
形式化方法导引
第 6 章 案例分析

6.1 ProVerif: A Verifier of Security Protocols

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

Outline

案例分析:

1 ProVerif: A Verifier of Security Protocols

2 Software Analysis: Abstract Interpretation and CEGAR

3 Coq Proof Assistant: A Prover based on Higher-order Logic

回顾: 程序验证方法的分类:
Verification (验证): 若程序设计正确，则给出正确性证明；若命题
错误，则给出“错误”的判断，并给出反例

Proof (证明): 若程序设计正确，则给出正确性证明

Falsification：找出程序设计的错误，给出反例。一般方法包括测
试、检测

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction

ProVerif is an automatic cryptographic protocol verifier

Related Papers (Introduction to ProVerif):
A survey of ProVerif
The most cited one (1288 times)

Related Papers (Application of ProVerif):
Verifying TLS 1.3 (S&P’17)
Secure File Sharing (S&P’08)
Just Fast Keying (TISSEC’07)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 67

http://staff.ustc.edu.cn/~huangwc/fm/BlanchetFnTPS16.pdf
http://staff.ustc.edu.cn/~huangwc/fm/Proverif-Prolog-Rules.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BhargavanBlanchetKobeissiSP2017.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BlanchetChaudhuriOakland08.pdf
http://staff.ustc.edu.cn/~huangwc/fm/BlanchetChaudhuriOakland08.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords

Keywords:
Assumption of Adversary

Symbolic model, i.e., Dolev-Yao model
ps: another model - computational model

Modeling
Pi-calculus

applied pi calculus
Specification

Trace properties
Equivalence properties

Algorithm
Horn clauses Abstraction
Resolution Horn Clauses by Unification

Why introducing these Keywords?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords

Keywords:
Assumption of Adversary

Symbolic model, i.e., Dolev-Yao model
ps: another model - computational model

Modeling
Pi-calculus

applied pi calculus
Specification

Trace properties
Equivalence properties

Algorithm
Horn clauses Abstraction
Resolution Horn Clauses by Unification

Why introducing these Keywords?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary
Symbolic model, i.e., Dolev-Yao model

Cryptographic primitives are considered as perfect blackboxes
Why?: Do not consider the case of cryptographic attacks

e.g., brute-force attacks on encryption keys
Another model - computational model

messages are bitstrings
cryptographic primitives are functions from bitstrings to bitstrings
the adversary is any probabilistic Turing machine
This is the model usually considered by cryptographers.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary
Symbolic model, i.e., Dolev-Yao model

Cryptographic primitives are considered as perfect blackboxes
Why?: Do not consider the case of cryptographic attacks

e.g., brute-force attacks on encryption keys
Another model - computational model

messages are bitstrings
cryptographic primitives are functions from bitstrings to bitstrings
the adversary is any probabilistic Turing machine
This is the model usually considered by cryptographers.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Dolev-Yao model

Assumption of Adversary
Symbolic model, i.e., Dolev-Yao model

Cryptographic primitives are considered as perfect blackboxes
Why?: Do not consider the case of cryptographic attacks

e.g., brute-force attacks on encryption keys
Another model - computational model

messages are bitstrings
cryptographic primitives are functions from bitstrings to bitstrings
the adversary is any probabilistic Turing machine
This is the model usually considered by cryptographers.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Pi-calculus

Modeling
Pi-calculus

applied pi calculus
Why?: Easier for modeling

Compared with transition system in model checking

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Pi-calculus

Modeling
Pi-calculus

applied pi calculus
Why?: Easier for modeling

Compared with transition system in model checking

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Trace properties & Equivalence properties

Specification
Trace properties
Equivalence properties

Why?: Easier for designing specifications
Compared with CTL, LTL in model checking

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Trace properties & Equivalence properties

Specification
Trace properties
Equivalence properties

Why?: Easier for designing specifications
Compared with CTL, LTL in model checking

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Unification on Horn clauses

Algorithm
Horn clauses Abstraction
Resolution of Horn Clauses by Unification

Why?:
Avoid state explosion
Abstraction reduces the complexity

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords | Unification on Horn clauses

Algorithm
Horn clauses Abstraction
Resolution of Horn Clauses by Unification

Why?:
Avoid state explosion
Abstraction reduces the complexity

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords

回顾: Keywords:
Assumption of Adversary

Symbolic model, i.e., Dolev-Yao model
ps: another model - computational model

Modeling
Pi-calculus

applied pi calculus
Specification

Trace properties
Equivalence properties

Algorithm
Horn clauses Abstraction
Resolution Horn Clauses by Unification

下一个问题: How to study ProVerif in detail?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.1 Introduction | Keywords

回顾: Keywords:
Assumption of Adversary

Symbolic model, i.e., Dolev-Yao model
ps: another model - computational model

Modeling
Pi-calculus

applied pi calculus
Specification

Trace properties
Equivalence properties

Algorithm
Horn clauses Abstraction
Resolution Horn Clauses by Unification

下一个问题: How to study ProVerif in detail?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

基本知识–密码的种类:
（1）对称密钥 (传统密码) (2) 非对称密钥 (公钥密码)

huangwc@ustc.edu.cn

 ጱचܻቘګᎱ֛ੂᰬل .1
ګᎱ֛ੂᰬل

փᕹੂᎱ Ꮁੂᰬل

ጱᓒဩݶፘጱੂᰬݶᥴੂֵአፘੂے ጱᓒဩݶፘጱੂᰬݶᥴੂֵአӧੂے

තݎොوՁੂᰬ ݶොֵአጱੂᰬӧ

ੂᰬᶳੂכ ᐺᰬᶳᰬل҅ੂכӧᵱᥝੂכ

ᝑဌํٌਙڞ҅௳מᥴੂၾ௳ӧݢᚆӧ
ᤈݢ

ᝑဌํٌਙڞ҅௳מᥴੂၾ௳ӧݢᚆӧ
ᤈݢ

૪Ꭳᓒဩᝑଗੂ҅ӧ᪃զᏟਧੂᰬ
૪Ꭳᓒဩ̵ᝑଗੂ̵ٌӾӞӻੂᰬ҅ӧ

᪃զᏟਧݚӞӻੂᰬ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

传统密码:

对称加密-解密过程:
对称密钥: k

明文消息: m

加密: c=senc(m, k)
解密: m=sdec(c, k)

公钥密码:

非对称加密-解密过程:
非对称密钥: 公钥-pk, 私钥-sk

明文消息: m

加密: c=aenc(m, pk(sk))
解密: m=adec(c, sk)

签名-验证过程:
非对称密钥: 公钥-pk, 私钥-sk

待签名消息: m

签名: c=sign(m, sk)
验证: verify m ≡ check(c, pk(sk))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

传统密码:

对称加密-解密过程:
对称密钥: k

明文消息: m

加密: c=senc(m, k)
解密: m=sdec(c, k)

公钥密码:

非对称加密-解密过程:
非对称密钥: 公钥-pk, 私钥-sk

明文消息: m

加密: c=aenc(m, pk(sk))
解密: m=adec(c, sk)

签名-验证过程:
非对称密钥: 公钥-pk, 私钥-sk

待签名消息: m

签名: c=sign(m, sk)
验证: verify m ≡ check(c, pk(sk))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

传统密码:

对称加密-解密过程:
对称密钥: k

明文消息: m

加密: c=senc(m, k)
解密: m=sdec(c, k)

公钥密码:

非对称加密-解密过程:
非对称密钥: 公钥-pk, 私钥-sk

明文消息: m

加密: c=aenc(m, pk(sk))
解密: m=adec(c, sk)

