases in every step

After running this algorithm we have Sggy = T5,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

so satisfies E[¢ U 1] means: there exists n such that P, holds, for
@ P, = there exists a path sy — s1 — so--- on which ¥ holds in s,
and ¢ holds in s; for all i < n

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

so satisfies E[¢ U 1] means: there exists n such that P, holds, for
@ P, = there exists a path sy — s1 — so--- on which ¥ holds in s,
and ¢ holds in s; for all i < n

U,, = set of states sy for which P; holds for some i < n

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

so satisfies E[¢ U 1] means: there exists n such that P, holds, for
@ P, = there exists a path sy — s1 — so--- on which ¥ holds in s,
and ¢ holds in s; for all i < n

U,, = set of states sy for which P; holds for some i < n

Then Uy = Sy, and for all n=0,1,..., we have
Un+1:UnU{S€S¢‘3tEUn28—>t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

so satisfies E[¢ U 1] means: there exists n such that P, holds, for

@ P, = there exists a path sy — s1 — so--- on which ¥ holds in s,
and ¢ holds in s; for all i < n

U,, = set of states sy for which P; holds for some i < n

Then Uy = Sy, and for all n=0,1,..., we have
Un+1:UnU{SES¢‘3tEUnZS—>t}

Compute Sgjguy) by Un

Up := Sy;n :=0;
repeat

Upy1:=UpU{s€ Sy |FH€U,:5 =t} n=n+1;
until U, = U, _1

i = = et

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

Concluding,

e For an arbitrary CTL formula ¢ we saw how to compute the set Sy,
being the set of states that satisfy ¢
o Basics: SJ_, ST, Sp, Sﬂd,, S¢>\/¢' S¢/\w
o CTL Related: SEX¢. SE(;,¢, SEW’UW

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

Concluding,

e For an arbitrary CTL formula ¢ we saw how to compute the set Sy,
being the set of states that satisfy ¢
o Basics: SJ_, ST, Sp, Sﬁd,, S¢>\/¢' S¢/\w
o CTL Related: SEX¢. SE(;,¢, SEW’UW

@ In this computation we only needed the computation of the sets
TUU, TNU, complements, and {s € T | 3t € U : s — t}, for given
sets T, U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

Concluding,

e For an arbitrary CTL formula ¢ we saw how to compute the set Sy,
being the set of states that satisfy ¢
e Basics: SJ_, ST, Sp, Sﬁd,, S¢>\/¢' S¢/\w
o CTL Related: SEX¢. SE(;,¢, SEW’UW

@ In this computation we only needed the computation of the sets
TUU, TNU, complements, and {s € T | 3t € U : s — t}, for given
sets T, U

[B)&&: In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.1 Basic idea of checking a CTL formula | Computing Sg[guy]

Concluding,
e For an arbitrary CTL formula ¢ we saw how to compute the set Sy,
being the set of states that satisfy ¢
e Basics: SJ_, ST, Sp, Sﬁd,, S¢>\/¢' S¢/\w
o CTL Related: SEX¢. SE(;,¢, SEW’UW
@ In this computation we only needed the computation of the sets
TUU, TNU, complements, and {s € T | 3t € U : s — t}, for given

sets T, U

[B)&&: In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

A& T Z: 2.2 Binary decisions diagram (BDD), 2.3 Bounded model
checking (BMC), 2.4 k-induction

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD)

=] 7

@ In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

o Key words: state spaces

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD)

=] 7

@ In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

o Key words: state spaces

Now we study BDD
@ a method of symbolic model checking.
@ adopted by NuSMV

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD)

=] 7

@ In explicit state based model checking the complexity of this
algorithm will be at least the order of the size of the state space S

o Key words: state spaces

Now we study BDD
@ a method of symbolic model checking.
@ adopted by NuSMV

HARBEE: Firstly, investigate desired requirements for alternative
representations for boolean functions

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

QOutline of a BDD algorithm
@ Stage 1: Boolean variables

@ Stage 2: Boolean functions

© Stage 3: Decision Tree

@ Stage 4: Ordered decision tree

© Stage 5: Reduced ordered decision tree (elimination)
@ Stage 6: ROBDD (merging and elimination)

@ Stage 7: Compute ROBDD

@ Stage 7.1: Compute ROBDD(¢)
o Stage 7.2: Compute o(T,U)
© Stage 8: ROBDD-CTL
@ Stage 8.1: Express CTL operators
@ Stage 8.2: Compute EX, EG, EU
@ Stage 8.3: Compute V={seT |FHecU:s—t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

QOutline of a BDD algorithm
@ Stage 1: Boolean variables

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

£ 1 B: Boolean Variables:

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

£ 1 B: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular boolean or
integers with a restricted range, like

VAR
a: 1..100; J

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

£ 1 B: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular boolean or
integers with a restricted range, like

