AT EF5I

%6 = RO
6.1 ProVerif: A Verifier of Security Protocols

BB

https://faculty.ustc.edu.cn/huangwenchao

— HFIRE — BXUFTESS

https://faculty.ustc.edu.cn/huangwenchao

ESbg il
@ ProVerif. A Verifier of Security Protocols
@ Software Analysis: Abstract Interpretation and CEGAR

© Coq Proof Assistant: A Prover based on Higher-order Logic

B 2FFRIEF ERS2E:

o Verification (3ilf): HEFIZITIER, N HEMMIER, Ha@
iR, Med "s#iR" BFE, HiLHRE)

o Proof (iEBA): FIEFIZITIER, ML H IE#EIERA

o Falsification: #HIEFIZITHEIR, LHEH. —KAEEREN
ik, K

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction

ProVerif is an automatic cryptographic protocol verifier

Related Papers (Introduction to ProVerif):
@ A survey of ProVerif
@ The most cited one (1288 times)

Related Papers (Application of ProVerif):
o Verifying TLS 1.3 (S&P'17)
@ Secure File Sharing (S&P'08)
e Just Fast Keying (TISSEC'07)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

http://staff.ustc.edu.cn/~huangwc/fm/BlanchetFnTPS16.pdf
http://staff.ustc.edu.cn/~huangwc/fm/Proverif-Prolog-Rules.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BhargavanBlanchetKobeissiSP2017.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BlanchetChaudhuriOakland08.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BlanchetChaudhuriOakland08.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords

Keywords:
@ Assumption of Adversary
e Symbolic model, i.e., Dolev-Yao model
e ps: another model - computational model
o Modeling
e Pi-calculus
@ applied pi calculus
@ Specification
e Trace properties
e Equivalence properties
o Algorithm

e Horn clauses Abstraction
@ Resolution Horn Clauses by Unification

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords

Keywords:
@ Assumption of Adversary

e Symbolic model, i.e., Dolev-Yao model
e ps: another model - computational model

o Modeling
o Pi-calculus
@ applied pi calculus
@ Specification
e Trace properties
e Equivalence properties
o Algorithm

e Horn clauses Abstraction
@ Resolution Horn Clauses by Unification

Why introducing these Keywords?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary

@ Symbolic model, i.e., Dolev-Yao model

e Cryptographic primitives are considered as perfect blackboxes
o Why?:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary

@ Symbolic model, i.e., Dolev-Yao model

e Cryptographic primitives are considered as perfect blackboxes
e Why?: Do not consider the case of cryptographic attacks

@ e.g., brute-force attacks on encryption keys

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary

@ Symbolic model, i.e., Dolev-Yao model

e Cryptographic primitives are considered as perfect blackboxes
e Why?: Do not consider the case of cryptographic attacks

@ e.g., brute-force attacks on encryption keys

@ Another model - computational model
@ messages are bitstrings
e cryptographic primitives are functions from bitstrings to bitstrings
o the adversary is any probabilistic Turing machine
e This is the model usually considered by cryptographers.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Pi-calculus

Modeling
o Pi-calculus
e applied pi calculus

Why?:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Pi-calculus

Modeling
@ Pi-calculus
e applied pi calculus
Why?: Easier for modeling

o Compared with transition system in model checking

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
let x: T =D in P else Q expression evaluation
if M then P else () conditional

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Trace properties & Equivalence properties

Specification
@ Trace properties

o Equivalence properties
Why?:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Trace properties & Equivalence properties

Specification
@ Trace properties
o Equivalence properties
Why?: Easier for designing specifications
@ Compared with CTL, LTL in model checking

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Unification on Horn clauses

Algorithm
@ Horn clauses Abstraction

@ Resolution of Horn Clauses by Unification
Why?:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords | Unification on Horn clauses

Algorithm

@ Horn clauses Abstraction

@ Resolution of Horn Clauses by Unification
Why?:

@ Avoid state explosion

@ Abstraction reduces the complexity

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords

[i Keywords:
@ Assumption of Adversary
e Symbolic model, i.e., Dolev-Yao model
e ps: another model - computational model
e Modeling
e Pi-calculus
@ applied pi calculus
@ Specification
e Trace properties
e Equivalence properties
o Algorithm

e Horn clauses Abstraction
@ Resolution Horn Clauses by Unification

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.1 Introduction | Keywords

[E@: Keywords:
@ Assumption of Adversary

e Symbolic model, i.e., Dolev-Yao model
e ps: another model - computational model

e Modeling
o Pi-calculus
@ applied pi calculus
@ Specification
e Trace properties
e Equivalence properties
o Algorithm

e Horn clauses Abstraction
@ Resolution Horn Clauses by Unification

T—“iEl&k: How to study ProVerif in detail?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually
@ Model: A simple example a security protocol
@ Assumption: Introducing the Dolev-Yao model
@ Specification: Specifying the properties
o Algorithm: Manual Analysis

© [H: Modeling and Verification using ProVerif
@ Modeling in language of Pi-calculus
@ Specification: Specifying the properties
@ Modeling in language of Pi-calculus
@ Run ProVerif

© 1Bt Algorithms
@ How to ensure the code is well-typed?
@ How to translate the code into Horn clauses?
@ How to solve?
@ Performance Analysis

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

BE AN

1.2 |a]@iq4

EARSNR-FRBR R
o (1) X#RE

(A

NZE MR ERERMZANBRNEE

BIRDITURE

EREBEHERER,

N a2 S A AT HE A
aJ{T

BHEENETEX, TRMAERH

YA (=) (2) JEXIFRES,

#B: Study security protocols manually

A (2

)

A EA T
IEA BRI ERARNZANERNEE
R ERNZBARE

IR IRE, AATEERR

S

ZM BT

BEMEE. ETEX. HF—1T82H#H, F

E#B https://faculty.ustc.edu.cn/hu: ERUF

RLARE S — T2

=

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

e ED:

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

ey
XIFRINE - AR
o XFREA: k
o HAHE: m
e NZ: c=senc(m,k)
o fB®: m=sdec(c, k)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

e ED:

XFRINE - EE AR
o XFREA: k
o FALHR: m
e NZ: c=senc(m,k)
o fB®: m=sdec(c, k)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

NIATE:

FEXFRINE - RIS 1R
o IEXIFRESA: Ak, FatH-sk

R =D

* o FASCIHR: m

XFRINE - TR o NZ: c=aenc(m, pk(sk))
o MTRER: k o fi#%: m=adec(c, sk)

o FALHR: m
e NZ: c=senc(m,k)
o fB®: m=sdec(c, k)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

NEAZAL:

FEXFRINE - RIS 1R
o IEXIFRESA: Ak, FatH-sk

BREL-
R D . EE
SRR M-I AR e BRZZ: c=aenc(m, pk(sk))
o MFRE: k o % m=adec(c, sk)
o BASIEE: m
o NZ: c=senc(m, k) & WiEdiE:
o fB®: m=sdec(c, k) o IEXIFRZEA: N8A-pk, FAEH-sk

°o FEZHE m
o E&: c=sign(m, sk)
o I&E: verify m = check(c, pk(sk))

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually
@ Model: A simple example a security protocol

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]@i44E: Study security protocols manually | Model

(1) Model: A simple example of a security protocol
@ Denning-Sacco key distribution protocol (Denning and Sacco, 1981)

k fresh aenc(sign(k2b(k), sska), pkp)

—
L

-
-

senc(s, k)

A (Alice) B (Bob)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually

@ Assumption: Introducing the Dolev-Yao model

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]@i44E: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]@i44E: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model

@ The network is represented by a set of abstract machines that can
exchange messages.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]@i44E: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model

@ The network is represented by a set of abstract machines that can
exchange messages.

@ The adversary can overhear, intercept, and synthesize any message

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]@i44E: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model

@ The network is represented by a set of abstract machines that can
exchange messages.

