形式化方法导引

第 5 章 模型检测 5.2 理论

5.2.1 Fixpoint formulation | 5.2.2 BDD Algorithm

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式化方法导引

2. 理论 本节内容

往节内容

- Model checking
 - Modeling: Transition system
 - Specification: LTL, CTL
- Tool
 - NuSMV

本节内容:

- Basic idea of checking a model: fixpoint formulation
- Classical algorithms
 - Binary decisions diagram (BDD)
 - Bounded model checking (BMC)
 - Basic Inductive Techniques

2. **理论** 本节内容

往节内容

- Model checking
 - Modeling: Transition system
 - Specification: LTL, CTL
- Tool
 - NuSMV

本节内容:

- Basic idea of checking a model: fixpoint formulation
- Classical algorithms
 - Binary decisions diagram (BDD)
 - Bounded model checking (BMC)
 - Basic Inductive Techniques

2.1 Basic idea of checking a CTL formula | state space

回顾: 定义: Transition system

A transition system $\mathcal{M} = (S, \rightarrow, L)$ is

- S: a set of states
- ullet \to : a transition relation: every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function: $L: S \to \mathcal{P}(Atoms)$

定义: State space

The state space

$$S = V_1 \times \cdots \times V_n$$

is implied by the variables v_1,\ldots,v_n from finite sets V_1,\ldots,V_n

问题: How to check an LTL or CTL property?

2.1 Basic idea of checking a CTL formula | state space

回顾: 定义: Transition system

A transition system $\mathcal{M} = (S, \rightarrow, L)$ is

- ullet S: a set of states
- ullet \to : a transition relation: every $s\in S$ has some $s'\in S$ with $s\to s'$
- L: a label function: $L: S \to \mathcal{P}(Atoms)$

定义: State space

The state space

$$S = V_1 \times \cdots \times V_n$$

is implied by the variables v_1,\ldots,v_n from finite sets V_1,\ldots,V_n

问题: How to check an LTL or CTL property?

2.1 Basic idea of checking a CTL formula | state space

回顾: 定义: Transition system

A transition system $\mathcal{M} = (S, \rightarrow, L)$ is

- S: a set of states
- ullet \to : a transition relation: every $s\in S$ has some $s'\in S$ with $s\to s'$
- L: a label function: $L: S \to \mathcal{P}(\text{Atoms})$

定义: State space

The state space

$$S = V_1 \times \cdots \times V_n$$

is implied by the variables v_1,\dots,v_n from finite sets V_1,\dots,V_n

问题: How to check an LTL or CTL property?

2.1 Basic idea of checking a CTL formula | Basic Idea

问: How to check an LTL property?

答: (SPIN,...)

问题: How to check a CTL property?

基本思路

- ① Compute the set S_{ϕ} consisting of all states that satisfy ϕ • a state $s \in S$ satisfies ϕ if the set of all paths starting in s satisfies ϕ
- ② Then the property to check is $s \in S_{\phi}$

$$M, s \vDash \phi \iff s \in S_{\phi}$$

2.1 Basic idea of checking a CTL formula | Basic Idea

问: How to check an LTL property?

答: (SPIN,...)

问题: How to check a CTL property?

基本思路

- **①** Compute the set S_ϕ consisting of all states that satisfy ϕ
 - \bullet a state $s \in S$ satisfies ϕ if the set of all paths starting in s satisfies ϕ
- 2 Then the property to check is $s \in S_{\phi}$

$$M, s \vDash \phi \iff s \in S_{\phi}$$

2.1 Basic idea of checking a CTL formula | Basic Idea

问: How to compute S_{ϕ} ?

答:

1 Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg \phi}$, $S_{\phi \lor \psi}$, $S_{\phi \land \psi}$

 $m{2}$ CTL Related: $\underline{S_{ ext{EX}\phi}}$, $\underline{S_{ ext{EG}\phi}}$, $\underline{S_{ ext{E}[\phi ext{U}\psi]}}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- \bullet $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $S_{\neg \phi} = \{ s \in S \mid s \not\in S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $\bullet \ S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $S_{\neg \phi} = \{ s \in S \mid s \notin S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $\bullet \ S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- ullet For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $S_{\neg \phi} = \{ s \in S \mid s \notin S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $\bullet \ S_{\neg \phi} = \{ s \in S \mid s \not\in S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $\bullet \ S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $\bullet \ S_{\neg \phi} = \{ s \in S \mid s \not\in S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $\bullet \ S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Basic Idea

- $S_{\perp} = \emptyset$
- $S_{\top} = S$
- For an atomic proposition p:

$$S_p = \{ s \in S \mid p(s) \}$$

- $\bullet \ S_{\neg \phi} = \{ s \in S \mid s \not\in S_{\phi} \}$
- $\bullet \ S_{\phi \vee \psi} = S_{\phi} \cup S_{\psi}$
- $S_{\phi \wedge \psi} = S_{\phi} \cap S_{\psi}$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

Compute $S_{\mathrm{EX}\phi}$

A state s satisfies $EX \phi$, if there exists a path starting in s such that ϕ holds in the next state of that path. So:

$$S_{\mathrm{EX}\phi} = \{s \in S \mid \exists t \in S_\phi : s \to t\}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

EG and EU are harder: they deal with properties of paths beyond a fixed finite part of the path

思路: Fixpoint formulation

Consider the first n steps for increasing n, until the corresponding set does not change anymore.

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

回顾: $EG\phi$

There *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ϕ globally holds, that is, ϕ holds in s_i for all i

定义: T_n

For $n=0,1,2,\ldots$, let $T_n=$ set of states s_0 , for which there exists a path $s_0\to s_1\to s_2\cdots$ on which ϕ holds for all s_i with $i\le n$

Then $T_0 = S_{\phi}$, and for all $n = 0, 1, \ldots$, we have

$$T_{n+1} = T_n \cap \{ s \in S_\phi \mid \exists t \in T_n : s \to t \}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

回顾: $EG\phi$

There *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ϕ globally holds, that is, ϕ holds in s_i for all i

定义: T_n

For $n=0,1,2,\ldots$, let $T_n=$ set of states s_0 , for which there exists a path $s_0\to s_1\to s_2\cdots$ on which ϕ holds for all s_i with $i\le n$

Then $T_0 = S_{\phi}$, and for all $n = 0, 1, \ldots$, we have

$$T_{n+1} = T_n \cap \{ s \in S_\phi \mid \exists t \in T_n : s \to t \}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EX}\phi}, S_{\mathrm{EG}\phi}, S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

回顾: $EG\phi$

There exists a path $s_0 \to s_1 \to s_2 \cdots$ on which ϕ globally holds, that is, ϕ holds in s_i for all i

定义: T_n

For $n=0,1,2,\ldots$, let $T_n=$ set of states s_0 , for which there exists a path $s_0\to s_1\to s_2\cdots$ on which ϕ holds for all s_i with $i\le n$

Then $T_0 = S_{\phi}$, and for all $n = 0, 1, \ldots$, we have

$$T_{n+1} = T_n \cap \{ s \in S_\phi \mid \exists t \in T_n : s \to t \}$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EG}\phi}$

Compute $S_{\mathrm{EG}\phi}$ by T_n (Fixpoint formulation)

$$T_0:=S_\phi;\ n:=0;$$
 repeat
$$T_{n+1}:=T_n\cap\{s\in S_\phi\mid \exists t\in T_n:s\to t\};\ n=n+1;$$
 until $T_n=T_{n-1}$

The loop terminates, since

- the set T_n is finite
- $|T_n|$ decreases in every step

After running this algorithm we have $S_{\text{EG}\phi} = T_n$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{EG}\phi}$