VAR
a: 1..100; J

We may assume we only have boolean variables

@ by representing variables in binary notation, e.g., using 7 bits for the
range 1..100,

@ Atomic propositions, e.g., a < b+ 5, can be expressed in binary
notation too

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 2: Boolean functions

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

£ 2 Boolean Functions:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

£ 2 Boolean Functions:

Write B = {0, 1}, then for n boolean variables the state space is S = B"

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

£ 2 Boolean Functions:

Write B = {0, 1}, then for n boolean variables the state space is S = B"

We want to represent and manipulate subsets of S = B"

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

£ 2 Boolean Functions:

Write B = {0, 1}, then for n boolean variables the state space is S = B"
We want to represent and manipulate subsets of S = B"
A subset U C B™ can be identified by a boolean function

fu:B"— B

defined by
selU<+ fu(s)=1

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

@ Many boolean functions have an efficient representation

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

@ Many boolean functions have an efficient representation
e [a]: Why not for all boolean functions?
o % It is unavoidable that most of the boolean functions have
untractable (| ¥EH]) representation

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

@ Many boolean functions have an efficient representation

e [a]: Why not for all boolean functions?
o Z: It is unavoidable that most of the boolean functions have
untractable (| ¥EH]) representation

Z22: BDD provide a data structure for boolean functions

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

[a]&: We want to represent and manipulate boolean functions efficiently,
more precisely:

@ Every boolean function has a unique representation (DLJ5: [@]f& 2)
o Counterexample: p A (pAg) and g A p

@ All operations needs for CTL model checking, including —, V, A should
be efficiently computable

o Example: L
o Counterexample: T

@ Many boolean functions have an efficient representation

e [a]: Why not for all boolean functions?
o Z: It is unavoidable that most of the boolean functions have
untractable (| ¥EH]) representation

Z22: BDD provide a data structure for boolean functions —Decision Tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 3: Decision Tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree
£ 3 [Decision Tree:
TEN : A decision tree is a binary tree
in which
@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false
respectively

oy
oo
TR R

0 1 1 0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [Decision Tree:

FE X A decision tree is a binary tree &/ : If every variable has a boolean
in which value then the corresponding
function value is obtained by

@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false
respectively

oy
oo
TR R

0 1 1 0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [Decision Tree:

FE X A decision tree is a binary tree &/ : If every variable has a boolean
in which value then the corresponding
function value is obtained by

@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false
respectively

oy
oo
TR R

0 1 1 0

@ Start at the root

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [Decision Tree:

FE X A decision tree is a binary tree &/ : If every variable has a boolean
in which value then the corresponding
function value is obtained by

@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false @ For any node: go to the left if
respectively the corresponding variable is

/@D\ true;, otherwise, go to the right

0 1 1 0

@ Start at the root

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [Decision Tree:
FE X A decision tree is a binary tree &/ : If every variable has a boolean
in which value then the corresponding

e Every node is labeled by a function value is obtained by

boolean variable 5 A
@ Every leafis labeled by 1 or 0, ® Start at the root

represer.1ting true or false e For any node: go to the left if
respectively the corresponding variable is

/@D\ true;, otherwise, go to the right
@ Repeat until a /eaf has been
@ @ reached

0 1 1 0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

£ 3 [Decision Tree:
TEN : A decision tree is a binary tree
in which
@ Every node is labeled by a
boolean variable

@ Every leafis labeled by 1 or 0,
representing true or false
respectively

oy
oo
TR R

0 1 1 0

iE M : If every variable has a boolean
value then the corresponding
function value is obtained by

@ Start at the root

e For any node: go to the left if
the corresponding variable is
true;, otherwise, go to the right

@ Repeat until a /eaf has been
reached

o If the leaf is 1 then the result is
true, otherwise false

EH#B https://faculty.ustc.edu.cn/hu:

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else
Consider our example for the values /QD\

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else
Consider our example for the values A/QD\
p: true @ @

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else

Consider our example for the values A/QD\
p: true @ @
q: false R

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else
Consider our example for the values A/QD\
p: true @ @
q: false
r: true 1 S 2 0 E 2

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an

if-then-else

Consider our example for the values A/QZ\
p: true @ ;(Q\
q: false

7 true 1 ﬂ 0 R
Hence, the result is 0
@ 11 0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

@& 1: Does every boolean function on finitely many boolean variables
have a representation as decision tree?

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

@& 1: Does every boolean function on finitely many boolean variables

have a representation as decision tree?
% Yes: it can be defined by a truth table, and any truth table on n

variables having 2" lines can be represented as a decision tree with 2™

leaves

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

@& 1: Does every boolean function on finitely many boolean variables

have a representation as decision tree?
% Yes: it can be defined by a truth table, and any truth table on n

variables having 2" lines can be represented as a decision tree with 2™

A RAR

leaves

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

[&% 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

[&% 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

Z: No

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

[&% 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

Z: No

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

[&% 2: Does every boolean function on finitely many boolean variables
have a unique representation as decision tree?