@ The adversary can overhear, intercept, and synthesize any message

@ The adversary is only limited by the constraints of the cryptographic
methods used

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually

@ Specification: Specifying the properties

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

(3) Specification: Specifying the properties
@ Only A should be able to decrypt the message and get the secret s

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

@ B/ 45 Study security protocols manually

o Algorithm: Manual Analysis

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.2 [a]&i4145: Study security protocols manually

(4) Manual Analysis: discovered attacks

k fresh aenc(sign(k, sska), pkc) aenc(sign(k, ssk4), pkp)
- = - =
B —
senc(s, k)
A (Alice) C' (adversary)

impersonating A (Alice)

E#B https://faculty.ustc.edu.cn/hu:

R FEFS

B (Bob)

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© [H: Modeling and Verification using ProVerif

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© [H: Modeling and Verification using ProVerif
@ Modeling in language of Pi-calculus

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

M,N = terms
T,Y, 2 variable
a,b,c,k,s name
f(My, ..., My,) constructor application
D := expressions
M term
h(D1,...,Dy) function application
fail failure
P Q = processes
0 nil
out(N,M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:7T; P restriction
let z: T =D in P else Q expression evaluation
if M then P else Q conditional

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVeri

M,N :=
x7y’Z
a,b,c,k,s

f(My, ..., My)

f | Model: Pi calculus

terms
variable
name
constructor application

o Names: represent atomic data, such as keys and nonces

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

M, N == terms
T,Y, % variable
a,b,c,k,s name
f(My, ..., My) constructor application

o Names: represent atomic data, such as keys and nonces

@ Variables: can be substituted by terms.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

M, N == terms
T,Y, % variable
a,b,c,k,s name
f(My, ..., My) constructor application

o Names: represent atomic data, such as keys and nonces

@ Variables: can be substituted by terms.

o Constructors: are used to build terms, e.g.,
e senc(c, k) represents the encryption of ¢ under the key k.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

M, N == terms
T,Y, % variable
a,b,c,k,s name
f(My, ..., My) constructor application

o Names: represent atomic data, such as keys and nonces

@ Variables: can be substituted by terms.

Constructors: are used to build terms, e.g.,
e senc(c, k) represents the encryption of ¢ under the key k.

Destructors:
o do not appear in terms, but manipulate terms in expressions (0l TTT)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

= expressions
M term
h(D1,...,Dy) function application
fail failure
Destructors:

@ do not appear in terms, but manipulate terms in expressions

@ They are functions on terms that processes can apply, via the
expression evaluation construct, i.e.,

eletz:T =D in P else Q

@ A destructor g is defined by a finite ordered list of rewrite rules def(g)
of the form

o g(Uy,...,U,) — U where Uy, ...,U,, U are may-fail terms

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:
e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},

and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:

e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},
and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;

@ cryptographic operations

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:
e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},
and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;
@ cryptographic operations
o constructor: senc(bitstring,key): bitstring
o destructor: sdec(senc(x,y),y) — =

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:
e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},
and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;
@ cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(zx,y),y) — =
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(z, pk(y)), y) — =

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:
e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},

and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;
@ cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(zx,y),y) — =
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(z, pk(y)), y) — =
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(z, y)) — =

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as
@ tuples:
e constructor: tupleq,, . 7, (M, ..., M,), where term M; is of type T},

and tuplep, . 1, (M, ..., M,,) returns a result of type bitstring.
o destructor: ithy, 7, (tupler, rn(Z1,...,20)) = z;
@ cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(zx,y),y) — =
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(z, pk(y)), y) — =
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(z, y)) — =

@ Type converter

e constructor: b2k(bitstring) : key
o destructor: b2k(k2b(x)) — x

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction

letx:T =D in P else Q
if M then P else)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

expression evaluation
conditional

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q =
0
out(N, M); P
in(N,z:T); P
PlQ
'P
new a:1T; P

letx:T =D in P else Q
if M then P else)

The nil process 0 does nothing.

E#B https://faculty.ustc.edu.cn/hu:

processes

R FEFS

nil

output

input

parallel composition
replication
restriction

expression evaluation
conditional

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The output process out(N, M); P outputs the message M on the channel
N and then executes P.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The input process in(N,x : T); P inputs a message on channel N, and
executes P with x bound to the input message.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q =
0
out(N, M); P
in(N,z:T); P
PlQ
'P
new a:1T; P

letx:T =D in P else Q
if M then P else)

processes

nil

output

input

parallel composition
replication

restriction

expression evaluation
conditional

The process P | @ is the parallel composition of P and Q.