Compute $S_{\mathrm{EG}\phi}$ by T_n (Fixpoint formulation)

$$T_0:=S_\phi;\ n:=0;$$
 repeat
$$T_{n+1}:=T_n\cap\{s\in S_\phi\mid \exists t\in T_n:s\to t\};\ n=n+1;$$
 until $T_n=T_{n-1}$

The loop terminates, since

- the set T_n is finite
- $|T_n|$ decreases in every step

After running this algorithm we have $S_{\text{EG}\phi} = T_n$

Compute $S_{\mathrm{EG}\phi}$ by T_n (Fixpoint formulation)

$$T_0:=S_\phi;\ n:=0;$$
 repeat
$$T_{n+1}:=T_n\cap\{s\in S_\phi\mid \exists t\in T_n:s\to t\};\ n=n+1;$$
 until $T_n=T_{n-1}$

The loop terminates, since

- ullet the set T_n is finite
- $|T_n|$ decreases in every step

After running this algorithm we have $S_{\mathrm{EG}\phi}=T_n$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]_{\mathrm{I}}}$

 s_0 satisfies $E[\phi\ U\ \psi]$ means: there *exists* n such that P_n holds, for

• $P_n =$ there *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ψ holds in s_n , and ϕ holds in s_i for all i < n

定义: U_n

 $U_n = \text{set of states } s_0 \text{ for which } P_i \text{ holds for } \textit{some } i \leq n$

Then $U_0 = S_{\psi}$, and for all n=0,1,..., we have

$$U_{n+1} = U_n \cup \{ s \in S_\phi \mid \exists t \in U_n : s \to t \}$$

Compute $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$ by U_n

$$U_0 := S_{\psi}; n := 0$$

$$U_{n+1} := U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}; \ n = n+1;$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

 s_0 satisfies $E[\phi\ U\ \psi]$ means: there *exists* n such that P_n holds, for

• $P_n =$ there *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ψ holds in s_n , and ϕ holds in s_i for all i < n

定义: U_n

 $U_n = \text{set of states } s_0 \text{ for which } P_i \text{ holds for } \textit{some } i \leq n$

Then $U_0 = S_{\psi}$, and for all n=0,1,..., we have

$$U_{n+1} = U_n \cup \{ s \in S_\phi \mid \exists t \in U_n : s \to t \}$$

Compute $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$ by U_n

$$U_0 := S_{\psi}; n := 0;$$

repeat

$$U_{n+1} := U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}; \ n = n+1;$$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

 s_0 satisfies $E[\phi\ U\ \psi]$ means: there *exists* n such that P_n holds, for

• $P_n =$ there *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ψ holds in s_n , and ϕ holds in s_i for all i < n

定义: U_n

 $U_n = \text{set of states } s_0 \text{ for which } P_i \text{ holds for } \textit{some } i \leq n$

Then $U_0 = S_{\psi}$, and for all n=0,1,..., we have

$$U_{n+1} = U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}$$

Compute $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$ by U_n

$$U_0 := S_{\psi}; n := 0;$$

$$U_{n+1} := U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}; \ n = n+1;$$
 until $U_n = U_{n-1}$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

 s_0 satisfies $E[\phi\ U\ \psi]$ means: there *exists* n such that P_n holds, for

• $P_n =$ there *exists* a path $s_0 \to s_1 \to s_2 \cdots$ on which ψ holds in s_n , and ϕ holds in s_i for all i < n

定义: U_n

 $U_n = \text{set of states } s_0 \text{ for which } P_i \text{ holds for } \textit{some } i \leq n$

Then $U_0 = S_{\psi}$, and for all n=0,1,..., we have

$$U_{n+1} = U_n \cup \{s \in S_\phi \mid \exists t \in U_n : s \to t\}$$

Compute $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$ by U_n

$$U_0 := S_{\psi}; n := 0;$$
 repeat

$$U_{n+1} := U_n \cup \{ s \in S_\phi \mid \exists t \in U_n : s \to t \}; \ n = n+1;$$
 until $U_n = U_{n-1}$

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$

Concluding,

- For an arbitrary CTL formula ϕ we saw how to compute the set S_{ϕ} , being the set of states that satisfy ϕ
 - Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg\phi}$, $S_{\phi\vee\psi}$, $S_{\phi\wedge\psi}$ • CTL Related: $S_{\mathrm{EX}\phi}$, $S_{\mathrm{EG}\phi}$, $S_{\mathrm{E}[\phi U\psi]}$
- In this computation we *only* needed the computation of the sets $T \cup U$, $T \cap U$, complements, and $\{s \in T \mid \exists t \in U : s \to t\}$, for given sets T, U

问题: In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]_l}$

Concluding,

- For an arbitrary CTL formula ϕ we saw how to compute the set S_{ϕ} , being the set of states that satisfy ϕ
 - $\bullet \ \underline{\underline{\mathsf{Basics}}} \colon \ S_{\bot}, \ S_{\top}, \ S_p, \ S_{\neg\phi}, \ S_{\phi \lor \psi}, \ S_{\phi \land \psi}$
 - \bullet CTL Related: $S_{\mathrm{EX}\phi}$, $S_{\mathrm{EG}\phi}$, $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$
- In this computation we *only* needed the computation of the sets $T \cup U$, $T \cap U$, complements, and $\{s \in T \mid \exists t \in U : s \to t\}$, for given sets T, U

问题: In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]_{\mathrm{f}}}$

Concluding,

- For an arbitrary CTL formula ϕ we saw how to compute the set S_{ϕ} , being the set of states that satisfy ϕ
 - Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg\phi}$, $S_{\phi\vee\psi}$, $S_{\phi\wedge\psi}$ • CTL Related: $S_{\mathrm{EX}\phi}$, $S_{\mathrm{EG}\phi}$, $S_{\mathrm{E}[\phi U\psi]}$
- In this computation we *only* needed the computation of the sets $T \cup U$, $T \cap U$, complements, and $\{s \in T \mid \exists t \in U : s \to t\}$, for given sets T, U

问题: In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S

2.1 Basic idea of checking a CTL formula | Computing $S_{\mathrm{E}[\phi\mathrm{U}\psi]_{\mathrm{f}}}$

Concluding,

- For an arbitrary CTL formula ϕ we saw how to compute the set S_{ϕ} , being the set of states that satisfy ϕ
 - Basics: S_{\perp} , S_{\top} , S_p , $S_{\neg\phi}$, $S_{\phi\vee\psi}$, $S_{\phi\wedge\psi}$
 - \bullet CTL Related: $S_{\mathrm{EX}\phi}$, $S_{\mathrm{EG}\phi}$, $S_{\mathrm{E}[\phi\mathrm{U}\psi]}$
- In this computation we *only* needed the computation of the sets $T \cup U$, $T \cap U$, complements, and $\{s \in T \mid \exists t \in U : s \to t\}$, for given sets T, U

问题: In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S

2.2 Binary decisions diagram (BDD)

回顾:

- In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S
 - Key words: state spaces

Now we study BDD

- a method of symbolic model checking.
- adopted by NuSMV

基本思路: Firstly, investigate desired requirements for alternative representations for boolean functions

2.2 Binary decisions diagram (BDD)

回顾:

- In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S
 - Key words: state spaces

Now we study BDD

- a method of symbolic model checking.
- adopted by NuSMV

基本思路: Firstly, investigate desired requirements for alternative representations for boolean functions

2.2 Binary decisions diagram (BDD)

回顾:

- In explicit state based model checking the complexity of this algorithm will be at least the order of the size of the state space S
 - Key words: state spaces