签名-验证过程:
非对称密钥: 公钥-pk, 私钥-sk

待签名消息: m

签名: c=sign(m, sk)
验证: verify m ≡ check(c, pk(sk))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

传统密码:

对称加密-解密过程:
对称密钥: k

明文消息: m

加密: c=senc(m, k)
解密: m=sdec(c, k)

公钥密码:

非对称加密-解密过程:
非对称密钥: 公钥-pk, 私钥-sk

明文消息: m

加密: c=aenc(m, pk(sk))
解密: m=adec(c, sk)

签名-验证过程:
非对称密钥: 公钥-pk, 私钥-sk

待签名消息: m

签名: c=sign(m, sk)
验证: verify m ≡ check(c, pk(sk))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

传统密码:

对称加密-解密过程:
对称密钥: k

明文消息: m

加密: c=senc(m, k)
解密: m=sdec(c, k)

公钥密码:

非对称加密-解密过程:
非对称密钥: 公钥-pk, 私钥-sk

明文消息: m

加密: c=aenc(m, pk(sk))
解密: m=adec(c, sk)

签名-验证过程:
非对称密钥: 公钥-pk, 私钥-sk

待签名消息: m

签名: c=sign(m, sk)
验证: verify m ≡ check(c, pk(sk))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually | Model

(1) Model: A simple example of a security protocol
Denning-Sacco key distribution protocol (Denning and Sacco, 1981)2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model
The network is represented by a set of abstract machines that can
exchange messages.
The adversary can overhear, intercept, and synthesize any message
The adversary is only limited by the constraints of the cryptographic
methods used

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model
The network is represented by a set of abstract machines that can
exchange messages.
The adversary can overhear, intercept, and synthesize any message
The adversary is only limited by the constraints of the cryptographic
methods used

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model
The network is represented by a set of abstract machines that can
exchange messages.
The adversary can overhear, intercept, and synthesize any message
The adversary is only limited by the constraints of the cryptographic
methods used

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually | Model

(2) Assumption: Introducing the Dolev-Yao model
The network is represented by a set of abstract machines that can
exchange messages.
The adversary can overhear, intercept, and synthesize any message
The adversary is only limited by the constraints of the cryptographic
methods used

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

(3) Specification: Specifying the properties
Only A should be able to decrypt the message and get the secret s

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.2 问题介绍: Study security protocols manually

(4) Manual Analysis: discovered attacks54 Verifying Security Properties

aenc(sign(k, sskA), pkC) aenc(sign(k, sskA), pkB)

senc(s, k)

k fresh

A (Alice)
impersonating A (Alice)
C (adversary) B (Bob)

Figure 3.2: Attack

a derivation. The reconstructed attack is a trace of the process P0 that
outputs s publicly. The strategy for reconstructing this trace consists
in executing the semantics of process P0, guided by the derivation: a
reduction of the process is executed only if a clause in the derivation
corresponds to this reduction. We showed the soundness and termination
of this algorithm. We also gave a formal definition of this correspondence
between clauses and reductions, by giving an explicit construction of a
derivation from a trace of P0. We have then shown a partial completeness
result for attack reconstruction: if all outputs in P0 are of the form
out(M, N); P where M is a name in Npub not bound in P0 or P = 0,
and the derivation corresponds to a trace, then our algorithm succeeds
in reconstructing a trace corresponding to the derivation. Moreover,
with the same assumptions, our algorithm reconstructs a trace without
backtracking. It is therefore very e�cient in this case, and in practice it
is generally very fast. We successfully tested this attack reconstruction
algorithm on many protocols of the literature. To mention an extreme
example, we could reconstruct an attack with 200 parallel sessions
against the protocol f

200
g

200 (Millen, 1999). (The protocol f
n
g

n has
an attack with n parallel sessions.)

In the example above, the obtained derivation corresponds to an
attack. This is unfortunately not always the case, since Horn clauses
introduce approximations. These approximations are useful in order
to handle an infinite state space, but because of these approximations,
ProVerif may sometimes find a derivation while secrecy is preserved.
In this case, attack reconstruction fails, obviously. The case in which

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

Names: represent atomic data, such as keys and nonces
Variables: can be substituted by terms.
Constructors: are used to build terms, e.g.,

senc(c, k) represents the encryption of c under the key k.

Destructors:
do not appear in terms, but manipulate terms in expressions （见下页）

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

Names: represent atomic data, such as keys and nonces
Variables: can be substituted by terms.
Constructors: are used to build terms, e.g.,

senc(c, k) represents the encryption of c under the key k.

Destructors:
do not appear in terms, but manipulate terms in expressions （见下页）

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

Names: represent atomic data, such as keys and nonces
Variables: can be substituted by terms.
Constructors: are used to build terms, e.g.,

senc(c, k) represents the encryption of c under the key k.

Destructors:
do not appear in terms, but manipulate terms in expressions （见下页）

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

Names: represent atomic data, such as keys and nonces
Variables: can be substituted by terms.
Constructors: are used to build terms, e.g.,

senc(c, k) represents the encryption of c under the key k.

Destructors:
do not appear in terms, but manipulate terms in expressions （见下页）

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

Destructors:
do not appear in terms, but manipulate terms in expressions
They are functions on terms that processes can apply, via the
expression evaluation construct, i.e.,

let x : T = D in P else Q

A destructor g is defined by a finite ordered list of rewrite rules def(g)
of the form

g(U1, ..., Un) → U where U1, ..., Un, U are may-fail terms

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

Using constructors and destructors, we can represent data structures, such
as

tuples:
constructor: tupleT1,...,Tn(M1, ..., Mn), where term Mi is of type Ti,
and tupleT1,...,Tn

(M1, ..., Mn) returns a result of type bitstring.
destructor: ithT1,...,Tn

(tupleT1,...,T n(x1, ..., xn)) → xi

cryptographic operations
constructor: senc(bitstring,key): bitstring
destructor: sdec(senc(x, y), y) → x
constructor: pk(skey):pkey, aenc(bitstring,pkey):bitstring
destructor: adec(aenc(x, pk(y)), y) → x
constructor: pk(skey):pkey, sign(bitstring,skey):bitstring
destructor: getmess(sign(x, y)) → x

Type converter
constructor: b2k(bitstring) : key
destructor: b2k(k2b(x)) → x

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The nil process 0 does nothing.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The output process out(N, M);P outputs the message M on the channel
N and then executes P .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The input process in(N, x : T);P inputs a message on channel N , and
executes P with x bound to the input message.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The process P | Q is the parallel composition of P and Q.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The replication !P represents an unbounded number of copies of P in
parallel.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The restriction new a : T ; P creates a new name a of type T , and then
executes P .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The process let x : T = D in P else Q tries to evaluate D;
if D evaluates to a term M , then x is bound to M and P is executed
if the evaluation of D fails, then Q is executed

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.1. Core language: syntax and informal semantics 13

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P, Q ::= processes
0 nil
out(N, M); P output
in(N, x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and

The conditional if M then P else Q executes P if M is true (or is a
variable bound to true); it executes Q if M is different from true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

问题 1: This model of the protocol is weak, because
A and B talk only to each other
they do not interact with other, possibly dishonest participants

We can strengthen model by replacing the process PA with the following
process:

22 The Protocol Specification Language

The process PA executes the role of A: it creates a fresh key k,
converts it to a bitstring by k2b, signs it with its secret key sskA, then
encrypts this message under pkB, and sends the obtained message on
channel c. PA then expects the second message of the protocol on
channel c, stores it in x and decrypts it. If decryption succeeds, the
result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel
c, stores it in y, decrypts it with skB, and verifies the signature with
spkA. If these verifications succeed, B believes that xk is a key shared
between A and B, and it sends the secret s encrypted under xk. If the
protocol is correct, s should remain secret. In this example, there are
two free names, c and s; c is public and s is private, so Npub = {c} and
Npriv = {s}.