E#B https://faculty.ustc.edu.cn/hu:

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The replication ! P represents an unbounded number of copies of P in
parallel.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The restriction new a : T'; P creates a new name a of type T, and then
executes P.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The process let z : T'= D in P else () tries to evaluate D;
o if D evaluates to a term M, then z is bound to M and P is executed

o if the evaluation of D fails, then @ is executed

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

P,Q = processes
0 nil
out(N, M); P output
in(N,z:T); P input
PlQ parallel composition
P replication
new a:1T; P restriction
letx:T =D in P else Q expression evaluation
if M then P else) conditional

The conditional if M then P else Q executes P if M is true (or is a
variable bound to true); it executes @ if M is different from true.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

k fresh

aenc(sign(k2b(k), ssk), pkp)

s
L

-
-

senc(s, k)
A (Alice) B (Bob)

Py = new ssk4 : skey; new skp : skey; let spk 4 = pk(ssk4) in
let pkp = pk(skp) in out(c, spk 4);out(c, pkg);
(Pa(sska,pkg) | Pp(skp, spky))

Pa(sska, pkp) =" new k : key;
out(c, aenc(sign(k2b(k), sska), pkg));
in(c, z : bitstring); let z = sdec(z, k) in 0

Pg(skp, spky) = in(c,y : bitstring); let ¢/ = adec(y, skp) in
let 2, = b2k(check(y/', spk4)) in out(c,senc(s, zx))

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

[a)&8 1: This model of the protocol is weak, because
@ A and B talk only to each other
@ they do not interact with other, possibly dishonest participants

We can strengthen model by replacing the process P4 with the following
process:

Py(sska, pkg) = !in(c, zpr,, : pkey); new k : key;
out(c, aenc(sign(k2b(k), sska), Tpk,));
in(c, z : bitstring); let z = sdec(z, k) in O

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 i F: Modeling and Verification using ProVerif | Model: Pi calculus

[a)&8 1: This model of the protocol is weak, because
@ A and B talk only to each other
@ they do not interact with other, possibly dishonest participants

We can strengthen model by replacing the process P4 with the following
process:

Py(sska, pkg) = !in(c, zpr,, : pkey); new k : key;
out(c, aenc(sign(k2b(k), sska), Tpk,));
in(c, z : bitstring); let z = sdec(z, k) in O
[a]& 2: The above model still assumes for simplicity that A and B each

play only one role of the protocol.

@ One could easily write an even more general model in which they play

both roles (BiHiTFE: BE)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© [H: Modeling and Verification using ProVerif

@ Specification: Specifying the properties

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Specification: Pi calculus

Specifying the properties:

query not attacker(s).

What if we model the property in CTL?

M, sp E AG —attacker(s)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© [H: Modeling and Verification using ProVerif

@ Modeling in language of Pi-calculus

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Coding: Pi calculus

Now coding:(1st version)
free c: channel.

type key.
type pkey.
type skey.
type spkey.
type sskey.

fun k2b(key):bitstring [data, type Converter].
reduc forall k:key; b2k(k2b(k)) = k.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Coding: Pi calculus

fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
reduc forall z: bitstring, y: skey; adec(aenc(z, pk(y)),y) = .

fun spk(sskey): spkey.
fun sign(bitstring, sskey): bitstring.
reduc forall m: bitstring, k: sskey; checksign(sign(m, k), spk(k)) = m.

fun senc(bitstring, key): bitstring.
reduc forall z: bitstring, y: key; sdec(senc(z, y),y) = z.

//Specification
free s: bitstring [private].
query attacker(s).

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Coding: Pi calculus

//PA will be revised in 2nd version

let PA(sskA: sskey, pkB:pkey) =
new k:key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, z:bitstring);
let z = sdec(z, k) in 0.

let PB(skB:skey, spkA:spkey) =
in(c, y:bitstring);
let y1 = adec(y, skB) in
let zk = b2k(checksign(y1, spkA)) in
out(c, senc(s, zk)).

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Coding: Pi calculus

process
new sskA: sskey;
new skB: skey;
let spkA = spk(sskA) in
let pkB = pk(skB) in
out(c, spkA);
out(c, pkB);
(IPA(sskA, pkB) |'PB(skB, spkA))

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 [F: Modeling and Verification using ProVerif | Coding: Pi calculus

// PA in 2nd version
let PA(sskA: sskey, pkB:pkey) =
in(c, xpkB:pkey);
new k:key;
out(c, aenc(sign(k2b(k), sskA), zpkB));
in(c, z:bitstring);
let z = sdec(z, k) in 0.