Now we study BDD

- a method of symbolic model checking.
- adopted by NuSMV

基本思路: Firstly, investigate desired requirements for alternative representations for boolean functions

2.2 Binary decisions diagram (BDD) | Outline

- Outline of a BDD algorithm
- Stage 1: Boolean variables
- Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- 8 Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

第 1 阶: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular *boolean* or *integers with a restricted range*, like

VAR

a: 1..100;

We may assume we only have boolean variables

- by representing variables in binary notation, e.g., using 7 bits for the range 1..100,
- Atomic propositions, e.g., a < b + 5, can be expressed in binary notation too

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

第 1 阶: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular *boolean* or *integers with a restricted range*, like

VAR

a: 1..100;

We may assume we only have boolean variables

- by representing variables in *binary* notation, e.g., using *7 bits* for the range 1..100,
- Atomic propositions, e.g., a < b + 5, can be expressed in binary notation too

2.2 Binary decisions diagram (BDD) | Stage 1: Boolean variables

第 1 阶: Boolean Variables:

In NuSMV, the variable types are finite sets, in particular *boolean* or *integers with a restricted range*, like

VAR

a: 1..100;

We may assume we only have boolean variables

- by representing variables in *binary* notation, e.g., using 7 *bits* for the range 1..100,
- Atomic propositions, e.g., a < b + 5, can be expressed in binary notation too

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

第 2 阶: Boolean Functions:

Write $B = \{0, 1\}$, then for n boolean variables the state space is $S = B^r$

We want to represent and manipulate *subsets* of $S=B^n$

A subset $U \subseteq B^n$ can be identified by a **boolean function**

$$f_U:B^n\to B$$

$$s \in U \leftrightarrow f_U(s) = 1$$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

第 2 阶: Boolean Functions:

Write $B = \{0, 1\}$, then for n boolean variables the state space is $S = B^n$

We want to represent and manipulate *subsets* of $S = B^n$

A subset $U \subseteq B^n$ can be identified by a **boolean function**

$$f_U:B^n\to B$$

$$s \in U \leftrightarrow f_U(s) = 1$$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

第 2 阶: Boolean Functions:

Write $B = \{0, 1\}$, then for n boolean variables the state space is $S = B^n$

We want to represent and manipulate *subsets* of $S=B^n$

A subset $U \subseteq B^n$ can be identified by a **boolean function**

$$f_U:B^n\to B$$

$$s \in U \leftrightarrow f_U(s) = 1$$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

第 2 阶: Boolean Functions:

Write $B = \{0, 1\}$, then for n boolean variables the state space is $S = B^n$

We want to represent and manipulate *subsets* of $S=B^n$

A subset $U \subseteq B^n$ can be identified by a **boolean function**

$$f_U:B^n\to B$$

$$s \in U \leftrightarrow f_U(s) = 1$$

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including \neg , \lor , \land should be *efficiently* computable
 - Example: ⊥
 - Counterexample: T
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a data structure for boolean functions — Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - Example: ⊥
 - Counterexample: T
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a data structure for boolean functions — Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including \neg , \lor , \land should be *efficiently* computable
 - Example: ⊥
 - Counterexample: ⊤
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a *data structure* for *boolean functions* —Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - Example: ⊥
 - Counterexample: ⊤
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a *data structure* for *boolean functions* —Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - Example: ⊥
 - Counterexample: ⊤
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a data structure for boolean functions — Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - Example: ⊥
 - Counterexample: ⊤
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a data structure for boolean functions — Decision Tree

2.2 Binary decisions diagram (BDD) | Stage 2: Boolean functions

问题: We want to *represent* and *manipulate* **boolean functions** efficiently, more precisely:

- Every boolean function has a unique representation (见后: 问题 2)
 - Counterexample: $p \wedge (p \wedge q)$ and $q \wedge p$
- All operations needs for CTL model checking, including ¬, ∨, ∧ should be *efficiently* computable
 - Example: ⊥
 - Counterexample: ⊤
- Many boolean functions have an efficient representation
 - 问: Why not for all boolean functions?
 - 答: It is unavoidable that most of the boolean functions have untractable (困难的) representation

答案: BDD provide a data structure for boolean functions —Decision Tree

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- 3 Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶: Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a leaf has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶∶ Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a leaf has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶∶ Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a leaf has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶∶ Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a leaf has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶: Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a *leaf* has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

第 3 阶: Decision Tree:

定义: A decision tree is a binary tree in which

- Every node is labeled by a boolean variable
- Every *leaf* is labeled by 1 or 0, representing true or false respectively

- Start at the root
- For any node: go to the *left* if the corresponding variable is true; otherwise, go to the right
- Repeat until a *leaf* has been reached
- If the leaf is 1 then the result is true, otherwise false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an if-then-else

Consider our example for the values

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an if-then-else

Consider our example for the values p: true

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an if-then-else

Consider our example for the values

p: true

q: false

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an if-then-else

Consider our example for the values

p: true

q: false

r: true

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

Hence every node is interpreted as an if-then-else

Consider our example for the values

p: true

q: false

r: true

Hence, the result is 0

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 1: Does every boolean function on finitely many boolean variables have a representation as decision tree?

答: Yes: it can be defined by a truth table, and any truth table on n variables having 2^n lines can be represented as a decision tree with 2^n leaves

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 1: Does every boolean function on finitely many boolean variables have a representation as decision tree?

答: Yes: it can be defined by a $truth\ table$, and any truth table on n variables having 2^n lines can be represented as a decision tree with 2^n leaves

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

问题 1: Does every boolean function on finitely many boolean variables have a representation as decision tree?

答: Yes: it can be defined by a $truth\ table$, and any truth table on n variables having 2^n lines can be represented as a decision tree with 2^n leaves

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

<u>问题 2</u>: Does every boolean function on finitely many boolean variables have a *unique representation* as decision tree?

答: No

- 问题 2 的一种解决方法: Observe that in one case p is on top of q, while in the other case q is on top of p
 - Fix an order < on the boolean variables, like p < q

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

<u>问题 2</u>: Does every boolean function on finitely many boolean variables have a *unique representation* as decision tree?

答: No

问题 2 的一种解决方法: Observe that in one case p is on top of q, while in the other case q is on top of p

• Fix an order < on the boolean variables, like p < q

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

<u>问题 2</u>: Does every boolean function on finitely many boolean variables have a *unique representation* as decision tree?

答: No

- 问题 2 的一种解决方法: Observe that in one case p is on top of q, while in the other case q is on top of p
 - ullet Fix an order < on the boolean variables, like p < q

2.2 Binary decisions diagram (BDD) | Stage 3: Decision Tree

<u>问题 2</u>: Does every boolean function on finitely many boolean variables have a *unique representation* as decision tree?

答: No

问题 2 的一种解决方法: Observe that in one case p is on top of q, while in the other case q is on top of p

ullet Fix an order < on the boolean variables, like p < q

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

第 4 阶: Ordered decision tree: An ordered decision tree with respect to < is a decision tree such that if node n is on top of node n', then

So the left one is ordered with respect to p < q, the *right one is not*

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

第 4 阶: Ordered decision tree: An ordered decision tree with respect to < is a decision tree such that if node n is on top of node n', then

So the left one is ordered with respect to p < q, the *right one is not*

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

问题 3: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in T

Then T and T are two ordered decision trees representing the same boolean function

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

问题 3: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in T

Then T and T are two ordered decision trees representing the same boolean function

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

问题 3: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in T

Then T and T are two ordered decision trees representing the same boolean function

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

问题 3: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in T

Then T and T are two ordered decision trees representing the same boolean function

2.2 Binary decisions diagram (BDD) | Stage 4: Ordered decision tree

<u>问题 3</u>: Fixing the order < on the boolean variables, does *every* boolean function have a *unique* representation as an *ordered* decision tree with respect to <?