Z: No

0 1 1 0
()8R 2 By—FFfER 5 i%: Observe that in one case p is on top of ¢, while
in the other case ¢ is on top of p

@ Fix an order < on the boolean variables, like p < ¢

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 4: Ordered decision tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

£ 4 By Ordered decision tree: An ordered decision tree with respect to
< is a decision tree such that if node n is on top of node n’, then

label(n) < label(n')

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

£ 4 By Ordered decision tree: An ordered decision tree with respect to
< is a decision tree such that if node n is on top of node n’, then

label(n) < label(n')

So the left one is ordered with respect to p < ¢, the right one is not

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[8]#% 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[8]#% 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

% Still no:

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[a) &% 3: Fixing the order < on the boolean variables, does every boolean

function have a unique representation as an ordered decision tree with
respect to <?

% Still no:

Counterexample: Let T" be any ordered decision tree, and let p be a
variable less than the variables in T’

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[a) &% 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

% Still no:

Counterexample: Let T" be any ordered decision tree, and let p be a
variable less than the variables in T’

Then T and T T are two ordered decision trees
representing the same boolean function

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

[a) &% 3: Fixing the order < on the boolean variables, does every boolean
function have a unique representation as an ordered decision tree with
respect to <?

% Still no:

Counterexample: Let T" be any ordered decision tree, and let p be a
variable less than the variables in T’

Then T and T T are two ordered decision trees
representing the same boolean function

R 7% We are looking for a small representing, hence among these
two we prefer T' and exclude the latter.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 5: Reduced ordered decision tree (elimination)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

£ 5 By Reduced ordered decision tree:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

£ 5 By Reduced ordered decision tree:

T

Replacing T by T is called elimination

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

£ 5 By Reduced ordered decision tree:

T

Replacing T by T is called elimination

An ordered decision tree on which no elimination is possible is called a
reduced ordered decision tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

For a fixed order < on boolean variables, every boolean function has a
unique representation as a reduced ordered decision tree

HERAIE A2 B

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

{5: For the boolean function defined
by the formula p A —q, for the order
p < q the ordered decision tree
reflecting the truth table is

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

{5: For the boolean function defined
by the formula p A —q, for the order
p < q the ordered decision tree
reflecting the truth table is

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

Applying elimination on the right ¢
{5: For the boolean function defined yields
by the formula p A —q, for the order

p < q the ordered decision tree
reflecting the truth table is

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | Stage 5: Reduced ordered decision tree
(elimination)

Applying elimination on the right ¢
{5: For the boolean function defined yields
by the formula p A —q, for the order

p < q the ordered decision tree
reflecting the truth table is
Y N Y X Now no elimination is possible any

0 1 0 0 more, so this is a reduced ordered
decision tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 6: ROBDD (merging and elimination)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

2 6 fi: ROBDD: Reduced Ordered Binary Decisions Diagrams
@ A particular example of Binary Decisions Diagrams (BDDs)

@ uniquely represent boolean functions by merging and elimination

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

2 6 fi: ROBDD: Reduced Ordered Binary Decisions Diagrams
@ A particular example of Binary Decisions Diagrams (BDDs)

@ uniquely represent boolean functions by merging and elimination

The formula (p A ¢) V r describes the
boolean function that yields true if both p
and q are true, or r is true

With respect to the order p < g < r its
ROBDD is

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

2 6 fi: ROBDD: Reduced Ordered Binary Decisions Diagrams
@ A particular example of Binary Decisions Diagrams (BDDs)

@ uniquely represent boolean functions by merging and elimination

The formula (p A ¢) V r describes the
boolean function that yields true if both p
and q are true, or r is true

With respect to the order p < g < r its
ROBDD is

Note:
@ Every node represents a boolean function itself.

@ All nodes of a ROBDD represent distinct boolean functions.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < g < r the
ROBDD of p <> g < 1 is

yields true if and only if the number
of variables that is false, is even

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < g < r the
ROBDD of p <> g < 1 is

yields true if and only if the number
of variables that is false, is even

EH#B https://faculty.ustc.edu.cn/hu:

Alternative notation to avoid curved
arrows: use solid arrows for
true-branches and dashed arrows for
false-branches

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

ia]: At AZE merging?

4 1@%@1 O@%@O

1 0 Z: 2n — 1 nodes vs 2" — 1 nodes

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

ia]: At AZE merging?