// Recall PA in 1st version
let PA(sskA: sskey, pkB:pkey) =
new k:key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, z:bitstring);
let z = sdec(z, k) in 0.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© [H: Modeling and Verification using ProVerif

@ Run ProVerif

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.3 B F: Modeling and Verification using ProVerif | Run: Pi calculus

//Results in 1st version:
Query not attacker(s[]) is true.

//Results in 2st version:
Query not attacker(s[]) is false.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© 1Bt Algorithms

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© 1Bt Algorithms
@ How to ensure the code is well-typed?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38if: Algorithms | How to ensure the code is well-typed?

[8 (1): How to ensure the code is well-typed?
Z: Type System
@ Type environment I
o The type system uses a type environment I' that maps variables and
names to their type.
e This type environment initially contains the types of the free names of
the closed process under consideration.
@ The type system defines three judgments:
o ' M : T —the term M is well-typed of type T" in the type
environment I’
o ' D : T — the expression D is well-typed of type T in the type
environment T’
o ' P — the process P is well-typed in the type environment .

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38if: Algorithms | How to ensure the code is well-typed?

(x:T)el (a:T)el

I'tx:T I'ka:T
f(y,...,T,): T T'"+-My:Thy ... TFHM,:T,
L'+ f(My,...,M,):T
hTy,...,T,):T T'"EDy:Ty ... T'FD,:T,
I'+h(Dy,...,Dy): T
I'fail: T

I'N:channel TH-M:T TP
't out(N, M); P

' N :channel T'z:TFHP
F'Hin(N,z:T); P

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© 1Bt Algorithms

@ How to translate the code into Horn clauses?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8 (2): How to translate the code into Horn clauses?
5.
&

© Define basic predicates

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8 (2): How to translate the code into Horn clauses?
5.
&

© Define basic predicates

@ Model Dolev-Yao adversary in Horn clauses

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8 (2): How to translate the code into Horn clauses?
z:

© Define basic predicates

@ Model Dolev-Yao adversary in Horn clauses

© Translate the processes into Horn clauses

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

i@ (2.1): Define basic predicates
e attacker(mp): the adversary may have mp
e message(p, p’) means that the message p’ may appear on channel p

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8] (2.2): Model Dolev-Yao adversary in Horn clauses

% [EM: The adversary can overhear, intercept, and synthesize any
message

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8] (2.2): Model Dolev-Yao adversary in Horn clauses
% [EM: The adversary can overhear, intercept, and synthesize any
message

o Overhear. message(z,y) A attacker(z) = attacker(y)
o the adversary can listen on all channels it has

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8] (2.2): Model Dolev-Yao adversary in Horn clauses
% [EM: The adversary can overhear, intercept, and synthesize any
message

o Overhear. message(z,y) A attacker(z) = attacker(y)
o the adversary can listen on all channels it has

o Intercept: attacker(z) A attacker(y) = message(z,y)
e it can send all messages it has on all channels it has

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8] (2.2): Model Dolev-Yao adversary in Horn clauses
% [EM: The adversary can overhear, intercept, and synthesize any
message

o Overhear. message(z,y) A attacker(z) = attacker(y)
o the adversary can listen on all channels it has
o Intercept: attacker(z) A attacker(y) = message(z,y)
e it can send all messages it has on all channels it has
@ Synthesize:
e attacker(x1) A --- A attacker(z,,) = attacker(f(z1,...,2,))
@ constructor f

e attacker(U;) A --- A attacker(U,,) = attacker(U)
e destructor g(Ui,...,U,) =U

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8] (2.2): Model Dolev-Yao adversary in Horn clauses
% [EM: The adversary can overhear, intercept, and synthesize any
message

o Overhear. message(z,y) A attacker(z) = attacker(y)
o the adversary can listen on all channels it has
o Intercept: attacker(z) A attacker(y) = message(z,y)
e it can send all messages it has on all channels it has
@ Synthesize:
o attacker(x1) A --- A attacker(z,,) = attacker(f(z1,...,2y))
@ constructor f
e attacker(U;) A --- A attacker(U,,) = attacker(U)
e destructor g(Ui,...,U,) =U

iF: XE = BA—KZEEN -

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I8if: Algorithms | How to translate the code into Horn clauses?