答: Still no:

Counterexample: Let T be any ordered decision tree, and let p be a variable less than the variables in T

Then T and T are two ordered decision trees representing the same boolean function

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
 - Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

第 5 阶: Reduced ordered decision tree:

An ordered decision tree on which no elimination is possible is called a reduced ordered decision tree

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

第 5 阶: Reduced ordered decision tree:

An ordered decision tree on which no elimination is possible is called a reduced ordered decision tree

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

第 5 阶: Reduced ordered decision tree:

An ordered decision tree on which no elimination is possible is called a *reduced ordered decision tree*

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

定理

For a fixed order < on boolean variables, every boolean function has a *unique* representation as a *reduced ordered decision tree*

证明过程: 略

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

例: For the boolean function defined by the formula $p \wedge \neg q$, for the order p < q the ordered decision tree reflecting the truth table is

Applying elimination on the right q yields

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

例: For the boolean function defined by the formula $p \wedge \neg q$, for the order p < q the ordered decision tree reflecting the truth table is

Applying elimination on the right q yields

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

例: For the boolean function defined by the formula $p \wedge \neg q$, for the order p < q the ordered decision tree reflecting the truth table is

Applying elimination on the right q yields

2.2 Binary decisions diagram (BDD) \mid Stage 5: Reduced ordered decision tree (elimination)

例: For the boolean function defined by the formula $p \wedge \neg q$, for the order p < q the ordered decision tree reflecting the truth table is

Applying elimination on the right q yields

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams

- A particular example of Binary Decisions Diagrams (BDDs)
- uniquely represent boolean functions by merging and elimination

The formula $(p \wedge q) \vee r$ describes the boolean function that yields true if both p and q are true, or r is true

With respect to the order p < q < r its ROBDD is

Note:

- Every node represents a boolean function itself.
- All nodes of a ROBDD represent *distinct* boolean functions.

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams

- A particular example of Binary Decisions Diagrams (BDDs)
- uniquely represent boolean functions by merging and elimination

The formula $(p \wedge q) \vee r$ describes the boolean function that yields true if both p and q are true, or r is true

With respect to the order p < q < r its ROBDD is

Note:

- Every node represents a boolean function itself.
- All nodes of a ROBDD represent *distinct* boolean functions.

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

第 6 阶: ROBDD: Reduced Ordered Binary Decisions Diagrams

- A particular example of Binary Decisions Diagrams (BDDs)
- uniquely represent boolean functions by merging and elimination

The formula $(p \wedge q) \vee r$ describes the boolean function that yields true if both p and q are true, or r is true

With respect to the order p < q < r its ROBDD is

Note:

- Every node represents a boolean function itself.
- All nodes of a ROBDD represent *distinct* boolean functions.

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < q < r the ROBDD of $p \leftrightarrow q \leftrightarrow r$ is

yields *true* if and only if the *number* of variables that is false, is *even*

Alternative notation to avoid curved arrows: use *solid* arrows for true-branches and *dashed* arrows for false-branches

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

Merge and share: For p < q < r the ROBDD of $p \leftrightarrow q \leftrightarrow r$ is

yields *true* if and only if the *number* of variables that is false, is *even*

Alternative notation to avoid curved arrows: use *solid* arrows for true-branches and *dashed* arrows for false-branches

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问: 为什么要 merging?

答: 2n-1 nodes vs 2^n-1 nodes

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问: 为什么要 merging?

答: 2n-1 nodes vs 2^n-1 nodes

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问: 为什么要 merging?

答: 2n-1 nodes vs 2^n-1 nodes

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

问题 4: 如何选择 order? The ROBDD of $(p_1 \lor q_1) \land (p_2 \lor q_2) \land (p_3 \lor q_3)$ with respect to

$$p_1 < q_1 < p_2 < q_2 < p_3 < q_3$$
 is:

w.r.t. $p_1 < p_2 < p_3 < q_1 < q_2 < q_3$ it is:

where all ? nodes represent distinct boolean functions on q_1, q_2, q_3 , so cannot be shared

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

$$(p_1 \vee q_1) \wedge (p_2 \vee q_2) \wedge \cdots \wedge (p_3 \vee q_3)$$

with respect to the order

- $p_1 < q_1 < p_2 < q_2 < \cdots < p_n < q_n$: has exactly 2n nodes
- $p_1 < p_2 < \cdots < p_n < q_1 < q_2 < \cdots < q_n$: has more than 2^n nodes

So distinct orders may result in ROBDDs of sizes with an exponential gap in between

Heuristic

choose the order in such a way that variables close to each other in the formula are also close in the order

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

$$(p_1 \vee q_1) \wedge (p_2 \vee q_2) \wedge \cdots \wedge (p_3 \vee q_3)$$

with respect to the order

- $p_1 < q_1 < p_2 < q_2 < \cdots < p_n < q_n$: has exactly 2n nodes
- $p_1 < p_2 < \cdots < p_n < q_1 < q_2 < \cdots < q_n$: has more than 2^n nodes

So *distinct orders* may result in ROBDDs of sizes with an *exponential* gap in between

Heuristic

choose the order in such a way that variables close to each other in the formula are also close in the order

2.2 Binary decisions diagram (BDD) | Stage 6: ROBDD (merging and elimination)

More general, the ROBDD of

$$(p_1 \vee q_1) \wedge (p_2 \vee q_2) \wedge \cdots \wedge (p_3 \vee q_3)$$

with respect to the order

- $p_1 < q_1 < p_2 < q_2 < \cdots < p_n < q_n$: has exactly 2n nodes
- $p_1 < p_2 < \cdots < p_n < q_1 < q_2 < \cdots < q_n$: has more than 2^n nodes

So *distinct orders* may result in ROBDDs of sizes with an *exponential* gap in between

Heuristic

choose the order in such a way that variables close to each other in the formula are also close in the order

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to *compute* the Reduced Ordered Binary Decision Diagram (*ROBDD*) of a given formula?

问题 5: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the size of this decision tree is always exponential, so unfeasible

解决方法: operate directly on the formula ϕ , instead of decision tree

- false or true, or
- p for a variable p, or
- $\bullet \neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to *compute* the Reduced Ordered Binary Decision Diagram (ROBDD) of a given formula?

问题 5: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the *size* of this *decision tree* is always *exponential*, so *unfeasible*

解决方法: operate directly on the formula ϕ , instead of decision tree

- false or true, or
- \bullet p for a variable p, or
- $\bullet \neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to *compute* the Reduced Ordered Binary Decision Diagram (ROBDD) of a given formula?

问题 5: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the size of this decision tree is always exponential, so unfeasible

解决方法: operate directly on the formula ϕ , instead of decision tree

- false or true, or
- \bullet p for a variable p, or
- $\bullet \neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to *compute* the Reduced Ordered Binary Decision Diagram (ROBDD) of a given formula?

问题 5: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the *size* of this *decision tree* is always *exponential*, so *unfeasible*

解决方法: operate directly on the formula ϕ , instead of decision tree

- false or true, or
- p for a variable p, or
- $\bullet \neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

第 7 阶: How to *compute* the Reduced Ordered Binary Decision Diagram (ROBDD) of a given formula?