This model of the protocol is weak, because A and B talk only to each
other: they do not interact with other, possibly dishonest participants.
We can strengthen the model as follows. We replace the process PA

with the following process:

PA(sskA, pkB) = ! in(c, xpkB
: pkey); new k : key;

out(c, aenc(sign(k2b(k), sskA), xpkB
));

in(c, x : bitstring); let z = sdec(x, k) in 0

This process PA first receives on the public channel c the key xpkB
,

which is the public key of A’s interlocutor in the protocol. This message
is not part of the protocol; it allows the adversary to choose with whom
A is going to execute a session. In a standard session of the protocol,
this key is pkB, but the adversary can also choose another key, for
instance one of his own keys, so that A can interact with the adversary
playing the role of a dishonest participant. Then PA executes the role of
A as before, with the key xpkB

instead of pkB . The process PB does not
need to be modified because B sends the second message senc(s, k) only
if its interlocutor is the honest participant A. (Otherwise, the secret
would obviously be leaked.) Hence the signature is verified with the key
spkA of A and not with an arbitrary key chosen by the adversary.

The above model still assumes for simplicity that A and B each
play only one role of the protocol. One could easily write an even more

问题 2: The above model still assumes for simplicity that A and B each
play only one role of the protocol.

One could easily write an even more general model in which they play
both roles (改进过程: 略)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Model: Pi calculus

问题 1: This model of the protocol is weak, because
A and B talk only to each other
they do not interact with other, possibly dishonest participants

We can strengthen model by replacing the process PA with the following
process:

22 The Protocol Specification Language

The process PA executes the role of A: it creates a fresh key k,
converts it to a bitstring by k2b, signs it with its secret key sskA, then
encrypts this message under pkB, and sends the obtained message on
channel c. PA then expects the second message of the protocol on
channel c, stores it in x and decrypts it. If decryption succeeds, the
result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel
c, stores it in y, decrypts it with skB, and verifies the signature with
spkA. If these verifications succeed, B believes that xk is a key shared
between A and B, and it sends the secret s encrypted under xk. If the
protocol is correct, s should remain secret. In this example, there are
two free names, c and s; c is public and s is private, so Npub = {c} and
Npriv = {s}.

This model of the protocol is weak, because A and B talk only to each
other: they do not interact with other, possibly dishonest participants.
We can strengthen the model as follows. We replace the process PA

with the following process:

PA(sskA, pkB) = ! in(c, xpkB
: pkey); new k : key;

out(c, aenc(sign(k2b(k), sskA), xpkB
));

in(c, x : bitstring); let z = sdec(x, k) in 0

This process PA first receives on the public channel c the key xpkB
,

which is the public key of A’s interlocutor in the protocol. This message
is not part of the protocol; it allows the adversary to choose with whom
A is going to execute a session. In a standard session of the protocol,
this key is pkB, but the adversary can also choose another key, for
instance one of his own keys, so that A can interact with the adversary
playing the role of a dishonest participant. Then PA executes the role of
A as before, with the key xpkB

instead of pkB . The process PB does not
need to be modified because B sends the second message senc(s, k) only
if its interlocutor is the honest participant A. (Otherwise, the secret
would obviously be leaked.) Hence the signature is verified with the key
spkA of A and not with an arbitrary key chosen by the adversary.

The above model still assumes for simplicity that A and B each
play only one role of the protocol. One could easily write an even more

问题 2: The above model still assumes for simplicity that A and B each
play only one role of the protocol.

One could easily write an even more general model in which they play
both roles (改进过程: 略)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Specification: Pi calculus

Specifying the properties:

query not attacker(s).

What if we model the property in CTL?

M, s0 ⊨ AG ¬attacker(s)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Coding: Pi calculus

Now coding:(1st version)

free c: channel.

type key.
type pkey.
type skey.
type spkey.
type sskey.

fun k2b(key):bitstring [data, typeConverter].
reduc forall k:key; b2k(k2b(k)) = k.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Coding: Pi calculus

fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
reduc forall x: bitstring, y: skey; adec(aenc(x, pk(y)), y) = x.

fun spk(sskey): spkey.
fun sign(bitstring, sskey): bitstring.
reduc forall m: bitstring, k: sskey; checksign(sign(m, k), spk(k)) = m.

fun senc(bitstring, key): bitstring.
reduc forall x: bitstring, y: key; sdec(senc(x, y), y) = x.

//Specification
free s: bitstring [private].
query attacker(s).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Coding: Pi calculus

//PA will be revised in 2nd version

let PA(sskA: sskey, pkB:pkey) =
new k:key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x:bitstring);
let z = sdec(x, k) in 0.

let PB(skB:skey, spkA:spkey) =
in(c, y:bitstring);
let y1 = adec(y, skB) in
let xk = b2k(checksign(y1 , spkA)) in
out(c, senc(s, xk)).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Coding: Pi calculus

process
new sskA: sskey;
new skB: skey;

let spkA = spk(sskA) in
let pkB = pk(skB) in
out(c, spkA);
out(c, pkB);
(!PA(sskA, pkB) |!PB(skB, spkA))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Coding: Pi calculus

// PA in 2nd version
let PA(sskA: sskey, pkB:pkey) =

in(c, xpkB:pkey);
new k:key;
out(c, aenc(sign(k2b(k), sskA), xpkB));
in(c, x:bitstring);
let z = sdec(x, k) in 0.

// Recall PA in 1st version
let PA(sskA: sskey, pkB:pkey) =

new k:key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x:bitstring);
let z = sdec(x, k) in 0.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 39 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.3 应用: Modeling and Verification using ProVerif | Run: Pi calculus

//Results in 1st version:
Query not attacker(s[]) is true.

//Results in 2st version:
Query not attacker(s[]) is false.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 40 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 41 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 42 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to ensure the code is well-typed?

问 (1): How to ensure the code is well-typed?
答: Type System

Type environment Γ
The type system uses a type environment Γ that maps variables and
names to their type.
This type environment initially contains the types of the free names of
the closed process under consideration.

The type system defines three judgments:
Γ ⊢ M : T – the term M is well-typed of type T in the type
environment Γ
Γ ⊢ D : T – the expression D is well-typed of type T in the type
environment Γ
Γ ⊢ P – the process P is well-typed in the type environment .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 43 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to ensure the code is well-typed?24 The Protocol Specification Language

(x : T) œ �
� „ x : T

(a : T) œ �
� „ a : T

f(T1, . . . , Tn) : T � „ M1 : T1 . . . � „ Mn : Tn

� „ f(M1, . . . , Mn) : T

h(T1, . . . , Tn) : T � „ D1 : T1 . . . � „ Dn : Tn

� „ h(D1, . . . , Dn) : T

� „ fail : T

� „ N : channel � „ M : T � „ P

� „ out(N, M); P

� „ N : channel �, x : T „ P

� „ in(N, x : T); P

� „ 0 � „ P � „ Q

� „ P | Q

� „ P

� „ !P
�, a : T „ P

� „ new a : T ; P

� „ D : T �, x : T „ P � „ Q

� „ let x : T = D in P else Q

� „ M : bool � „ P � „ Q

� „ if M then P else Q

Figure 2.3: Type system

PA(sskA, pkB) = ! in(c, xpkB
); new k;

out(c, aenc(sign(k, sskA), xpkB
)); in(c, x); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y); let y
Õ = adec(y, skB) in

let xk = check(yÕ
, spkA) in out(c, senc(s, xk))

ProVerif verifies this process when it is given the process of §2.2.