Examples for Synthesize:

@ Constructors

attacker(m) A attacker(k) = attacker(senc(m, k)) (senc)
attacker(sk) = attacker(pk(sk)) (pk)
attacker(m) A attacker(pk) = attacker(aenc(m, pk)) (aenc)
attacker(m) A attacker(sk) = attacker(sign(m, sk)) (sign)

@ Destructors
attacker(senc(m, k)) A attacker(k) = attacker(m) (sdec)
attacker(aenc(m, pk(sk))) A attacker(sk) = attacker(m) (adec)
attacker(sign(m, sk)) A attacker(pk(sk)) = attacker(m) (check)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8 (2.3): Translate the processes into Horn clauses
% The translation [P]psH of a process P is a set of clauses
@ p is an environment that associates a pattern with each name and
variable,
@ s is a sequence of patterns, representing the current values of session
identifiers and inputs

e H is a sequence of facts, representing the hypothesis of the clauses

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

[8 (2.3): Translate the processes into Horn clauses
% The translation [P]psH of a process P is a set of clauses
@ p is an environment that associates a pattern with each name and
variable,
@ s is a sequence of patterns, representing the current values of session
identifiers and inputs
e H is a sequence of facts, representing the hypothesis of the clauses

[O]psH =0

[P | QlpsH = [P]psH U [Q]psH

['PlpsH = [P]p(s,i)H where i is a fresh variable

[new a; P]psH = [P](pla — a[s]])sH

lin(M, 2); PlosH = [P)(pl - o'])(s, 2')(H A message(p(M), 2'))
where 2’ is a fresh variable

[out(M, N); P]psH = [P]psH U {H = message(p(M),p(N))}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Example:
Py = new ssky4 : skey; new skp : skey; let spky = pk(sska) in

let pkp = pk(skp) in out(c, spk4);out(c, pkg);
(Pa(sska, pkp) | Pp(skp, spka))

From P,4, we can obtain a Horn clause:
attacker(pk(sskal])) (3.1)

attacker(pk(skg[]))

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Example:

Py(sska, pkg) = !in(c, zpr,, : pkey); new k : key;
out(c, aenc(sign(k2b(k), sska), Tpk,));
in(c, z : bitstring); let z = sdec(z, k) in O

From P4, we can obtain a Horn clause:

attacker(zpy) = (3.3)
attacker(aenc(sign(k[i, Tpk |, sskal]), Tpk,,)) |

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Example:
Pg(skpg, spk4) = !in(c,y : bitstring); let v/ = adec(y, skp) in
let), = b2k(check(y/, spk4)) in out(c,senc(s, zy))

From Pg, we can obtain a Horn clause:

attacker(aenc(sign(zy,, sskal]), pk(skg[]))) = (3.4)
attacker(senc(s[],)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Example:
Pg(skpg, spk4) = !in(c,y : bitstring); let v/ = adec(y, skp) in
let), = b2k(check(y/, spk4)) in out(c,senc(s, zy))

From Pg, we can obtain a Horn clause:

attacker(aenc(sign(zy,, sskal]), pk(skg[]))) = (3.4)
attacker(senc(s[],)

Totally, attacker(s[]) is derivable from the above clauses.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Example:
Pg(skpg, spk4) = !in(c,y : bitstring); let v/ = adec(y, skp) in
let), = b2k(check(y/, spk4)) in out(c,senc(s, zy))

From Pg, we can obtain a Horn clause:

attacker(aenc(sign(zy,, sskal]), pk(skg[]))) = (3.4)
attacker(senc(s[],)

Totally, attacker(s[]) is derivable from the above clauses.
Let's see the generated clauses:
< $./proverif -test DenningSacco-simple2.pv

ERSYEER: MR

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 18i$: Algorithms | How to translate the code into Horn clauses?

—— Query not attacker(s[]) in process 1.
Translating the process into Horn clauses...
Initial clauses:

Clause @: attacker(true)

(The attacker applies function true.)

Clause 1: attacker(v) —> attacker(spk(v))
(The attacker applies function spk.)

Clause 2: attacker(v) && attacker(v_1) -> attack
er(sign(v,v_1))
(The attacker applies function sign.)

Clause 3: attacker(v) && attacker(v_1) —> attack
er(senc(v,v_1))
(The attacker applies function senc.)

E#B https://faculty.ustc.edu.cn/hu: R FEFS 54 /67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 18i$: Algorithms | How to translate the code into Horn clauses?