问题 5: The methods in the former stages should *not* be used to compute ROBDDs in *practice*

• since the size of this decision tree is always exponential, so unfeasible

解决方法: operate directly on the formula ϕ , instead of decision tree

- false or true, or
- ullet p for a variable p, or
- $\bullet \neg \phi$, or
- $\phi \diamond \psi$ for $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula $\underline{\phi}$ will be constructed recursively according this recursive structure of the formulas: •Basic Idea

• $ROBDD(\mathbf{F})=0$, $ROBDD(\mathbf{T})=1$

- $ROBDD(p) = \frac{1}{2}$
- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow \mathbf{F})$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula ϕ will be constructed recursively according this recursive structure of the formulas: Basic Idea

- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow \mathbf{F})$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula $\underline{\phi}$ will be constructed recursively according this recursive structure of the formulas: \bullet Basic Idea

- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow \mathbf{F})$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula $\underline{\phi}$ will be constructed recursively according this recursive structure of the formulas: \bullet Basic Idea

- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow \mathbf{F})$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.1: Compute $ROBDD(\phi)$. So, the ROBDD $ROBDD(\phi)$ of a formula $\underline{\phi}$ will be constructed recursively according this recursive structure of the formulas: \bullet Basic Idea

- $ROBDD(\neg \phi) = ROBDD(\phi \rightarrow \mathbf{F})$
- $ROBDD(\phi \diamond \psi) = apply(ROBDD(\phi), ROBDD(\psi), \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

续: So it remains to find an algorithm apply having two ROBDDs and a binary operation $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ as input, and having the desired ROBDD as its output

缩写: p(T, U)

the BDD having root p for which the left branch is T and the right branch is U

「缩写: ◊(T,U)

 $apply(T, U, \diamond)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

续: So it remains to find an algorithm apply having two ROBDDs and a binary operation $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ as input, and having the desired ROBDD as its output

缩写: p(T,U)

the BDD having root p for which the left branch is ${\cal T}$ and the right branch is ${\cal U}$

缩写: $\diamond(T,U)$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

续: So it remains to find an algorithm *apply* having two ROBDDs and a binary operation $\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ as input, and having the desired ROBDD as its output

缩写: p(T,U)

the BDD having root \boldsymbol{p} for which the left branch is T and the right branch is \boldsymbol{U}

缩写: ◊(T, U)

 $apply(T, U, \diamond)$

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* \diamond (T,U) recursively for cases:

- ① if $T, U \in \{\mathsf{T}, \mathsf{F}\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.
 - $\textbf{ 1} \quad p \text{ is on top of both } T \text{ and } U \quad \textbf{ Petails}$

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

- 2 p is on top of T but does not occur in U Details
 - $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$
- 3 p is on top of U but does not occur in T ightharpoonup Details

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* $\diamond(T, U)$ recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

- 2 p is on top of T but does not occur in U Details
 - $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$
- 3 p is on top of U but does not occur in T lacktriangle

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* \diamond (T, U) recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{T, F\}$: let p be the smallest variable occurring in T and U.

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

2 p is on top of T but does not occur in U • Details

$$\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$$

3 p is on top of U but does not occur in T lacktriangle

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* \diamond (T,U) recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

- 2 p is on top of T but does not occur in U Details
 - $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$
- 3 p is on top of U but does not occur in T lacksquare

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* \diamond (T, U) recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.
 - $\textbf{ 0} \ \ p \ \text{is on top of both} \ T \ \text{and} \ U \ \textbf{ } \ \textbf$

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

- $oldsymbol{\emptyset}$ p is on top of T but does not occur in U $oldsymbol{\bullet}$ Details
 - $\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$
- 3 p is on top of U but does not occur in T lacksquare Details

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* $\diamond(T, U)$ recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

2 p is on top of T but does not occur in U Details

$$\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$$

3 p is on top of U but does not occur in T Details

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

Stage 7.2: *Compute* \diamond (T,U) recursively for cases:

- **1** if $T, U \in \{T, F\}$: return value according the *truth table of* \diamond
- ② if T, U not both in $\{\mathbf{T}, \mathbf{F}\}$: let p be the smallest variable occurring in T and U.
 - $oldsymbol{0}$ p is on top of both T and U $oldsymbol{Details}$

$$\diamond(p(T_1, T_2), p(U_1, U_2)) = p(\diamond(T_1, U_1), \diamond(T_2, U_2))$$

2 p is on top of T but does not occur in U Details

$$\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)), \text{ if } p \text{ does not occur in } U$$

3 p is on top of U but does not occur in T • Details

$$\diamond(T, p(U_1, U_2)) = p(\diamond(T, U_1), \diamond(T, U_2)), \text{ if } p \text{ does not occur in } T$$

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of both T and U

$$\diamond(p(T_1,T_2),p(U_1,U_2)) = p(\diamond(T_1,U_1),\diamond(T_2,U_2))$$

(1) Replace

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of T but does not occur in U

$$\diamond(p(T_1,T_2),U)=p(\diamond(T_1,U),\diamond(T_2,U)),$$
 if p does not occur in U

(2) If p not in U, then Replace

bν

2.2 Binary decisions diagram (BDD) | Stage 7: Compute ROBDD

If p is on top of U but does not occur in T

$$\diamond(T,p(U_1,U_2))=p(\diamond(T,U_1),\diamond(T,U_2)), \text{ if } p \text{ does not occur in } T$$

(3)If p not in T, then replace

bν

2.2 Binary decisions diagram (BDD) | BDD algorithm example

例子: We choose the formula

$$(p \to r) \land (q \leftrightarrow (r \lor p))$$

and the order p < q < r. in a picture:

2.2 Binary decisions diagram (BDD) | BDD algorithm example

例子: We choose the formula

$$(p \to r) \land (q \leftrightarrow (r \lor p))$$

and the order p < q < r. in a picture:

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

回顾:(2) If p not in U, then Replace

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

回顾:(3)If p not in T, then replace

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Left argument:

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

回顾:(3)If p not in T, then replace

bγ

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument:

回顾:(3)If p not in T, then replace

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

回顾:(2) If p not in U, then Replace

by

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Right argument: (续上页):

2.2 Binary decisions diagram (BDD) | BDD algorithm example

Now we have computed the ROBDDs of both arguments of \land in the original formula, and it remains to apply \land on these two

2.2 Binary decisions diagram (BDD) | BDD algorithm example

2.2 Binary decisions diagram (BDD) \mid BDD algorithm example

2.2 Binary decisions diagram (BDD) | BDD algorithm example

2.2 Binary decisions diagram (BDD) | BDD algorithm example

2.2 Binary decisions diagram (BDD) | BDD algorithm example

2.2 Binary decisions diagram (BDD) | BDD algorithm example

We computed the ROBDD of the formula

$$(p \to r) \land (q \leftrightarrow (r \lor p))$$

w.r.t the order p < q < r.

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

Here,
$$f_n(s) = 1 \leftrightarrow s \in T_n$$

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking ▶ Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., $ROBDD(f_n)$, until $ROBDD(f_n)$ = $ROBDD(f_{n-1})$

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute ROBDD $(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL

第 8 阶: CTL model checking by ROBDDs

How can we do CTL model checking by *representing large sets of states* by ROBDDs?

- 原先算法 (Fixpoint): the abstract algorithm for CTL model checking
 Basic Idea
- 当前思路: Iteratively update ROBDD of a boolean function, e.g., ROBDD(f_n), until ROBDD(f_n)=ROBDD(f_{n-1})

例: Compute $S_{\mathrm{EG}\phi}$ by f_n

- For convenience, define $ROBDD(T_n) \equiv ROBDD(f_n)$
- 新问题: How to compute $\mathsf{ROBDD}(T_n \cap \{s \in S_\phi \mid \exists t \in T_n : s \to t\})$?

