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2. IBig

2.3 Bounded model checking (BMC)

Bounded model checking (SRR )
e A way to exploit SAT/SMT for verifying properties of programs

f51: a marble puzzle

We do steps in which either
@ one marble is added, or
@ the number of marbles is doubled

What is the smallest number of steps required to end up in exactly 1000
marbles?

E#8 https://faculty.ustc.edu.cn/hu: R FEFS


https://faculty.ustc.edu.cn/huangwenchao

2. it

2.3 Bounded model checking (BMC)

How to solve this by NuSMV?

MODULE main
VAR
M : 1..1000;
INIT
M=1
TRANS
case M<=999 : next(M)=M+1; TRUE
case M<=500: next (M)=2xM; TRUE
LTLSPEC
G !'(M=1000)

next (M)=M;
next (M)=M;

esac
esac
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2. it

2.3 Bounded model checking (BMC)

How to solve this by NuSMV?

MODULE main
VAR
M : 1..1000;
INIT
M=1
TRANS
case M<=999 : next(M)=M+1; TRUE : next(M)=M; esac |
case M<=500: next (M)=2xM; TRUE : next (M)=M; esac
LTLSPEC
G !'(M=1000)

A parameter for NuSMV: -bmc or -bmc -bmc__length 11
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2. it

2.3 Bounded model checking (BMC)

How to solve this by NuSMV?

MODULE main
VAR
M : 1..1000;
INIT
M=1
TRANS
case M<=999 : next(M)=M+1; TRUE : next(M)=M; esac |
case M<=500: next (M)=2xM; TRUE : next (M)=M; esac
LTLSPEC
G !'(M=1000)

A parameter for NuSMV: -bmc or -bmc -bmc__length 11

@ Looks for counterexamples of length 1, 2, ..
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2. it

2.3 Bounded model checking (BMC)

How to solve this by NuSMV?

MODULE main
VAR
M : 1..1000;
INIT
M=1
TRANS
case M<=999 : next(M)=M+1; TRUE : next(M)=M; esac |
case M<=500: next (M)=2xM; TRUE : next (M)=M; esac
LTLSPEC
G !'(M=1000)

A parameter for NuSMV: -bmc or -bmc -bmc__length 11
@ Looks for counterexamples of length 1, 2, ..

@ So it is incomplete
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2. 18t

2.3 Bounded model checking (BMC)

BITER: . /NuSMV -bmc c-samplel- bmc.smv

—_ counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
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2. 18t

2.3 Bounded model checking (BMC)

BITER: . /NuSMV -bmc -bmc_length 13 c-samplel-bmc.smv
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample

counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample
counterexample

LooO~NOOUMMPAWNE®
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2. IBig

2.3 Bounded model checking (BMC)

BITER: . /NuSMV -bmc -bmc_length 14 c-samplel-bmc.smv

—— specification G !(M = 1000) is false

— as demonstrated by the following execution sequence
Trace Description: BMC Counterexample

Trace Type: Counterexample

—> State: 1.1 —> State: —-> State: 1.11
M=1 M=14 M= 124

—> State: 1.2 —> State: —> State: 1.12
M=2 M =15 M= 125

—> State: 1.3 —> State: —> State: 1.13
M=3 M= 30 M = 250

—> State: 1.4 —> State: 1. —> State: 1.14
M=26 M =31 M = 500

—> State: 1.5 —> State: —> State: 1.15
M=7 M= 62 M = 1000

E#B https://faculty.ustc.edu.cn/hu: R FEFS 6/14


https://faculty.ustc.edu.cn/huangwenchao

2. it

2.3 Bounded model checking (BMC)

How to solve this by SAT/SMT?
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2. it

2.3 Bounded model checking (BMC)

How to solve this by SAT/SMT?

Fix number k: try for k steps
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2. it

2.3 Bounded model checking (BMC)
How to solve this by SAT/SMT?

Fix number k: try for k steps

Introduce Mi] to represent the number of marbles after i steps, for
1=0,...,k
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2. IBig

2.3 Bounded model checking (BMC)

How to solve this by SAT/SMT?

Fix number k: try for k steps

Introduce Mi] to represent the number of marbles after i steps, for
1=0,...,k

Start by one marble:
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2. IBig

2.3 Bounded model checking (BMC)

How to solve this by SAT/SMT?
Fix number k: try for k steps

Introduce Mi] to represent the number of marbles after i steps, for
1=0,...,k

Start by one marble:

M[0] =1
At the end exactly 1000 marbles:

M][k] = 1000
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2. IBig

2.3 Bounded model checking (BMC)

How to solve this by SAT/SMT?