Clause 4: attacker(senc(x_1,y_1)) && attacker(y_
1) —> attacker(x_1)
(The attacker applies function sdec.)

Clause 5: attacker(v) —> attacker(pk(v))
(The attacker applies function pk.)

Clause 6: attacker(false)
(The attacker applies function false.)

Clause 7: attacker(sign(m,k_1)) && attacker(spk(
k_1)) —> attacker(m)
(The attacker applies function checksign.)

E#B https://faculty.ustc.edu.cn/hu: R FEFS 55 /67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 38i: Algorithms | How to translate the code into Horn clauses?

Totally, attacker(s[]) is derivable from the above clauses.
@ This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:
Message 1. A — C: aenc(sign(k, sska), pkc)
Message 1. C(A) — B : aenc(sign(k, sska), pkp)
Message 2. B — C(A): senc(s, k)

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© 1Bt Algorithms

@ How to solve?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Where are we now?

Protocol: Properties to prove:
Pi calculus + cryptography Secrecy, authentication, ...

[Automatic translator]

‘ Horn clauses Derivability queries ‘

[Resolution with selection]

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

18] (3): How to solve?

t

[Resolution with selection]
No derivation: Derivation:

The property is true Attack at the Horn clause level

|

Attack reconstruction

/ N

Attack at the pi
calculus levelp False attack

The property is false| |"'I don’t know"

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm: Resolution Algorithm

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
@ Given two clauses R and R’
eR=H=C, R =FANH =
o Infer Rop R = cHANoH' = oC’
e C and F are unifiable, o is the most general unifier of C' and F

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
@ Given two clauses R and R’
eR=H=C, R =FANH =
o Infer Rop R = cHANoH' = oC’
e C and F are unifiable, o is the most general unifier of C' and F

(3.2) How to guide resolution?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
@ Given two clauses R and R’
eR=H=C, R =FANH =
o Infer Rop R = cHANoH' = oC’
e C and F are unifiable, o is the most general unifier of C' and F

(3.2) How to guide resolution? selection function sel(R)
@ returns
e a hypothesis of R
o the empty (meaning that the conclusion of R is selected)

@ the resolution step above is performed only when sel(R) = () and
sel(R') = {F}

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
@ Given two clauses R and R’
eR=H=C, R =FANH =
o Infer Rop R = cHANoH' = oC’
e C and F are unifiable, o is the most general unifier of C' and F

(3.2) How to guide resolution? selection function sel(R)
@ returns

e a hypothesis of R
o the empty (meaning that the conclusion of R is selected)

@ the resolution step above is performed only when sel(R) = () and
sel(R') = {F}
Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (ILTFT)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.3) How to design sel(R)?

XEE®mXTAYE)EL: reduce possibility of non-termination
@ a case: the fact attacker(v) where v is a variable or a may-fail
variable unifies with any fact attacker(p)

e so if attacker(v) is selected, the algorithm will almost never terminate.

@ other cases: B%

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.3) How to design sel(R)?

XEE®mXTAYE)EL: reduce possibility of non-termination
@ a case: the fact attacker(v) where v is a variable or a may-fail
variable unifies with any fact attacker(p)

e so if attacker(v) is selected, the algorithm will almost never terminate.
@ other cases: f%
So, a natural selection function is then:
selg(H = C) =
0 if all elements of H are disequalities or of the
form attacker(v), v variable or may-fail variable
{F} where F is not a disequality,
F +# attacker(v) and F' € H, otherwise

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 1#i$: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
% (3.4.1) use several optimizations in the resolution algorithm:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
% (3.4.1) use several optimizations in the resolution algorithm:
@ Elimination of subsumed clauses

e Hy = (1 subsumes Hy = (5, iff, there exists a substitution o such
that o Hy C Hy (multiset inclusion) and oC; = Cs.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
% (3.4.1) use several optimizations in the resolution algorithm:
@ Elimination of subsumed clauses

e Hy = (1 subsumes Hy = (5, iff, there exists a substitution o such
that o Hy C Hy (multiset inclusion) and oC; = Cs.

@ Elimination of duplicate hypotheses

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
% (3.4.1) use several optimizations in the resolution algorithm:
@ Elimination of subsumed clauses

e Hy = (1 subsumes Hy = (5, iff, there exists a substitution o such
that o Hy C Hy (multiset inclusion) and oC; = Cs.