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.1

All CTL operators can be expressed in

- **1** boolean operators $(\neg, \land, \rightarrow, \lor)$ and
 - solved in stage 7 → Stage 7.1 → Stage 7.2
- EX, EG, EU
 - to be solved in Stage 8.2 Stage 8.2

回顾

$$\neg AF \phi \equiv EG \neg \phi$$

$$\neg EF \phi \equiv AG \neg \phi$$

$$\neg AX \phi \equiv EX \neg \phi$$

$$AF \phi \equiv A[\top U \phi]$$

$$EF \phi \equiv E[\top U \phi]$$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.1

All CTL operators can be expressed in

- **1** boolean operators $(\neg, \land, \rightarrow, \lor)$ and
 - solved in stage 7 → Stage 7.1
- 2 EX, EG, EU
 - to be solved in Stage 8.2 → Stage 8.2

回顾:

$$\neg AF \phi \equiv EG \neg \phi$$
$$\neg EF \phi \equiv AG \neg \phi$$
$$\neg AX \phi \equiv EX \neg \phi$$
$$AF \phi \equiv A[\top U \phi]$$
$$EF \phi \equiv E[\top U \phi]$$

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- 2 Stage 2: Boolean functions
- Stage 3: Decision Tree
- 4 Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.2

For *computing* <u>EX</u>, <u>EG</u>, <u>EU</u>, we only needed the building blocks:

- set
- union ∪, intersection ∩
- computing

$$\{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T, U

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.2

For *computing* <u>EX</u>, <u>EG</u>, <u>EU</u>, we only needed the building blocks:

- set
- union \cup , intersection \cap
- computing

$$\{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T, U

基本思路: Sets are described by **boolean functions**: an element is in the set if and only if the boolean function yields true $f_U: B^n \to B$

$$s \in U \leftrightarrow f_U(s) = 1$$

 $ROBDD(U) \equiv ROBDD(f_U(s)), \text{ a.k.a., } ROBDD(S_\phi) \equiv ROBDD(\phi)$

Stage 8.2

For *computing* <u>EX</u>, <u>EG</u>, <u>EU</u>, we only needed the building blocks:

- set
- union \cup , intersection \cap
- computing

$$\{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T, U

基本思路: Union and intersection correspond to \lor and \land , for which we already gave an algorithm for ROBDD representations

- $S_{\phi \lor \psi} = S_{\phi} \cup S_{\psi}$, $S_{\phi \land \psi} = S_{\phi} \cap S_{\psi}$
- $ROBDD(S_{\phi} \cup S_{\psi}) = ROBDD(S_{\phi \lor \psi}) \equiv ROBDD(\phi \lor \psi)$
- ROBDD $(S_{\phi} \cap S_{\psi}) = \text{ROBDD}(S_{\phi \wedge \psi}) \equiv \text{ROBDD}(\phi \wedge \psi)$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.2

For *computing* <u>EX</u>, <u>EG</u>, <u>EU</u>, we only needed the building blocks:

- set
- union \cup , intersection \cap
- computing

$$\{s \in T \mid \exists t \in U : s \to t\}$$

for a given transition relation \rightarrow and given sets T, U

• to be solve in *Stage 8.3* • Stage 8.3

2.2 Binary decisions diagram (BDD) | Outline

Outline of a BDD algorithm

- Stage 1: Boolean variables
- Stage 2: Boolean functions
- Stage 3: Decision Tree
- Stage 4: Ordered decision tree
- 5 Stage 5: Reduced ordered decision tree (elimination)
- 6 Stage 6: ROBDD (merging and elimination)
- Stage 7: Compute ROBDD
 - Stage 7.1: Compute $ROBDD(\phi)$
 - Stage 7.2: Compute $\diamond(T, U)$
- Stage 8: ROBDD-CTL
 - Stage 8.1: Express CTL operators
 - Stage 8.2: Compute EX, EG, EU
 - Stage 8.3: Compute $V = \{s \in T \mid \exists t \in U : s \to t\}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

准备 1

Write a'_i as shorthand for $next(a_i)$, and assume

- $s \equiv (a_1, \dots, a_n)$
- $t \equiv (a'_1, \dots, a'_n)$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

准备 2

The transition relation \rightarrow is given by a boolean function (P) on $a_1, \ldots, a_n, a'_1, \ldots, a'_n$, again in ROBDD representation

$$P(a_1,\ldots,a_n,a_1',\ldots,a_n') \Leftrightarrow P_1 \wedge P_2$$

where

•
$$P_1 = (a_1, \dots, a_n) \to (a'_1, \dots, a'_n) \qquad \sim \qquad s \to t$$

•
$$P_2 = (a'_1, \dots, a'_n) \in U$$
 $\sim t \in U$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

Step 1: Compute ROBDD(P)

$$P(a_1,\ldots,a_n,a_1',\ldots,a_n') \Leftrightarrow P_1 \wedge P_2$$

where

•
$$P_1 = (a_1, \dots, a_n) \to (a'_1, \dots, a'_n) \qquad \sim \qquad s \to t$$

•
$$P_2 = (a'_1, \dots, a'_n) \in U$$
 $\sim t \in U$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

Step 1: Compute ROBDD(P)

$$P(a_1,\ldots,a_n,a_1',\ldots,a_n') \Leftrightarrow P_1 \wedge P_2$$

where

•
$$P_1 = (a_1, \dots, a_n) \to (a'_1, \dots, a'_n) \qquad \sim \qquad s \to t$$

ullet ROBDD (P_1) was given by translation relation o

•
$$P_2 = (a'_1, \dots, a'_n) \in U$$
 $\sim t \in U$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

Step 1: Compute ROBDD(P)

$$P(a_1,\ldots,a_n,a_1',\ldots,a_n') \Leftrightarrow P_1 \wedge P_2$$

where

•
$$P_1 = (a_1, \dots, a_n) \to (a'_1, \dots, a'_n) \sim s \to t$$

•
$$P_2 = (a'_1, \dots, a'_n) \in U$$
 $\sim t \in U$

• When using the order $a_1 < \cdots < a_n < a_1' < \cdots < a_n'$, ROBDD(P_2) is obtained by just replacing every a_i by a_i' in ROBDD(U)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T, U

Step 1: Compute ROBDD(P)

$$P(a_1,\ldots,a_n,a_1',\ldots,a_n') \Leftrightarrow P_1 \wedge P_2$$

where

$$\bullet P_1 = (a_1, \dots, a_n) \to (a'_1, \dots, a'_n) \qquad \sim \qquad s \to t$$

$$\bullet \ P_2 = (a_1', \dots, a_n') \in U \qquad \qquad \sim \qquad t \in U$$

• Now, ROBDD(P)=ROBDD($P_1 \land P_2$)=apply($ROBDD(P_1)$, $ROBDD(P_2)$, \land)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

Step 2: Compute ROBDD(S_{P_e}), where

$$S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$$

Observe that for every boolean variable x:

$$\exists x : \phi \equiv \underbrace{\phi[x := \mathbf{T}] \lor \phi[x := \mathbf{F}]}_{\text{computable}}$$

Applying this n times, for $x=a_1',a_2',\ldots,a_n'$, all ' \exists 's are eliminated, yielding an ROBDD over a_1,\ldots,a_n

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8.3

Computing

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

for a given transition relation \rightarrow and given sets T,U

Step 3: Compute ROBDD of V, where

$$V = T \cap S_{P_e}$$

 $ROBDD(V)=ROBDD(T \cap S_{P_e})=apply(ROBDD(T), ROBDD(S_{P_e}), \land)$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8 步骤小结:

- Stage 8.1: Express all CTL operators in
 - **1** boolean operators $(\neg, \land, \rightarrow, \lor)$
 - Compute ROBDD of boolean operators:
 - 2 EX, EG, EU
- Stage 8.2: Compute ROBDD of EX, EG, EU Example: $S_{EG,b} = t_n$
 - solved: t_0, S_{ϕ}, \cap
 - problems left: ROBDD(V), where $V = \{s \in T \mid \exists t \in U : s \to t\}$
- Stage 8.3:
 - step 1: compute ROBDD(P), where $P = P_1 \wedge P_2$, $P_1 = (a_1, \ldots, a_n) \rightarrow (a'_1, \ldots, a'_n), P_2 = (a'_1, \ldots, a'_n) \in U$
 - step 2: compute $ROBDD(S_{P_e})$, where

$$S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$$

- step 3: compute ROBDD(V), where
 - $V = T \cap S_{P_e}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8 步骤小结:

- Stage 8.1: Express all CTL operators in
 - **1** boolean operators $(\neg, \land, \rightarrow, \lor)$
 - Compute ROBDD of boolean operators: ▶ Stage 7.1 ▶ Stage 7.2
 - 2 EX, EG, EU
- Stage 8.2: Compute ROBDD of EX, EG, EU Example: $S_{EG,o} = t_n$
 - solved: t_0, S_{ϕ}, \cap
 - problems left: ROBDD(V), where $V = \{s \in T \mid \exists t \in U : s \to t\}$
- Stage 8.3:
 - step 1: compute ROBDD(P), where $P = P_1 \wedge P_2$, $P_1 = (a_1, \ldots, a_n) \rightarrow (a'_1, \ldots, a'_n), P_2 = (a'_1, \ldots, a'_n) \in U$
 - step 2: compute $ROBDD(S_{P_e})$, where

$$S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$$

• step 3: compute ROBDD(V), where
• $V = T \cap S_P$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8 步骤小结:

- Stage 8.1: Express all CTL operators in
 - **1** boolean operators $(\neg, \land, \rightarrow, \lor)$
 - Compute ROBDD of boolean operators: Stage 7.1 Stage 7.2
 - 2 EX, EG, EU
- Stage 8.2: Compute ROBDD of EX, EG, EU Example: $S_{EG\phi} = t_n$
 - solved: t_0 , S_{ϕ} , \cap
 - problems left: ROBDD(V), where $V = \{s \in T \mid \exists t \in U : s \to t\}$
- Stage 8.3:
 - step 1: compute ROBDD(P), where $P = P_1 \wedge P_2$, $P_1 = (a_1, \ldots, a_n) \rightarrow (a'_1, \ldots, a'_n), P_2 = (a'_1, \ldots, a'_n) \in U$
 - step 2: compute $ROBDD(S_{P_e})$, where

$$S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$$

• step 3: compute ROBDD(V), where
• $V = T \cap S_P$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL •8.1 •8.2 •8.3

Stage 8 步骤小结:

- Stage 8.1: Express all CTL operators in
 - **1** boolean operators $(\neg, \land, \rightarrow, \lor)$
 - Compute ROBDD of boolean operators: Stage 7.1
 - 2 EX, EG, EU
- Stage 8.2: Compute ROBDD of EX, EG, EU Example: $S_{EG\phi} = t_n$
 - solved: t_0 , S_ϕ , \cap
 - problems left: ROBDD(V), where $V = \{s \in T \mid \exists t \in U : s \to t\}$
- Stage 8.3:
 - step 1: compute ROBDD(P), where $P=P_1 \wedge P_2$, $\overline{P_1=(a_1,\ldots,a_n)} \rightarrow (a_1',\ldots,a_n'), \ P_2=(a_1',\ldots,a_n') \in U$
 - step 2: compute $\mathsf{ROBDD}(S_{P_e})$, where

$$S_{P_e} = \{(a_1, \dots, a_n) \mid \exists a'_1, \dots, a'_n : P(a_1, \dots, a_n, a'_1, \dots, a'_n)\}$$

- step 3: compute $\mathsf{ROBDD}(V)$, where
 - $V = T \cap S_{P_e}$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

例: ROBDD-CTL 求解

Given a transition system $\mathcal{M}=(S,\to,L)$, where $S=\{s_0,s_1,s_2,s_3\}\to=\{(s_0,s_0),(s_0,s_1),(s_0,s_2),(s_1,s_3),(s_2,s_1),(s_2,s_3),(s_3,s_0)\}$, $L(s_3)=\{p\}$. $Verify: \ \mathcal{M}, s_0 \vDash \mathsf{AF}\ p$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

例: ROBDD-CTL 求解

Given a transition system $\mathcal{M} = (S, \to, L)$, where $S = \{s_0, s_1, s_2, s_3\} \to = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_3), (s_2, s_1), (s_2, s_3), (s_3, s_0)\}$, $L(s_3) = \{p\}$. $Verify: \ \mathcal{M}, s_0 \models \mathsf{AF}\ p$

Stage 8.1: compute ROBDD(AF p)

- $\bullet \mathsf{AF} \; p = \neg \mathsf{EG} \neg p$
- **2** ROBDD(AF p) = ROBDD(EG¬ $p \rightarrow F$) =apply(ROBDD(EG¬p), ROBDD(F), \rightarrow)
- **3** compute ROBDD(EG $\neg p$) in *Stage 8.2*

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

例: ROBDD-CTL 求解

Given a transition system $\mathcal{M}=(S,\to,L)$, where $S=\{s_0,s_1,s_2,s_3\}\to=\{(s_0,s_0),(s_0,s_1),(s_0,s_2),(s_1,s_3),(s_2,s_1),(s_2,s_3),(s_3,s_0)\}$, $L(s_3)=\{p\}$. $Verify: \ \mathcal{M},s_0 \vDash \mathsf{AF}\ p$

Stage 8.2: Compute ROBDD(EG $\neg p$) $\triangleright S_{EG\phi} = t_n$

- Define a state as a pair of variables (a_1, a_2) , where $a_1, a_2 \in \{0, 1\}$
 - i.e., $s_0 = (0,0)$, $s_1 = (0,1)$, $s_2 = (1,0)$, $s_3 = (1,1)$
- $S_{\phi} = S_{\neg p} = \{s_0, s_1, s_2\} = \{(0, 0), (0, 1), (1, 0)\}$
- $b_0 = \mathsf{ROBDD}(S_\phi)$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

例: ROBDD-CTL 求解

Given a transition system $\mathcal{M} = (S, \to, L)$, where $S = \{s_0, s_1, s_2, s_3\} \to = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_3), (s_2, s_1), (s_2, s_3), (s_3, s_0)\}$, $L(s_3) = \{p\}$. $Verify: \ \mathcal{M}, s_0 \vDash \mathsf{AF}\ p$

Stage 8.2: Compute ROBDD(EG $\neg p$) $\triangleright S_{EG\phi} = t_n$

- Iteratively compute t_{n+1} , where
 - $t_{n+1} := \operatorname{apply}(t_n, \operatorname{ROBDD}(V), \wedge)$
 - $V = \{s \in T \mid \exists t \in U : s \to t\}$ (ROBDD(V) computed in *Stage 8.2*)
 - $T = S_{\phi} = S_{\neg p} = \{s_0, s_1, s_2\} = \{(0, 0), (0, 1), (1, 0)\}$
 - ROBDD(U)= t_n

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U)=t_n$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$