4 1@%@1 O@%@O

1 0 Z: 2n — 1 nodes vs 2" — 1 nodes

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

[B1RR 4. fN{AT%EHE order? The ROBDD of (p1 V.q1) A (p2 V q2) A (p3 V q3)
with respect to

PL<q<p2<qs< wrt. pr <p2<p3<q <q <gqsitis:

S0 P\

o B
% \Wiclololofolefolo
where all ? nodes represent distinct boolean

1
functions on ¢, g2, g3, S0 cannot’ be shared

E#B https://faculty.ustc.edu.cn/hu: }L;‘;tﬂ:ji,f—,%l

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

P1Va)NP2Vag)N---A(p3Vas)

with respect to the order
0PI < qr <p2< @< - <pp<gn: has exactly 2n nodes
0PI <P < < pp<qr<qa<---<qpn: has more than 2" nodes

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)
More general, the ROBDD of

P1Va)NP2Vag)N---A(p3Vas)

with respect to the order

0PI < qr <p2< @< - <pp<gn: has exactly 2n nodes
0PI <P < < pp<qr<qa<---<qpn: has more than 2" nodes

So distinct orders may result in ROBDDs of sizes with an exponential gap
in between

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)
More general, the ROBDD of

P1Va)NP2Vag)N---A(p3Vas)

with respect to the order

0PI < qr <p2< @< - <pp<gn: has exactly 2n nodes
0PI <P < < pp<qr<qa<---<qpn: has more than 2" nodes

So distinct orders may result in ROBDDs of sizes with an exponential gap
in between

choose the order in such a way that variables close to each other in the
formula are also close in the order

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

[&k 5. The methods in the former stages should not be used to compute
ROBDDs in practice

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

[&k 5. The methods in the former stages should not be used to compute
ROBDDs in practice

@ since the size of this decision tree is always exponential, so unfeasible

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

[&k 5. The methods in the former stages should not be used to compute
ROBDDs in practice

@ since the size of this decision tree is always exponential, so unfeasible

iR 5% operate directly on the formula ¢, instead of decision tree

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

% 7Hr: How to compute the Reduced Ordered Binary Decision Diagram
(ROBDD) of a given formula?

[&k 5. The methods in the former stages should not be used to compute
ROBDDs in practice

@ since the size of this decision tree is always exponential, so unfeasible

iR 5% operate directly on the formula ¢, instead of decision tree

Observation: Every formula is of the shape:
o false or true, or
@ p for a variable p, or
e —¢, or
@ pot)foroe {V,A —, <}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD
@ Stage 7.1: Compute ROBDD(¢)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

e ROBDD(F)=0, ROBDD(T)=1

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

e ROBDD(F)=0, ROBDD(T)=1

POoN

o ROBDD(p)= 1 0

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

e ROBDD(F)=0, ROBDD(T)=1

POoN

o ROBDD(p)= ! 0
o ROBDD(~¢)=ROBDD(¢ — F)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute ROBDD(¢). So, the ROBDD ROBDD(¢) of a
formula ¢ will be constructed recursively according this recursive structure
of the formulas:

e ROBDD(F)=0, ROBDD(T)=1

POoN

o ROBDD(p)= 1 0
o ROBDD(—¢)=ROBDD(¢ — F)
o ROBDD(¢ o 1))= apply(ROBDD($), ROBDD(¥), o)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

4%: So it remains to find an algorithm apply having two ROBDDs and a
binary operation ¢ € {V, A, —, <>} as input, and having the desired
ROBDD as its output

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

4%: So it remains to find an algorithm apply having two ROBDDs and a
binary operation ¢ € {V, A, —, <>} as input, and having the desired
ROBDD as its output

the BDD having root p for which the left branch is 7" and the right branch
is U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

4%: So it remains to find an algorithm apply having two ROBDDs and a
binary operation ¢ € {V, A, —, <>} as input, and having the desired
ROBDD as its output

the BDD having root p for which the left branch is 7" and the right branch
is U

apply (T, U, o)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

@ Stage 7: Compute ROBDD

o Stage 7.2: Compute o(T,U)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:
Q if T,U € {T,F}: return value according the truth table of ©

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©
@ if T,U not both in {T,F}:

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©

@ if T, U not both in {T,F}: let p be the smallest variable occurring in
T and U.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©

@ if T, U not both in {T,F}: let p be the smallest variable occurring in
T and U.

@ pis on top of both T and U

o(p(T1, 1), p(Ur, Uz)) = p(o(T1,Ur),o(T>, Us))

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©

@ if T, U not both in {T,F}: let p be the smallest variable occurring in
T and U.

@ pis on top of both T and U

o(p(T1, 1), p(Ur, Uz)) = p(o(T1,Ur),o(T>, Us))

@ pis on top of T but does not occur in U

o(p(Ty,T),U) = p(o(T1,U),o(Tz,U)), if p does not occur in U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: Compute o(T,U) recursively for cases:

Q if T,U € {T,F}: return value according the truth table of ©

@ if T, U not both in {T,F}: let p be the smallest variable occurring in
T and U.