2.4 Core language: formal semantics

The formal semantics of this language is defined in Figure 2.4. The
definition proceeds in two steps. First, we define the semantics of

24 The Protocol Specification Language

(x : T) œ �
� „ x : T

(a : T) œ �
� „ a : T

f(T1, . . . , Tn) : T � „ M1 : T1 . . . � „ Mn : Tn

� „ f(M1, . . . , Mn) : T

h(T1, . . . , Tn) : T � „ D1 : T1 . . . � „ Dn : Tn

� „ h(D1, . . . , Dn) : T

� „ fail : T

� „ N : channel � „ M : T � „ P

� „ out(N, M); P

� „ N : channel �, x : T „ P

� „ in(N, x : T); P

� „ 0 � „ P � „ Q

� „ P | Q

� „ P

� „ !P
�, a : T „ P

� „ new a : T ; P

� „ D : T �, x : T „ P � „ Q

� „ let x : T = D in P else Q

� „ M : bool � „ P � „ Q

� „ if M then P else Q

Figure 2.3: Type system

PA(sskA, pkB) = ! in(c, xpkB
); new k;

out(c, aenc(sign(k, sskA), xpkB
)); in(c, x); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y); let y
Õ = adec(y, skB) in

let xk = check(yÕ
, spkA) in out(c, senc(s, xk))

ProVerif verifies this process when it is given the process of §2.2.

2.4 Core language: formal semantics

The formal semantics of this language is defined in Figure 2.4. The
definition proceeds in two steps. First, we define the semantics of

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 44 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 45 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2): How to translate the code into Horn clauses?
答:

1 Define basic predicates
2 Model Dolev-Yao adversary in Horn clauses
3 Translate the processes into Horn clauses

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2): How to translate the code into Horn clauses?
答:

1 Define basic predicates
2 Model Dolev-Yao adversary in Horn clauses
3 Translate the processes into Horn clauses

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2): How to translate the code into Horn clauses?
答:

1 Define basic predicates
2 Model Dolev-Yao adversary in Horn clauses
3 Translate the processes into Horn clauses

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.1): Define basic predicates
attacker(mp): the adversary may have mp
message(p, p′) means that the message p′ may appear on channel p

...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 47 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.2): Model Dolev-Yao adversary in Horn clauses
答: 回顾: The adversary can overhear, intercept, and synthesize any
message

Overhear: message(x, y) ∧ attacker(x) ⇒ attacker(y)
the adversary can listen on all channels it has

Intercept: attacker(x) ∧ attacker(y) ⇒ message(x, y)
it can send all messages it has on all channels it has

Synthesize:
attacker(x1) ∧ · · · ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

constructor f

attacker(U1) ∧ · · · ∧ attacker(Un) ⇒ attacker(U)
destructor g(U1, . . . , Un) = U

注: 这里 ⇒ 即为一阶逻辑里的 →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.2): Model Dolev-Yao adversary in Horn clauses
答: 回顾: The adversary can overhear, intercept, and synthesize any
message

Overhear: message(x, y) ∧ attacker(x) ⇒ attacker(y)
the adversary can listen on all channels it has

Intercept: attacker(x) ∧ attacker(y) ⇒ message(x, y)
it can send all messages it has on all channels it has

Synthesize:
attacker(x1) ∧ · · · ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

constructor f

attacker(U1) ∧ · · · ∧ attacker(Un) ⇒ attacker(U)
destructor g(U1, . . . , Un) = U

注: 这里 ⇒ 即为一阶逻辑里的 →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.2): Model Dolev-Yao adversary in Horn clauses
答: 回顾: The adversary can overhear, intercept, and synthesize any
message

Overhear: message(x, y) ∧ attacker(x) ⇒ attacker(y)
the adversary can listen on all channels it has

Intercept: attacker(x) ∧ attacker(y) ⇒ message(x, y)
it can send all messages it has on all channels it has

Synthesize:
attacker(x1) ∧ · · · ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

constructor f

attacker(U1) ∧ · · · ∧ attacker(Un) ⇒ attacker(U)
destructor g(U1, . . . , Un) = U

注: 这里 ⇒ 即为一阶逻辑里的 →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.2): Model Dolev-Yao adversary in Horn clauses
答: 回顾: The adversary can overhear, intercept, and synthesize any
message

Overhear: message(x, y) ∧ attacker(x) ⇒ attacker(y)
the adversary can listen on all channels it has

Intercept: attacker(x) ∧ attacker(y) ⇒ message(x, y)
it can send all messages it has on all channels it has

Synthesize:
attacker(x1) ∧ · · · ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

constructor f

attacker(U1) ∧ · · · ∧ attacker(Un) ⇒ attacker(U)
destructor g(U1, . . . , Un) = U

注: 这里 ⇒ 即为一阶逻辑里的 →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.2): Model Dolev-Yao adversary in Horn clauses
答: 回顾: The adversary can overhear, intercept, and synthesize any
message

Overhear: message(x, y) ∧ attacker(x) ⇒ attacker(y)
the adversary can listen on all channels it has

Intercept: attacker(x) ∧ attacker(y) ⇒ message(x, y)
it can send all messages it has on all channels it has

Synthesize:
attacker(x1) ∧ · · · ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

constructor f

attacker(U1) ∧ · · · ∧ attacker(Un) ⇒ attacker(U)
destructor g(U1, . . . , Un) = U

注: 这里 ⇒ 即为一阶逻辑里的 →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 48 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Examples for Synthesize:
Constructors

3.2. Secrecy 47

Example 3.1. We suppose that public-key encryption is defined by (2.1).
The constructors senc, pk, aenc, and sign yield the following clauses:

attacker(m) · attacker(k) ∆ attacker(senc(m, k)) (senc)
attacker(sk) ∆ attacker(pk(sk)) (pk)
attacker(m) · attacker(pk) ∆ attacker(aenc(m, pk)) (aenc)
attacker(m) · attacker(sk) ∆ attacker(sign(m, sk)) (sign)

The corresponding destructors sdec, adec, check, and getmess yield the
following clauses:

attacker(senc(m, k)) · attacker(k) ∆ attacker(m) (sdec)
attacker(aenc(m, pk(sk))) · attacker(sk) ∆ attacker(m) (adec)
attacker(sign(m, sk)) · attacker(pk(sk)) ∆ attacker(m) (check)
attacker(sign(m, sk)) ∆ attacker(m) (getmess)

For instance, the clause for sdec models that, when the adversary has
the ciphertext senc(m, k) and the key k, then it can obtain the cleartext
m by decryption. The clause for check is less general than the one for
getmess since, in the former clause, the attacker additionally needs to
know the key pk(sk); more formally, the clause for check is subsumed by
the one for getmess, so it is discarded during the resolution algorithm
(see “Elimination of subsumed clauses” in §3.2.3).