- $P_1 = (a_1, a_2) \to (a'_1, a'_2)$
- $P_2 = (a_1', a_2') \in U$
- ROBDD(P)=ROBDD($P_1 \land P_2$)=apply(ROBDD(P_1), ROBDD(P_2), \land)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$

- $P_1 = (a_1, a_2) \rightarrow (a'_1, a'_2)$
 - $P_1 = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_3), (s_2, s_1), (s_2, s_3), (s_3, s_0)\} = \{0000, 0001, 0010, 0111, 1001, 1011, 1100\}$
- $P_2 = (a_1', a_2') \in U$
- ROBDD(P)=ROBDD($P_1 \land P_2$)=apply(ROBDD(P_1), ROBDD(P_2), \land)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$

- $P_1 = (a_1, a_2) \to (a'_1, a'_2)$
- $P_2 = (a_1', a_2') \in U$
 - 0th iteration:
- ROBDD(P)=ROBDD($P_1 \land P_2$)=apply(ROBDD(P_1), ROBDD(P_2), \land)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$

- $P_1 = (a_1, a_2) \to (a'_1, a'_2)$
- $P_2 = (a_1', a_2') \in U$
- ROBDD(P)=ROBDD($P_1 \land P_2 \land P_3 \land P_4 \land P_4$ P_2)=apply(ROBDD(P_1), ROBDD(P_2), \wedge)
 - Oth iteration:

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

- $V = \{ s \in T \mid \exists t \in U : s \to t \}$
- $T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$

Step 2: Compute ROBDD(S_{P_a}) (0th step)

$$S_{P_e} = \{(a_1, a_2) \mid \exists a_1', a_2' : P(a_1, a_2, a_1', a_2')\}$$

• $S_{P_e} = \{(0,0), (1,0), (1,1)\}$

ROBDD(P)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

•
$$T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$$

Step 2: Compute $ROBDD(S_{P_e})$ (0th step)

$$S_{P_e} = \{(a_1, a_2) \mid \exists a_1', a_2' : P(a_1, a_2, a_1', a_2')\}$$

•
$$S_{P_e} = \{(0,0), (1,0), (1,1)\}$$

Step 3: ROBDD(V)=apply(ROBDD(T), $ROBDD(S_{P_a})$, \wedge)

$$T = \{(0,0), (0,1), (1,0)\}$$

$$T = \{(0,0), (0,1), (1,0)\}$$

 $\mathsf{ROBDD}(S_{P_e})$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

•
$$T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$$

Step 2: Compute $ROBDD(S_{P_e})$ (0th step)

$$S_{P_e} = \{(a_1, a_2) \mid \exists a_1', a_2' : P(a_1, a_2, a_1', a_2')\}$$

• $S_{P_e} = \{(0,0), (1,0), (1,1)\}$

Step 3: ROBDD(V)=apply(ROBDD(T),

$$ROBDD(S_{P_e}), \wedge)$$

•
$$T = \{(0,0), (0,1), (1,0)\}$$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

•
$$T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$$

Step 2: Compute ROBDD(S_{P_a}) (0th step)

$$S_{P_e} = \{(a_1, a_2) \mid \exists a_1', a_2' : P(a_1, a_2, a_1', a_2')\}$$

• $S_{P_0} = \{(0,0), (1,0), (1,1)\}$

Step 3: ROBDD(V) = apply(ROBDD(T),

$$ROBDD(S_{P_e}), \wedge)$$

• $T = \{(0,0),(0,1),(1,0)\}$

Back to Stage 8.2: $t_1 := \operatorname{apply}(t_0, \operatorname{ROBDD}(V),$ \wedge)

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Stage 8.3: compute ROBDD(V), where

$$V = \{ s \in T \mid \exists t \in U : s \to t \}$$

•
$$T = \{(0,0), (0,1), (1,0)\}, ROBDD(U) = t_n$$

Step 2: Compute $ROBDD(S_{P_e})$ (0th step)

$$S_{P_e} = \{(a_1, a_2) \mid \exists a_1', a_2' : P(a_1, a_2, a_1', a_2')\}$$

•
$$S_{P_e} = \{(0,0), (1,0), (1,1)\}$$

Step 3: ROBDD(V) = apply(ROBDD(T),

$$ROBDD(S_{P_e}), \wedge)$$

 $T = \{(0,0), (0,1), (1,0)\}$

Back to Stage 8.2: $t_1 := \operatorname{apply}(t_0, \operatorname{ROBDD}(V), \wedge)$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Similarly, compute t_2,t_3 ... (作业: 计算 t_2,t_3)

Observe that $t_2 = t_3$

Back to Stage 8.1: ROBDD(EG
$$\neg p$$
)= t_2 $S_{\text{EG}} = \{(0,0)\} = \{s_0\}$ $S_{\text{AF}} = S_{\text{EG}} = \{s_1, s_2, s_3\}$ So, $\mathcal{M}, s_0 \nvDash \text{AF } p$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Similarly, compute t_2, t_3 ... (作业: 计算 t_2, t_3)

Observe that $t_2 = t_3$

Back to Stage 8.1: ROBDD(EG $\neg p$)= t_2

$$S_{\text{EG} \neg p} = \{(0,0)\} = \{s_0\}$$

 $S_{\text{AF}p} = S_{\neg \text{EG} \neg p} = \{s_1, s_2, s_3\}$
So, $\mathcal{M}, s_0 \nvDash \text{AF } p$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example Stage 8

Similarly, compute t_2, t_3 ... (作业: 计算 t_2, t_3)

Observe that $t_2 = t_3$

Back to Stage 8.1: ROBDD(EG $\neg p$)= t_2

$$S_{\text{EG}\neg p} = \overline{\{(0,0)\}} = \{s_0\}$$

$$S_{AFp} = S_{\neg EG \neg p} = \{s_1, s_2, s_3\}$$

So,
$$\mathcal{M}, s_0 \nvDash \mathsf{AF} p$$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Similarly, compute t_2, t_3 ... (作业: 计算 t_2, t_3)

Observe that $t_2 = t_3$

Back to Stage 8.1: ROBDD(EG $\neg p$)= t_2

$$S_{\text{EG}\neg p} = \overline{\{(0,0)\}} = \{s_0\}$$

$$S_{AFp} = S_{\neg EG \neg p} = \{s_1, s_2, s_3\}$$

So,
$$\mathcal{M}, s_0 \nvDash \mathsf{AF} p$$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL | Example • Stage 8

Observe that $t_2 = t_3$

Back to Stage 8.1: ROBDD(EG $\neg p$)= t_2

$$S_{\text{EG}\neg p} = \overline{\{(0,0)\}} = \{s_0\}$$

$$S_{AFp} = S_{\neg EG \neg p} = \{s_1, s_2, s_3\}$$

So, $\mathcal{M}, s_0 \nvDash \mathsf{AF}\ p$

2.2 Binary decisions diagram (BDD) | Stage 8: ROBDD-CTL Stage 8

Stage 8 小结:

- Combining this gives an algorithm to compute the ROBDD of the set states satisfying any CTL formula
- This is essentially the algorithm as it is used in tools like NuSMV to do symbolic model checking
- In contrast to explicit state based model checking, it can deal with very large state spaces.

作业

作业: 模仿 t_1 的求解过程,手工运算 t_2, t_3 ,给出运算过程.

实验大作业 (可选): 实现 ROBDD 算法, 要求:

- 可以实现至不同 stage, 例如, 可实现至 ROBDD, 或 ROBDD-CTL。 实现的越完整, 给分越高。
- 提供源代码、可执行程序、测试文件、相关文档