Fix number k: try for k steps

Introduce Mi] to represent the number of marbles after i steps, for
1=0,...,k

Start by one marble:
M[0] =1
At the end exactly 1000 marbles:
M[k] = 1000
Requirements for the steps:
(M[i] = M[i — 1]+ 1)V (M[i] = 2M[i — 1])
fori=1,...,k
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2. IBig

2.3 Bounded model checking (BMC)

Resulting formula
MI0] = 1 A M[k] = 1000/

~.

(Mli] = M[i — 1] + 1) v (M[i] = 2M[i — 1))

i=1

= |l

fori =1,...,k is satisfiable if and only if there is a solution in k steps
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2. IBig

2.3 Bounded model checking (BMC)

Resulting formula
MI0] = 1 A M[k] = 1000/

~.

(Mli] = M[i — 1] + 1) v (M[i] = 2M[i — 1))

i=1

= |l

fori =1,...,k is satisfiable if and only if there is a solution in k steps

For k =1,2,...,13, this formula is unsatisfiable
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2. IBig

2.3 Bounded model checking (BMC)

Resulting formula
MI0] = 1 A M[k] = 1000/

~.

(Mli] = M[i — 1] + 1) v (M[i] = 2M[i — 1))

i=1

= |l

fori =1,...,k is satisfiable if and only if there is a solution in k steps

For k =1,2,...,13, this formula is unsatisfiable

For k = 14, it yields the satisfying assignment
Mli| =1,2,3,6,7,14, 15,30, 31, 62, 124, 125, 250, 500, 1000

fori=0,...,14
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2. IBig

2.3 Bounded model checking (BMC)

Resulting formula
MI0] = 1 A M[k] = 1000/

~.

(Mli] = M[i — 1] + 1) v (M[i] = 2M[i — 1))

i=1

= |l

fori =1,...,k is satisfiable if and only if there is a solution in k steps

For k =1,2,...,13, this formula is unsatisfiable
For k = 14, it yields the satisfying assignment
Mli| =1,2,3,6,7,14, 15,30, 31, 62, 124, 125, 250, 500, 1000

fori=0,...,14

So 14 is the smallest number of steps
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2. 18t

2.3 Bounded model checking (BMC)

Concluding: BMC &£ &=
o fi&: runs fast in finding counterexamples

o fR&: incompleteness: hard to return True if the property is satisfied
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2. it

2.4 Basic Inductive Techniques

E]fi: EMX: Transition system

A transition system M = (S, —, L) is

@ S: a set of states
@ —: a transition relation.

o every s € S has some s’ € S with s — &’
@ L: a label function.

o L:S — P(Atoms)
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2. IBig

2.4 Basic Inductive Techniques

E]fi: EMX: Transition system

A transition system M = (S, —, L) is

@ S: a set of states
@ —: a transition relation.

o every s € S has some s’ € S with s — &’
@ L: a label function.

o L:S — P(Atoms)

EM: Inductive
Denote sq as the initial state of a transition system. A state property P is
inductive, iff
@ P holds in the initial states, i.e., L(sg) F P(so)
@ P holds in all states reachable from states that satisfy P, i.e.,
P(s),(s = §')E P(s)
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main
VAR
y : 0..15000;
ASSIGN
init(y) := 0;
TRANS
case
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR
y : 0..15000;
ASSIGN
init(y) := 0;
TRANS
case
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR
y : 0..15000;
ASSIGN
init(y) := 0;
TRANS
case
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))

@ Assume 0 <y < 70,is 0 <y <70
satisfied?
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR _
: 0..15000; @ Assume 0 <y <70,is 0 <y <70
AS}STI(‘;N N ’ satisfied?
init(y) := 0; o ify=70,9y =0
TRANS
case

y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR- . @ Assume 0 <y < 70,is 0 <y <70
y : 0..15000; N
ASSIGN satisfied?
init(y) := 0; 0 ify="70,9 =0
TRANS
case 0o if0<y<70,0<y <70
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC

G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR
. . @ Assume 0 <y < 70,is 0 <y <70
y : 0..15000;  fod?
ASSIGN satistied!
init(y) := 0; o ify=701 =0
TRANS
case 0 if0<y<70,0<y <70
y=70 : next(y)=0; So we can prove the property by hand
TRUE : next(y)=y+1;
esac
LTLSPEC

G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) F P(so) and P(s), (s — §') E P(s)