Clauses for the protocol

To translate the protocol into clauses, we first need to define evaluation
on patterns expressions, defined by the following grammar:

Dp ::= pattern expression
mp may-fail pattern
h(Dp1, . . . , Dpn) function application

Evaluation of open pattern expressions is defined as a relation Dp »
Õ

(mp, ‡, „), where the substitution ‡ collects instantiations of Dp obtained
by unification and the formula „ collects the side conditions that express
that certain rewrite rules of destructors do not apply. More formally,

Destructors

3.2. Secrecy 47

Example 3.1. We suppose that public-key encryption is defined by (2.1).
The constructors senc, pk, aenc, and sign yield the following clauses:

attacker(m) · attacker(k) ∆ attacker(senc(m, k)) (senc)
attacker(sk) ∆ attacker(pk(sk)) (pk)
attacker(m) · attacker(pk) ∆ attacker(aenc(m, pk)) (aenc)
attacker(m) · attacker(sk) ∆ attacker(sign(m, sk)) (sign)

The corresponding destructors sdec, adec, check, and getmess yield the
following clauses:

attacker(senc(m, k)) · attacker(k) ∆ attacker(m) (sdec)
attacker(aenc(m, pk(sk))) · attacker(sk) ∆ attacker(m) (adec)
attacker(sign(m, sk)) · attacker(pk(sk)) ∆ attacker(m) (check)
attacker(sign(m, sk)) ∆ attacker(m) (getmess)

For instance, the clause for sdec models that, when the adversary has
the ciphertext senc(m, k) and the key k, then it can obtain the cleartext
m by decryption. The clause for check is less general than the one for
getmess since, in the former clause, the attacker additionally needs to
know the key pk(sk); more formally, the clause for check is subsumed by
the one for getmess, so it is discarded during the resolution algorithm
(see “Elimination of subsumed clauses” in §3.2.3).

Clauses for the protocol

To translate the protocol into clauses, we first need to define evaluation
on patterns expressions, defined by the following grammar:

Dp ::= pattern expression
mp may-fail pattern
h(Dp1, . . . , Dpn) function application

Evaluation of open pattern expressions is defined as a relation Dp »
Õ

(mp, ‡, „), where the substitution ‡ collects instantiations of Dp obtained
by unification and the formula „ collects the side conditions that express
that certain rewrite rules of destructors do not apply. More formally,

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 49 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.3): Translate the processes into Horn clauses
答: The translation JP KρsH of a process P is a set of clauses

ρ is an environment that associates a pattern with each name and
variable,
s is a sequence of patterns, representing the current values of session
identifiers and inputs
H is a sequence of facts, representing the hypothesis of the clauses

3.2. Secrecy 49

The translation [[P]]flsH of a process P is a set of clauses, where fl is
an environment that associates a pattern with each name and variable,
s is a sequence of patterns, and H is a sequence of facts. We extend
fl as a substitution by fl(h(M1, . . . , Mn)) = h(fl(M1), . . . , fl(Mn)) and
fl(fail) = fail. The empty sequence is written ÿ; the concatenation of
a pattern p to the sequence s is written s, p; the concatenation of a
fact F to the sequence H is written H · F . Intuitively, H represents the
hypothesis of the clauses, fl represents the names and variables that are
already associated with a pattern, and s represents the current values
of session identifiers and inputs. The translation [[P]]flsH is defined as
follows:

[[0]]flsH = ÿ

[[P | Q]]flsH = [[P]]flsH fi [[Q]]flsH

[[!P]]flsH = [[P]]fl(s, i)H where i is a fresh variable
[[new a; P]]flsH = [[P]](fl[a ‘æ a[s]])sH

[[in(M, x); P]]flsH = [[P]](fl[x ‘æ x
Õ])(s, x

Õ)(H · message(fl(M), x
Õ))

where x
Õ is a fresh variable

[[out(M, N); P]]flsH = [[P]]flsH fi {H ∆ message(fl(M), fl(N))}
[[let x = D in P else Q]]flsH =

€
{[[P]]((‡fl)[x ‘æ p])(‡s)(‡H · „) | fl(D) »

Õ (p, ‡, „)}

fi

€
{[[Q]](‡fl)(‡s)(‡H · „) | fl(D) »

Õ (fail, ‡, „)}

[[if M then P else Q]]flsH =
Y
_____]

_____[

[[P]](‡fl)(‡s)(‡H) fi [[Q]]fls(H · fl(M) ”= true)
where ‡ is the most general unifier of fl(M) and true,
when fl(M) and true unify

[[Q]]flsH when fl(M) and true do not unify

The translation of a process is a set of Horn clauses that express that it
may send certain messages.

• The nil process does nothing, so its translation is empty.

• The clauses for the parallel composition of processes P and Q are

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 50 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

问 (2.3): Translate the processes into Horn clauses
答: The translation JP KρsH of a process P is a set of clauses

ρ is an environment that associates a pattern with each name and
variable,
s is a sequence of patterns, representing the current values of session
identifiers and inputs
H is a sequence of facts, representing the hypothesis of the clauses

3.2. Secrecy 49

The translation [[P]]flsH of a process P is a set of clauses, where fl is
an environment that associates a pattern with each name and variable,
s is a sequence of patterns, and H is a sequence of facts. We extend
fl as a substitution by fl(h(M1, . . . , Mn)) = h(fl(M1), . . . , fl(Mn)) and
fl(fail) = fail. The empty sequence is written ÿ; the concatenation of
a pattern p to the sequence s is written s, p; the concatenation of a
fact F to the sequence H is written H · F . Intuitively, H represents the
hypothesis of the clauses, fl represents the names and variables that are
already associated with a pattern, and s represents the current values
of session identifiers and inputs. The translation [[P]]flsH is defined as
follows:

[[0]]flsH = ÿ

[[P | Q]]flsH = [[P]]flsH fi [[Q]]flsH

[[!P]]flsH = [[P]]fl(s, i)H where i is a fresh variable
[[new a; P]]flsH = [[P]](fl[a ‘æ a[s]])sH

[[in(M, x); P]]flsH = [[P]](fl[x ‘æ x
Õ])(s, x

Õ)(H · message(fl(M), x
Õ))

where x
Õ is a fresh variable

[[out(M, N); P]]flsH = [[P]]flsH fi {H ∆ message(fl(M), fl(N))}
[[let x = D in P else Q]]flsH =

€
{[[P]]((‡fl)[x ‘æ p])(‡s)(‡H · „) | fl(D) »

Õ (p, ‡, „)}

fi

€
{[[Q]](‡fl)(‡s)(‡H · „) | fl(D) »

Õ (fail, ‡, „)}

[[if M then P else Q]]flsH =
Y
_____]

_____[

[[P]](‡fl)(‡s)(‡H) fi [[Q]]fls(H · fl(M) ”= true)
where ‡ is the most general unifier of fl(M) and true,
when fl(M) and true unify

[[Q]]flsH when fl(M) and true do not unify

The translation of a process is a set of Horn clauses that express that it
may send certain messages.

• The nil process does nothing, so its translation is empty.

• The clauses for the parallel composition of processes P and Q are

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 50 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Example:

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

From PA, we can obtain a Horn clause:

3.2. Secrecy 51

Results and example

We define the clauses corresponding to the process P0 as:

RP0,Npub,Npriv = [[P0]]fl0ÿÿ fi {attacker(a[]) | a œ Npub} fi

{(Rn), (Rfail), (Rh), (Rl), (Rs)}

The following theorem allows one to prove secrecy using Horn clauses:

Theorem 3.1 (Soundness of the clauses). Let P0 be a closed process
and Npub be a set of names. Let M be a closed term and p be the
pattern obtained from the term M by replacing all names a with
a[]. Let Npriv be a set of names disjoint from Npub and such that
fn(P0) fi fn(M) ™ Npub fi Npriv. If attacker(p) is not derivable from
RP0,Npub,Npriv , then P0 preserves the secrecy of M from Npub.