@ pis on top of both T and U

o(p(T1, 1), p(Ur, Uz)) = p(o(T1,Ur),o(T>, Us))

@ pis on top of T but does not occur in U

o(p(Ty,T),U) = p(o(T1,U),o(Tz,U)), if p does not occur in U

@ pis on top of U but does not occur in T'

o(T, p(Uy,Us)) = p(o(T,Uy),o(T, Us)), if p does not occur in T

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of both 7" and U

o(p(T1, T»), p(Ur, U2)) = p(o(T1, Ur), o(12, Uz))

(1) Replace

o

Ty Ty Uy Us by 11 15 Uy Uy

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of T" but does not occur in U

o(p(T1,T2),U) = p(o(T1,U),o(T2,U)), if p does not occur in U
(2) If p not in U, then Replace

o

Ty b U by 11 T U

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of U but does not occur in T'

o(T, p(Ur,Us)) = p(o(T,Uy), (T, Us)), if p does not occur in T
(3)If p not in T, then replace

2

T U, Us by T U, Us

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | BDD algorithm example

5]F: We choose the formula

(p—=1)A (g (rVp))

and the order p < g < 7.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

5]F: We choose the formula

(p—=1)A (g (rVp))

and the order p < ¢ < r. in a picture:

SECY
4 B &
AR

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

2
1@0 1@0

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

o
L p b

1 01
[E]:(2) If p not in U, then Replace

2

E#8 https://faculty.ustc.edu.cn/hu: ° R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

@Q@ @9 R R

lﬁl)ﬁﬁi:(?))lfp not in 7', then replace

o

T Uy Us T Uy Us

E#8 https://faculty.ustc.edu.cn/hu: . R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

2
=
@Q@O 11@? 1@%@1 1@0@ ©
oy

1 0 1
[B][@i:Replacing T T by T is called elimination

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

e
FTROR

1 01 0

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

ORI
8

1 0

[E]J@:(3)If p not in T, then replace

2

T Uy Uz T Uy Us

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

ORI O O
&&R%@@

[E]J@:(3)If p not in T, then replace

T Uy Uz T Uy Us

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (££_ET):

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (££_ET):

9]
&5, 45

1 0 1 0
[E]E:(2) If p not in U, then Replace

2

Ty b U

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (££_ET):

2 8
HR 1@&?@ A

0 1 0 1 0

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (££_ET):

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Now we have computed the ROBDDs of both arguments of A in the
original formula, and it remains to apply A on these two

o
elclofo
AR

1 1

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | BDD algorithm example

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | BDD algorithm example

@ We computed the ROBDD of the formula

(a) (9) (p—7)Alg e (rVp))

w.r.t the order p < g < 7.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

o LPIREK: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(f,,), until ROBDD(f,,)=ROBDD(f,_1)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

o LPIREK: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(f,,), until ROBDD(f,,)=ROBDD(f,_1)

f5ll: Compute Sgay by fi

Here, fu(s) =1+ se T,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

o LPIREK: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(f,,), until ROBDD(f,,)=ROBDD(f,_1)

f5ll: Compute Sgay by fi

Here, fu(s) =1+ se T,
@ For convenience, define ROBDD(7},) = ROBDD(f,,)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

% 8y CTL model checking by ROBDDs

How can we do CTL model checking by representing large sets of states by
ROBDDs?

o [ASLE % (Fixpoint): the abstract algorithm for CTL model checking

o LPIREK: Iteratively update ROBDD of a boolean function, e.g.,
ROBDD(f,,), until ROBDD(f,,)=ROBDD(f,_1)

f5ll: Compute Sgay by fi

Here, fu(s) =1+ se T,
@ For convenience, define ROBDD(7},) = ROBDD(f,,)
o #a]: How to compute ROBDD(T,,N{s € Sy | I € T}, : s = t})?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL
@ Stage 8.1: Express CTL operators

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IZig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.1

All CTL operators can be expressed in
@ boolean operators (-, A, —, V) and
e solved in stage 7

Q@ EX, EG, EU
e to be solved in Stage 8.2)
E)R
-AF ¢ = EG —¢
—-EF ¢ = AG —¢
-AX ¢ = EX —¢
AF ¢ = A[T U ¢

EF ¢ = E[T U ¢]

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL

@ Stage 8.2: Compute EX, EG, EU

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.2

For computing EX, EG, EU, we only needed the building blocks:
@ set
@ union U, intersection N
@ computing
{seT|IHeU:s—t}

for a given transition relation — and given sets T, U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.2

For computing EX, EG, EU, we only needed the building blocks:
@ set
@ union U, intersection N
@ computing
{seT|FHelU:s—t}

for a given transition relation — and given sets T, U

o

EARBFE: Sets are described by boolean functions: an element is in the
set if and only if the boolean function yields true fi; : B* -+ B

seU<+ fu(s)=1

ROBDD(U) = ROBDD(fy(s)), a.k.a., ROBDD(S,) = ROBDD(¢)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.2
For computing EX, EG, EU, we only needed the building blocks:

@ set
@ union U, intersection N

@ computing
{seT|FHeU:s—t}

for a given transition relation — and given sets T', U

EAXBFE: Union and intersection correspond to V and A, for which we
already gave an algorithm for ROBDD representations

@ Spvyp = Sy U Sy, Seny = Sp NSy
o ROBDD(S, U ;) = ROBDD(Syy) = ROBDD(¢) V 1))
e ROBDD(S4 N Sy) = ROBDD(Sgny) = ROBDD(¢ A %)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.2

For computing EX, EG, EU, we only needed the building blocks:
@ set
@ union U, intersection N
@ computing
{seT|IHeU:s—t}

for a given transition relation — and given sets T, U

@ to be solve in Stage 8.3

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

© Stage 8: ROBDD-CTL

@ Stage 8.3: Compute V={seT |FHecU:s—t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V={seT|3telU:s—t}

for a given transition relation — and given sets T, U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V={seT|3telU:s—t}

for a given transition relation — and given sets T, U

Write a} as shorthand for next(a;), and assume

° s=(ay,...,ap)
o t=(dy,...,al)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V=_{seT|3telU:s—t}
for a given transition relation — and given sets T, U

The transition relation — is given by a boolean function (P) on
ai,...,an,ay,...,al, again in ROBDD representation

P(ay,...,ap,a},...,a,) & P APy

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V={seT|3telU:s—t}

for a given transition relation — and given sets T, U

Step 1: Compute ROBDD(P)

/
P(ay,...,an,d},...,a,) & P APy

where
o P =(a1,...,an) — (a},...,al) ~ s—t
e P,=(da},...,a,) €U ~ teU

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V={seT|3telU:s—t}

for a given transition relation — and given sets T, U

Step 1: Compute ROBDD(P)

P(ay,...,an,a},...,ad,) & PLA Py
where
°P1:(a17"'7an)_>(all,...,a,/n) ~ s —t
o ROBDD(P,) was given by translation relation —
e P,=(d},...,a,)eU ~ te U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V=_{seT|3telU:s—t}

for a given transition relation — and given sets T, U

Step 1: Compute ROBDD(P)

/ /
P(ay,...,an,ay,...,a,) < Pi AP

where
o P =(a1,...,an) — (a},...,al) ~ s—t
e P,=(da},...,a,)eU ~ teU

e When using the order a; < -+ < a, < aj < --- < al,, ROBDD(P) is
obtained by just replacing every a; by a} in ROBDD(U)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V=_{seT|3telU:s—t}

for a given transition relation — and given sets T, U

Step 1: Compute ROBDD(P)

/
P(ay,...,an,d},...,a,) & P APy

where
o P =(a1,...,an) — (a},...,al) ~ s—t
o b= (d},...,a)eU ~ telU

o Now, ROBDD(P)=ROBDD(P; A P5)=apply(ROBDD(P}),
ROBDD(P;), M)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3

Computing

V={seT|3teU:s—t}

for a given transition relation — and given sets T, U

Step 2: Compute ROBDD(Sp,), where

Sp, ={(a1,...,a,) | 3d},...,a, : P(ay,...,an,a},...,a,)}
Observe that for every boolean variable x:
Jz: ¢ = gl :=T| V ¢z := F]
computable
Applying this n times, for z = a},d), ..., a), all 'I's are eliminated,

yielding an ROBDD over ay,...,a,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8.3
Computing

V={seT|3telU:s—t}

for a given transition relation — and given sets T, U

Step 3: Compute ROBDD of V/, where

V=Tn Spe
ROBDD(V)=ROBDD(T N Sp,)=apply(ROBDD(T'), ROBDD(Sp,), N)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8 HIB/ING:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. it

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8 HIB/ING:
@ Stage 8.1: Express all CTL operators in

@ boolean operators (=, \,—, V)
o Compute ROBDD of boolean operators:
Q EX EG, EU

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8 HIB/ING:
@ Stage 8.1: Express all CTL operators in

@ boolean operators (=, \,—, V)
o Compute ROBDD of boolean operators:
Q EX EG, EU
@ Stage 8.2: Compute ROBDD of EX, EG, EU

o solved: tg, Sy, N
o problems left: ROBDD(V), where V ={s €T |3t e U :s—t}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL @Ei) @2 @&

Stage 8 HIB/ING:
@ Stage 8.1: Express all CTL operators in

@ boolean operators (=, \,—, V)
o Compute ROBDD of boolean operators:

Q@ EX EG, EU
@ Stage 8.2: Compute ROBDD of EX, EG, EU

o solved: tg, Sy, N

o problems left: ROBDD(V), where V ={s €T |3t e U :s—t}
@ Stage 8.3:

o step 1: compute ROBDD(P), where P = P, A P,

P = (a1,...,an) = (d},...,a,), Po=(d},...,a,) €U

r'n

e step 2: compute ROBDD(Sp,), where

Sp, ={(a1,...,a,) | d},...,a), : Pla,...,an,ady,...,a,)}

e step 3: compute ROBDD(V), where
o V=TnNSp,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

5: ROBDD-CTL kfi#

Given a transition system M = (S, —, L), where
S = {80, S1, 82, 83} —= {(80, 80), (80, 81), (80, 82),
(s1,53), (s2,51), (52, 83), (s3,50)}, L(s3) = {p}-
Verify: M, sqg E AF p

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

5: ROBDD-CTL kfi#

Given a transition system M = (S, —, L), where
S = {80, S1, 82, 83} —= {(80, 80), (80, 81), (80, 82),
(s1,53), (s2,51), (52, 83), (s3,50)}, L(s3) = {p}-

Verify: M, sqg E AF p 53
52

Stage 8.1: compute ROBDD(AF p)
QO AF p = -EG—p

@ ROBDD(AF p) = ROBDD(EG—p — F)
—apply(ROBDD(EG—-p), ROBDD(F), —)

© compute ROBDD(EG—p) in Stage 8.2

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

5: ROBDD-CTL kfi#

Given a transition system M = (S, —, L), where
S = {80, S1, 82, 83} —= {(80, 80), (80, 81), (80, 82),
(s1,53), (s2,51), (52, 83), (s3,50)}, L(s3) = {p}-

Verify: M, sqg E AF p 83
82
Stage 8.2: Compute ROBDD(EG—p) @
@ Define a state as a pair of variables (aj,as2),
where a1, a2 € {0,1})
o e, 50 = (0,0), 1 = (0,1), 52 = (1,0), @ \\
S3 = (1, 1) R ‘\
2] S¢:Sﬂp: {807‘91732} = {(07())7(07 1)7(170)} 0 \\“1

@ t;, = ROBDD(S,)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

5: ROBDD-CTL kfi#

Given a transition system M = (S, —, L), where
S = {s0, 51,52, 53} == {(50,50), (50,51), (50, 52),
(51,53), (52,51), (52, 83), (s3,50)}, L(s3) = {p}-

Verify: M, sqg E AF p 53
52

Stage 8.2: Compute ROBDD(EG—p)

Q lteratively compute ¢,,41, where

o tpt1 :=apply(¢,,ROBDD(V), A)
o V={seT|3telU:s—t} (ROBDD(V) computed in Stage 8.2)

)
o T =S54=5-p=1{s0,51,52} ={(0,0),(0,1),(1,0)}
e ROBDD(U)=t,

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where
o V={seT|3telU:s—t} 30 st
o T = {(0,0),(0,1),(1,0)}, ROBDD(U)=t,,

53
52

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t} 30 st
o T = {(0,0),(0,1), (1,0)}, ROBDD(U)=t,,
Step 1:
e P = (a1,a2) — (a},d))
53
o P (dhyah) € U .

e ROBDD(P)=ROBDD(P; A
Py)=apply(ROBDD(P;), ROBDD(P,), A)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V'), where
o V={seT|3telU:s—t}
o T = {(0,0),(0,1),(1,0)}, ROBDD(U)=
° Pl (a1, az) — (ay, a5)
= {(50,50), (50, 81), (50, 52), (51, 83),

(327 81) (827 83)7 (837 SO)} =
{0000, 0001, 0010,0111, 1001, 1011, 1100}

o Py=(a},ay) eU
o ROBDD(P)=ROBDD(P; A
Py)=apply(ROBDD(P,), ROBDD(Ps), /)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where
o V={seT|3telU:s—t}

e T ={(0,0),(0,1),(1,0)}, ROBDD(U)=t,
Step 1:

e P = (a1,a2) — (a},d))

o Py=(d},ay) €U

v
0 1
o Oth iteration:
e ROBDD(P)=ROBDD(P; A
Py)=apply(ROBDD(P;), ROBDD(P:), N)

EH#B https://faculty.ustc.edu.cn/hu:

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t} 6

e T ={(0,0),(0,1),(1,0)}, ROBDD(U)=t, K
e P = (a1,a2) — (a},d))
o P=(d},ay) €U

o ROBDD(P)=ROBDD(P; A
Py)=apply(ROBDD(P;), ROBDD(P;), A

o Oth iteration:

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t} 6
o T ={(0,0),(0,1),(1,0)}, ROBDD(U)=t,, R
Step 2: Compute ROBDD(Sp,) (Oth step) Y