MODULE main o L(sg) ={y=0},500<y <70

VAR
) ) @ Assume 0 <y < 70,is 0 <y <70
y : 0..15000;  fod?
ASSTIGN satisfieq!
init(y) := 0; 0 ify="70,y =0
TRANS
case 0o if0<y<70,0<y <70
y=70 : next(y)=0; So we can prove the property by hand
TRUE : next(y)=y+1; e
esac LE_{T%%: ./NUSMV
LTLSPEC c-sample2-induct.smv
G (y in (0..70)) — specification G y in (0 .. 70) is true

Time cost: 4.26s
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')
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2. it

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main
VAR
y : 0..15000;
ASSIGN
init(y) := 0;
TRANS
case
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. it

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main
VAR ‘ﬁﬁt,\i’.—'“\ oy -
y : 0..15000;
ASSIGN
init(y) := 0;
TRANS
case
y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main

VAR %?ﬁﬁ;i??gg A -
y : 0..15000; G (y in (0..69))
ASSIGN e return false
init(y) := 0;
TRANS
case

y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. IBig

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main

VAR %?ﬁﬁ;i??gg oy -

y : 0..15000; G (y in (0..69))
ASSIGN e return false
1n1t(y) = 0; G H 0..71
TRANS o G (yin (0.71))

e NOT inductive now
case

y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main

VAR SHHEERE:

y : 0..15000; G (y in (0..69))

ASSIGN e return false

init(y) := 0; e G (yin (0..71))

TRﬁgze e NOT inductive now
y=70 : next(y)=0; e for all 70, change into 700
TRUE : next(y)=y+1; o The extra time cost is low

esac

LTLSPEC

G (y in (0..70))
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2. 18t

2.4 Basic Inductive Techniques

P is inductive, iff L(sg) E P(so) and P(s), (s — §') F P(s')

MODULE main

VAR %iﬁ/ﬂ;?’s‘: v
y : 0..15000; G (y in (0..69))
ASSIGN e return false
init(y) := 0; :
TRANS e G (yin (0..71))
case e NOT inductive now
y=70 : next(y)=0; e for all 70, change into 700
TRUE : next(y)=y+1; o The extra time cost is low
esac @ change 15000 into 150000
LTLSPEC

e The extra time cost is extremely high
G (y in (0..70))
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2. 18t

2.4 Basic Inductive Techniques

EFE M : Inductive
P is inductive, iff L(sg) F P(so) and P(s),(s — §') E P(s)
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2. IBig

2.4 Basic Inductive Techniques

EFE M : Inductive
P is inductive, iff L(sg) F P(so) and P(s),(s — §') E P(s)

— MR RYfETR (standard induction over natural numbers):

P(0) A¥n(P(n) — P(n+1)) E ¥nP(n)
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2. 1Hig
2.4 Basic Inductive Techniques

EFE M : Inductive
P is inductive, iff L(sg) F P(so) and P(s),(s — §') E P(s)

— MR RYfETR (standard induction over natural numbers):
P(0) AVn(P(n) - P(n+1)) EVnP(n)
2-induction

PO)AP1)AYR((P(n)ANP(n+1)) = P(n+2)) FEVnP(n)
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A
2. 1Hig
2.4 Basic Inductive Techniques

EFE M : Inductive
P is inductive, iff L(sg) F P(so) and P(s),(s — §') E P(s)

— BB R #ETE (standard induction over natural numbers):
P(0) AYn(P(n) — P(n +1)) E ¥nP(n)
2-induction
P(0) A P(1) AVR((P(n) A P(n+ 1)) = P(n+2)) E VnP(n)

¥ HEEN: k-induction

<k/\1 P(z)) AVn ((k/\l P(n+ Z)) — P(n+ k:)) F VnP(n)
=0

1=0
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2. it

2.4 Basic Inductive Techniques

[a]88&: |Is k-induction “better” than standard induction?
Maybe vyes.
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2. IBig

2.4 Basic Inductive Techniques

[a]88&: |Is k-induction “better” than standard induction?
Maybe vyes.

{51: Consider the Fibonacci sequence, defined by

n ifn<l1

fib(n) = { . . .
fib(n — 1) + fib(n — 2) otherwise
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2. IBig

2.4 Basic Inductive Techniques

[a]88&: |Is k-induction “better” than standard induction?
Maybe vyes.

{51: Consider the Fibonacci sequence, defined by

n ifn<l1

fib(n) = { . . .
fib(n — 1) + fib(n — 2) otherwise

Suppose we want to prove fib(n) > n forn >5
@ 1l-induction? No

@ 2-induction? Yes
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