The proof of this result relies on a type system to express the
soundness of the clauses on P0, and on the subject reduction of this
type system to show that soundness of the clauses is preserved during all
executions of the process. This technique was introduced in (Abadi and
Blanchet, 2005a) where a similar result is proved. (Abadi and Blanchet,
2005a) also shows an equivalence between an instance of a generic type
system for proving secrecy properties of protocols and the Horn clause
verification method. This instance is the most precise instance of this
generic type system: if a secrecy property can be proved by any instance
of this type system, then it can be proved by the Horn clause approach.
To use Theorem 3.1, one needs to determine whether a fact is derivable
from the clauses. This is done using a resolution algorithm described in
§3.2.3.

Example 3.2. Let Npub = {c} be the initial knowledge of the adversary
and Npriv = {s} be the private free names. For the process P0 of
Example 2.2, the clauses [[P0]]fl0ÿÿ are, after replacing message(c[], p)
with attacker(p):

attacker(pk(sskA[])) (3.1)
attacker(pk(skB[])) (3.2)
attacker(xpkB

) ∆

attacker(aenc(sign(k[i, xpkB
], sskA[]), xpkB

))
(3.3)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 51 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Example:

22 The Protocol Specification Language

The process PA executes the role of A: it creates a fresh key k,
converts it to a bitstring by k2b, signs it with its secret key sskA, then
encrypts this message under pkB, and sends the obtained message on
channel c. PA then expects the second message of the protocol on
channel c, stores it in x and decrypts it. If decryption succeeds, the
result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel
c, stores it in y, decrypts it with skB, and verifies the signature with
spkA. If these verifications succeed, B believes that xk is a key shared
between A and B, and it sends the secret s encrypted under xk. If the
protocol is correct, s should remain secret. In this example, there are
two free names, c and s; c is public and s is private, so Npub = {c} and
Npriv = {s}.

This model of the protocol is weak, because A and B talk only to each
other: they do not interact with other, possibly dishonest participants.
We can strengthen the model as follows. We replace the process PA

with the following process:

PA(sskA, pkB) = ! in(c, xpkB
: pkey); new k : key;

out(c, aenc(sign(k2b(k), sskA), xpkB
));

in(c, x : bitstring); let z = sdec(x, k) in 0

This process PA first receives on the public channel c the key xpkB
,

which is the public key of A’s interlocutor in the protocol. This message
is not part of the protocol; it allows the adversary to choose with whom
A is going to execute a session. In a standard session of the protocol,
this key is pkB, but the adversary can also choose another key, for
instance one of his own keys, so that A can interact with the adversary
playing the role of a dishonest participant. Then PA executes the role of
A as before, with the key xpkB

instead of pkB . The process PB does not
need to be modified because B sends the second message senc(s, k) only
if its interlocutor is the honest participant A. (Otherwise, the secret
would obviously be leaked.) Hence the signature is verified with the key
spkA of A and not with an arbitrary key chosen by the adversary.

The above model still assumes for simplicity that A and B each
play only one role of the protocol. One could easily write an even more

From PA, we can obtain a Horn clause:

3.2. Secrecy 51

Results and example

We define the clauses corresponding to the process P0 as:

RP0,Npub,Npriv = [[P0]]fl0ÿÿ fi {attacker(a[]) | a œ Npub} fi

{(Rn), (Rfail), (Rh), (Rl), (Rs)}

The following theorem allows one to prove secrecy using Horn clauses:

Theorem 3.1 (Soundness of the clauses). Let P0 be a closed process
and Npub be a set of names. Let M be a closed term and p be the
pattern obtained from the term M by replacing all names a with
a[]. Let Npriv be a set of names disjoint from Npub and such that
fn(P0) fi fn(M) ™ Npub fi Npriv. If attacker(p) is not derivable from
RP0,Npub,Npriv , then P0 preserves the secrecy of M from Npub.

The proof of this result relies on a type system to express the
soundness of the clauses on P0, and on the subject reduction of this
type system to show that soundness of the clauses is preserved during all
executions of the process. This technique was introduced in (Abadi and
Blanchet, 2005a) where a similar result is proved. (Abadi and Blanchet,
2005a) also shows an equivalence between an instance of a generic type
system for proving secrecy properties of protocols and the Horn clause
verification method. This instance is the most precise instance of this
generic type system: if a secrecy property can be proved by any instance
of this type system, then it can be proved by the Horn clause approach.
To use Theorem 3.1, one needs to determine whether a fact is derivable
from the clauses. This is done using a resolution algorithm described in
§3.2.3.

Example 3.2. Let Npub = {c} be the initial knowledge of the adversary
and Npriv = {s} be the private free names. For the process P0 of
Example 2.2, the clauses [[P0]]fl0ÿÿ are, after replacing message(c[], p)
with attacker(p):

attacker(pk(sskA[])) (3.1)
attacker(pk(skB[])) (3.2)
attacker(xpkB

) ∆

attacker(aenc(sign(k[i, xpkB
], sskA[]), xpkB

))
(3.3)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 52 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Example:

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

From PB, we can obtain a Horn clause:
52 Verifying Security Properties

attacker(aenc(sign(xm, sskA[]), pk(skB[]))) ∆

attacker(senc(s[], xm))
(3.4)

Clauses (3.1) and (3.2) correspond to the two outputs in P0 itself,
out(c, pkA); out(c, pkB). They express that the adversary has the public
keys. Clause (3.3) corresponds to the output in PA: if the adversary has
xpkB

, it can send it to the first input of PA, and PA then replies with
the message aenc(sign(k[i, xpkB

], sskA[]), xpkB
), which the adversary

intercepts. The second input of PA and the subsequent expression
evaluation do not generate any clause, since no message is sent. Finally,
Clause (3.4) corresponds to the output in PB: if the adversary obtains
a message of the form aenc(sign(xm, sskA[]), pk(skB[])), it can send
this message to PB. The decryption and signature verification succeed,
so PB replies by sending s encrypted under xm, which the adversary
intercepts.

The fact attacker(s[]) is derivable from the clauses RP0,Npub,Npriv .
Hence the secrecy of s cannot be proved by Theorem 3.1 for this
protocol. The derivation obtained by ProVerif is shown in Figure 3.1.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

Message 1. A æ C : aenc(sign(k, sskA), pkC)
Message 1’. C(A) æ B : aenc(sign(k, sskA), pkB)
Message 2. B æ C(A) : senc(s, k)

This attack is illustrated in Figure 3.2. In this attack, A runs the protocol
with a dishonest principal C. This principal gets the first message of the
protocol aenc(sign(k, sskA), pkC), decrypts it and re-encrypts it under
the public key of B. The obtained message aenc(sign(k, sskA), pkB)
corresponds exactly to the first message of a session between A and B.
Then, C sends this message to B impersonating A. B replies with the
secret s, intended for A, encrypted under k. C, having obtained the key
k by the first message, can decrypt this message and obtain the secret
s.

The key skC corresponds to b0[x] in the derivation of Figure 3.1,
and is generated by the adversary using Clause (Rn). The key pkC cor-
responds to pk(b0[x]) and is computed by the application of Clause (Rf)

Totally, attacker(s[]) is derivable from the above clauses.
Let’s see the generated clauses:
命令: $./proverif -test DenningSacco-simple2.pv
部分结果: 见后页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 53 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Example:

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

From PB, we can obtain a Horn clause:
52 Verifying Security Properties

attacker(aenc(sign(xm, sskA[]), pk(skB[]))) ∆

attacker(senc(s[], xm))
(3.4)

Clauses (3.1) and (3.2) correspond to the two outputs in P0 itself,
out(c, pkA); out(c, pkB). They express that the adversary has the public
keys. Clause (3.3) corresponds to the output in PA: if the adversary has
xpkB

, it can send it to the first input of PA, and PA then replies with
the message aenc(sign(k[i, xpkB

], sskA[]), xpkB
), which the adversary

intercepts. The second input of PA and the subsequent expression
evaluation do not generate any clause, since no message is sent. Finally,
Clause (3.4) corresponds to the output in PB: if the adversary obtains
a message of the form aenc(sign(xm, sskA[]), pk(skB[])), it can send
this message to PB. The decryption and signature verification succeed,
so PB replies by sending s encrypted under xm, which the adversary
intercepts.