Sp, ={(a1,a2) | Ja}, a5 : P(ay,az,a},a5)}
o Sp, ={(0,0),(1,0),(1,1)}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3tecU:s—t}
o T ={(0,0),(0,1),(1,0)}, ROBDD(U)=t, K@
Step 2: Compute ROBDD(Sp,) (Oth step)
0o 1

Sp, = {(a1,a2) | a},dy : P(ay,as,a},ab)}

b SPe - {(07 0)7 (17 0)7 (17 1)}
Step 3: ROBDD(V)=apply(ROBDD(T), ROBDD(S%,)
ROBDD(Sp,), N)

o T=1{(0,0),(0,1),(1,0)}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t}

e T ={(0,0),(0,1),(1,0)}, ROBDD(U)=ty, \
Step 2: Compute ROBDD(Sp,) (0th step) 0 ! 1
Sp, = {(a1,a2) | a},dy : P(ay,as,a},ab)} ROBDD(V)

o SPe = {(07 0)7 (17 0)? (17 1)}
Step 3: ROBDD(V)=apply(ROBDD(T),
ROBDD(Sp,), A)

o T =1{(0,0),(0,1),(1,0)}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Stage 8.3: compute ROBDD(V), where

o V={seT|3telU:s—t} @
e T ={(0,0),(0,1),(1,0)}, ROBDD(U)=ty, ',
Step 2: Compute ROBDD(Sp,) (0th step) 0) 1

Sp, ={(a1,a2) | Ja}, a5 : P(ay,az,a},a5)}
o Sp, ={(0,0),(1,0),(1,1)}

Step 3: ROBDD(V)=apply(ROBDD(T), @
ROBDD(Sp,), N) \

o T = {(0,0), (0, 1), (1,0)} ‘,

Back to Stage 8.2: t; :=apply(t9,ROBDD(V), \#
N) 0 1

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)
Stage 8.3: compute ROBDD(V), where
o V={seT|3telU:s—t} 6
e T ={(0,0),(0,1),(1,0)}, ROBDD(U)=t,

Step 2: Compute ROBDD(Sp,) (0th step) \

Sp, ={(a1,az2) | Fa},dy : P(ay,az,a),ah)} :

° Sp, = {(070)7(170)7(171)} 0 1
Step 3: ROBDD(V)=apply(ROBDD(T), to
ROBDD(Sp,), N)

o T ={(0,0),(0,1),(1,0)}

Back to Stage 8.2: t; :=apply(t9,ROBDD(V),
N) 0 1

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t3...

(BN & to,t3)

o, ale]

0
to t

ta t3
Observe that t9 = t3

E#8 https://faculty.ustc.edu.cn/hu

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t5... ({EMk: $TE& to,t3)

S o, a]

to ty to t3

Observe that t9 = t3
Back to Stage 8.1: ROBDD(EG —p)=ts

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t5... ({EMk: $TE& to,t3)

S o, a]

to t1 to t3
Observe that t9 = t3
Back to Stage 8.1: ROBDD(EG —p)=t»
Sua-p = {(0,0)} = {so}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t5... ({EMk: $TE& to,t3)

S o, a]

to ty to t3

Observe that t9 = t3

Back to Stage 8.1: ROBDD(EG —p)=t»
Sec-p = {(0,0)} = {so}

Sarp = S-EG-p = {51, 52,53}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example EISEEE8)

Similarly, compute to,t5... ({EMk: $TE& to,t3)

S o, a]

to t1 to t3
Observe that t9 = t3
Back to Stage 8.1: ROBDD(EG —p)=t»
Suc-p = {(0,0)} = {so}

Sarp = S-EG—p = {51, 52,53}
So, M, so ¥ AF p

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBig

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL EiSEEE8)

Stage 8 /\&E:
@ Combining this gives an algorithm to compute the ROBDD of the set
states satisfying any CTL formula
@ This is essentially the algorithm as it is used in tools like NuSMV to
do symbolic model checking
@ In contrast to explicit state based model checking, it can deal with
very large state spaces.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1Elb: #8{7 ¢ KEERE, FITER 6.6, KHEEIE.

KB AR (FTiE): 3EEL ROBDD Hi%, E3k:
o WAL ZEARF stage, filan, AILHZE ROBDD, 5 ROBDD-CTL,
LHMHBTE, BHHES.
o {RELRNED. WHATIER. WX, #HRIH

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

	Stage 1: Boolean variables
	Stage 2: Boolean functions
	Stage 3: Decision Tree
	Stage 4: Ordered decision tree
	Stage 5: Reduced ordered decision tree (elimination)
	Stage 6: ROBDD (merging and elimination)
	Stage 7: Compute ROBDD
	Stage 7.1: Compute ROBDD()
	Stage 7.2: Compute (T,U)

	Stage 8: ROBDD-CTL
	Stage 8.1: Express CTL operators
	Stage 8.2: Compute EX, EG, EU
	Stage 8.3: Compute V={s T t U : s t}