@ Elimination of duplicate hypotheses
@ Elimination of tautologies

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 1#i$: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
2 (3.4.2) use heuristics, for example:

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 1#i$: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
2 (3.4.2) use heuristics, for example:

@ using destructors when possible yields better performance than
equations

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 1#i$: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
2 (3.4.2) use heuristics, for example:

@ using destructors when possible yields better performance than
equations

@ adjusting the arguments of patterns that represent names

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I2i8: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
2 (3.4.2) use heuristics, for example:
@ using destructors when possible yields better performance than
equations
@ adjusting the arguments of patterns that represent names

@ When ProVerif does not terminate, tuning the selection function of
the resolution algorithm may help.

e e.g., one can tell ProVerif to avoid selecting a fact that matches F', by
the declaration nounifF'.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

Outline

© 1Bt Algorithms

@ Performance Analysis

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I8if: Algorithms | Performance Analysis

[8] (4): Performance Analysis
Pros

@ High efficiency due to abstractions into Horn clauses
Cons

@ still may not terminate

@ incompleteness

@ since Horn clauses introduce approximations
e attack reconstruction fails corresponds to an “I do not know" answer

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif

1.4 I8if: Algorithms | Performance Analysis

[8] (4): Performance Analysis
Pros

@ High efficiency due to abstractions into Horn clauses
Cons

@ still may not terminate

@ incompleteness

@ since Horn clauses introduce approximations
e attack reconstruction fails corresponds to an “I do not know" answer

/M a): What approximation?
IN&: Ignores non-monotonous state transition, e.g.,
@ repetitions (or not) of actions are ignored

e in case some value first needs to be kept secret and is revealed later in
the protocol

@ bad support for private channels
e out(M, N)|P: P can be executed only after sending N on channel M.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

fel

SR KAEAL (FTik): fif ProVerif #HXMIAER. MBFK. TEHASE
ER, (BEARRRTF T EERE
o IERA (1): £/ ProVerif W EE RREWMIY, AIR{F—T CCF A,
B i3, RHITER, FHRTHEIE
o A (2): HXIZIHRORIER X, Bzt ProVerif BIIERZE
o &R (3): MIZHEEWIERAIRXFNTG, Be&EMEITHRIE
2 BN OER (FEKRTEIH, TURAESROKBREZE)
o iE: INIRERBIIEENTEERITE AERTEZIRE
AR, ERLIERTRER M TR Y

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

KETKIELSEFIEX

KIEW AT SER L (EARRF TR):

° A
e Just fast keying in the pi calculus

e Hash Gone Bad: Automated discovery of protocol attacks that
exploit hash function weaknesses

o Verified Models and Reference Implementations for the
TLS 1.3 Standard Candidate

e Automated Formal Analysis of a Protocol for Secure File Sharing
on Untrusted Storage

o Election Verifiability with ProVerif

e A Formal Analysis of 5G Authentication

o THIY

e The TAMARIN Prover for the Symbolic Analysis of Security Protocols
e An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://dl.acm.org/doi/10.1145/1266977.1266978
https://www.usenix.org/system/files/sec23summer_211-cheval-prepub.pdf
https://www.usenix.org/system/files/sec23summer_211-cheval-prepub.pdf
https://ieeexplore.ieee.org/document/7958594
https://ieeexplore.ieee.org/document/7958594
https://ieeexplore.ieee.org/document/4531168
https://ieeexplore.ieee.org/document/4531168
https://www.computer.org/csdl/proceedings-article/csf/2023/219200a488/1On91kycBXy
https://dl.acm.org/doi/10.1145/3243734.3243846
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://bblanche.gitlabpages.inria.fr/proverif/publications/BlanchetCSFW01.html
https://faculty.ustc.edu.cn/huangwenchao

	问题介绍: Study security protocols manually
	Model: A simple example a security protocol
	Assumption: Introducing the Dolev-Yao model
	Specification: Specifying the properties
	Algorithm: Manual Analysis

	应用: Modeling and Verification using ProVerif
	Modeling in language of Pi-calculus
	Specification: Specifying the properties
	Modeling in language of Pi-calculus
	Run ProVerif

	理论: Algorithms
	How to ensure the code is well-typed?
	How to translate the code into Horn clauses?
	How to solve?
	Performance Analysis