The fact attacker(s[]) is derivable from the clauses RP0,Npub,Npriv .
Hence the secrecy of s cannot be proved by Theorem 3.1 for this
protocol. The derivation obtained by ProVerif is shown in Figure 3.1.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

Message 1. A æ C : aenc(sign(k, sskA), pkC)
Message 1’. C(A) æ B : aenc(sign(k, sskA), pkB)
Message 2. B æ C(A) : senc(s, k)

This attack is illustrated in Figure 3.2. In this attack, A runs the protocol
with a dishonest principal C. This principal gets the first message of the
protocol aenc(sign(k, sskA), pkC), decrypts it and re-encrypts it under
the public key of B. The obtained message aenc(sign(k, sskA), pkB)
corresponds exactly to the first message of a session between A and B.
Then, C sends this message to B impersonating A. B replies with the
secret s, intended for A, encrypted under k. C, having obtained the key
k by the first message, can decrypt this message and obtain the secret
s.

The key skC corresponds to b0[x] in the derivation of Figure 3.1,
and is generated by the adversary using Clause (Rn). The key pkC cor-
responds to pk(b0[x]) and is computed by the application of Clause (Rf)

Totally, attacker(s[]) is derivable from the above clauses.
Let’s see the generated clauses:
命令: $./proverif -test DenningSacco-simple2.pv
部分结果: 见后页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 53 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Example:

2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B

sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in

let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y
Õ = adec(y, skB) in

let xk = b2k(check(yÕ
, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB , computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.

From PB, we can obtain a Horn clause:
52 Verifying Security Properties

attacker(aenc(sign(xm, sskA[]), pk(skB[]))) ∆

attacker(senc(s[], xm))
(3.4)

Clauses (3.1) and (3.2) correspond to the two outputs in P0 itself,
out(c, pkA); out(c, pkB). They express that the adversary has the public
keys. Clause (3.3) corresponds to the output in PA: if the adversary has
xpkB

, it can send it to the first input of PA, and PA then replies with
the message aenc(sign(k[i, xpkB

], sskA[]), xpkB
), which the adversary

intercepts. The second input of PA and the subsequent expression
evaluation do not generate any clause, since no message is sent. Finally,
Clause (3.4) corresponds to the output in PB: if the adversary obtains
a message of the form aenc(sign(xm, sskA[]), pk(skB[])), it can send
this message to PB. The decryption and signature verification succeed,
so PB replies by sending s encrypted under xm, which the adversary
intercepts.

The fact attacker(s[]) is derivable from the clauses RP0,Npub,Npriv .
Hence the secrecy of s cannot be proved by Theorem 3.1 for this
protocol. The derivation obtained by ProVerif is shown in Figure 3.1.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

Message 1. A æ C : aenc(sign(k, sskA), pkC)
Message 1’. C(A) æ B : aenc(sign(k, sskA), pkB)
Message 2. B æ C(A) : senc(s, k)

This attack is illustrated in Figure 3.2. In this attack, A runs the protocol
with a dishonest principal C. This principal gets the first message of the
protocol aenc(sign(k, sskA), pkC), decrypts it and re-encrypts it under
the public key of B. The obtained message aenc(sign(k, sskA), pkB)
corresponds exactly to the first message of a session between A and B.
Then, C sends this message to B impersonating A. B replies with the
secret s, intended for A, encrypted under k. C, having obtained the key
k by the first message, can decrypt this message and obtain the secret
s.

The key skC corresponds to b0[x] in the derivation of Figure 3.1,
and is generated by the adversary using Clause (Rn). The key pkC cor-
responds to pk(b0[x]) and is computed by the application of Clause (Rf)

Totally, attacker(s[]) is derivable from the above clauses.
Let’s see the generated clauses:
命令: $./proverif -test DenningSacco-simple2.pv
部分结果: 见后页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 53 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 54 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 55 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to translate the code into Horn clauses?

Totally, attacker(s[]) is derivable from the above clauses.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

52 Verifying Security Properties

attacker(aenc(sign(xm, sskA[]), pk(skB[]))) ∆

attacker(senc(s[], xm))
(3.4)

Clauses (3.1) and (3.2) correspond to the two outputs in P0 itself,
out(c, pkA); out(c, pkB). They express that the adversary has the public
keys. Clause (3.3) corresponds to the output in PA: if the adversary has
xpkB

, it can send it to the first input of PA, and PA then replies with
the message aenc(sign(k[i, xpkB

], sskA[]), xpkB
), which the adversary

intercepts. The second input of PA and the subsequent expression
evaluation do not generate any clause, since no message is sent. Finally,
Clause (3.4) corresponds to the output in PB: if the adversary obtains
a message of the form aenc(sign(xm, sskA[]), pk(skB[])), it can send
this message to PB. The decryption and signature verification succeed,
so PB replies by sending s encrypted under xm, which the adversary
intercepts.

The fact attacker(s[]) is derivable from the clauses RP0,Npub,Npriv .
Hence the secrecy of s cannot be proved by Theorem 3.1 for this
protocol. The derivation obtained by ProVerif is shown in Figure 3.1.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

Message 1. A æ C : aenc(sign(k, sskA), pkC)
Message 1’. C(A) æ B : aenc(sign(k, sskA), pkB)
Message 2. B æ C(A) : senc(s, k)

This attack is illustrated in Figure 3.2. In this attack, A runs the protocol
with a dishonest principal C. This principal gets the first message of the
protocol aenc(sign(k, sskA), pkC), decrypts it and re-encrypts it under
the public key of B. The obtained message aenc(sign(k, sskA), pkB)
corresponds exactly to the first message of a session between A and B.
Then, C sends this message to B impersonating A. B replies with the
secret s, intended for A, encrypted under k. C, having obtained the key
k by the first message, can decrypt this message and obtain the secret
s.

The key skC corresponds to b0[x] in the derivation of Figure 3.1,
and is generated by the adversary using Clause (Rn). The key pkC cor-
responds to pk(b0[x]) and is computed by the application of Clause (Rf)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 56 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 57 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Where are we now?10 Introduction

Pi calculus + cryptography Secrecy, authentication, ...

Horn clauses Derivability queries

Resolution with selection

Automatic translator

Derivation:No derivation:

Protocol: Properties to prove:

The property is true Attack at the Horn clause level

Attack reconstruction

False attack
"I don’t know"

Attack at the pi
The property is false

calculus level

Figure 1.1: Structure of ProVerif

1.2 Structure of ProVerif

The structure of ProVerif is represented in Figure 1.1. ProVerif takes as
input a model of the protocol in an extension of the pi calculus with
cryptography, similar to the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016) and detailed in the next chapter. It supports
a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that
we want to prove. It can verify various security properties, including se-
crecy, authentication, and some observational equivalence properties. It
automatically translates this information into an internal representation
by Horn clauses: the protocol is translated into a set of Horn clauses,
and the security properties to prove are translated into derivability
queries on these clauses. ProVerif uses an algorithm based on resolution

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 58 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

问 (3): How to solve?

10 Introduction

Pi calculus + cryptography Secrecy, authentication, ...

Horn clauses Derivability queries

Resolution with selection

Automatic translator

Derivation:No derivation:

Protocol: Properties to prove:

The property is true Attack at the Horn clause level

Attack reconstruction

False attack
"I don’t know"

Attack at the pi
The property is false

calculus level

Figure 1.1: Structure of ProVerif

1.2 Structure of ProVerif

The structure of ProVerif is represented in Figure 1.1. ProVerif takes as
input a model of the protocol in an extension of the pi calculus with
cryptography, similar to the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016) and detailed in the next chapter. It supports
a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that
we want to prove. It can verify various security properties, including se-
crecy, authentication, and some observational equivalence properties. It
automatically translates this information into an internal representation
by Horn clauses: the protocol is translated into a set of Horn clauses,
and the security properties to prove are translated into derivability
queries on these clauses. ProVerif uses an algorithm based on resolution

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 59 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

Algorithm: Resolution Algorithm

(3.1) What is resolution?
Given two clauses R and R′

R = H ⇒ C, R′ = F ∧ H ′ ⇒ C ′

Infer R ◦F R′ = σH ∧ σH ′ ⇒ σC ′

C and F are unifiable, σ is the most general unifier of C and F

(3.2) How to guide resolution? selection function sel(R)
returns

a hypothesis of R
the empty (meaning that the conclusion of R is selected)

the resolution step above is performed only when sel(R) = ∅ and
sel(R′) = {F}

Then,(3.3) How to design sel(R),(3.4) Which sel(R) to choose? (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 60 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.3) How to design sel(R)?

这里要面对的问题: reduce possibility of non-termination
a case: the fact attacker(v) where v is a variable or a may-fail
variable unifies with any fact attacker(p)

so if attacker(v) is selected, the algorithm will almost never terminate.
other cases: 略

So, a natural selection function is then:

3.2. Secrecy 57

R0 until a fixpoint is reached, that is, no new clause is created. When
the fixpoint is reached, saturate(R0) returns the subset of the clauses
R in the fixpoint such that sel(R) = ÿ.

Resolution with free selection is sound and complete for any selection
function, but the choice of this function considerably influences its speed
(and its termination). The fact attacker(v) where v is a variable or a
may-fail variable unifies with any fact attacker(p), so if attacker(v) is
selected, the algorithm will almost never terminate. Therefore, we avoid
selecting attacker(v). Furthermore, disequalities are treated by special
simplification steps, shown below, so we never select them. A natural
selection function is then:

sel0(H ∆ C) =
Y
_____]

_____[

ÿ if all elements of H are disequalities or of the
form attacker(v), v variable or may-fail variable

{F} where F is not a disequality,
F ”= attacker(v) and F œ H, otherwise

Optimizations

The resolution algorithm uses several optimizations, in order to speed up
resolution. We mention the main optimizations in this section. Others
are presented in (Blanchet, 2009). These optimizations are applied
on the initial clauses and after each resolution step. The first three
optimizations are standard, while the last two are domain-specific.

• Elimination of subsumed clauses. The clause H1 ∆ C1 subsumes
H2 ∆ C2 if and only if there exists a substitution ‡ such that
‡H1 ™ H2 (multiset inclusion) and ‡C1 = C2. All clauses sub-
sumed by another clause of the current clause set are removed.

• Elimination of duplicate hypotheses. Only one copy of duplicate
hypotheses in a clause is kept.

• Elimination of tautologies. Tautologies (clauses whose conclusion
is already present in the hypotheses) are removed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 61 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.3) How to design sel(R)?

这里要面对的问题: reduce possibility of non-termination
a case: the fact attacker(v) where v is a variable or a may-fail
variable unifies with any fact attacker(p)

so if attacker(v) is selected, the algorithm will almost never terminate.
other cases: 略

So, a natural selection function is then:

3.2. Secrecy 57

R0 until a fixpoint is reached, that is, no new clause is created. When
the fixpoint is reached, saturate(R0) returns the subset of the clauses
R in the fixpoint such that sel(R) = ÿ.

Resolution with free selection is sound and complete for any selection
function, but the choice of this function considerably influences its speed
(and its termination). The fact attacker(v) where v is a variable or a
may-fail variable unifies with any fact attacker(p), so if attacker(v) is
selected, the algorithm will almost never terminate. Therefore, we avoid
selecting attacker(v). Furthermore, disequalities are treated by special
simplification steps, shown below, so we never select them. A natural
selection function is then:

sel0(H ∆ C) =
Y
_____]

_____[

ÿ if all elements of H are disequalities or of the
form attacker(v), v variable or may-fail variable

{F} where F is not a disequality,
F ”= attacker(v) and F œ H, otherwise

Optimizations

The resolution algorithm uses several optimizations, in order to speed up
resolution. We mention the main optimizations in this section. Others
are presented in (Blanchet, 2009). These optimizations are applied
on the initial clauses and after each resolution step. The first three
optimizations are standard, while the last two are domain-specific.

• Elimination of subsumed clauses. The clause H1 ∆ C1 subsumes
H2 ∆ C2 if and only if there exists a substitution ‡ such that
‡H1 ™ H2 (multiset inclusion) and ‡C1 = C2. All clauses sub-
sumed by another clause of the current clause set are removed.

• Elimination of duplicate hypotheses. Only one copy of duplicate
hypotheses in a clause is kept.

• Elimination of tautologies. Tautologies (clauses whose conclusion
is already present in the hypotheses) are removed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 61 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.1) use several optimizations in the resolution algorithm:

Elimination of subsumed clauses
H1 ⇒ C1 subsumes H2 ⇒ C2, iff, there exists a substitution σ such
that σH1 ⊆ H2 (multiset inclusion) and σC1 = C2.

Elimination of duplicate hypotheses
Elimination of tautologies
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 62 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.1) use several optimizations in the resolution algorithm:

Elimination of subsumed clauses
H1 ⇒ C1 subsumes H2 ⇒ C2, iff, there exists a substitution σ such
that σH1 ⊆ H2 (multiset inclusion) and σC1 = C2.

Elimination of duplicate hypotheses
Elimination of tautologies
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 62 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.1) use several optimizations in the resolution algorithm:

Elimination of subsumed clauses
H1 ⇒ C1 subsumes H2 ⇒ C2, iff, there exists a substitution σ such
that σH1 ⊆ H2 (multiset inclusion) and σC1 = C2.

Elimination of duplicate hypotheses
Elimination of tautologies
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 62 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.1) use several optimizations in the resolution algorithm:

Elimination of subsumed clauses
H1 ⇒ C1 subsumes H2 ⇒ C2, iff, there exists a substitution σ such
that σH1 ⊆ H2 (multiset inclusion) and σC1 = C2.

Elimination of duplicate hypotheses
Elimination of tautologies
...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 62 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.2) use heuristics, for example:

using destructors when possible yields better performance than
equations
adjusting the arguments of patterns that represent names
When ProVerif does not terminate, tuning the selection function of
the resolution algorithm may help.

e.g., one can tell ProVerif to avoid selecting a fact that matches F , by
the declaration nounifF .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 63 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.2) use heuristics, for example:

using destructors when possible yields better performance than
equations
adjusting the arguments of patterns that represent names
When ProVerif does not terminate, tuning the selection function of
the resolution algorithm may help.

e.g., one can tell ProVerif to avoid selecting a fact that matches F , by
the declaration nounifF .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 63 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.2) use heuristics, for example:

using destructors when possible yields better performance than
equations
adjusting the arguments of patterns that represent names
When ProVerif does not terminate, tuning the selection function of
the resolution algorithm may help.

e.g., one can tell ProVerif to avoid selecting a fact that matches F , by
the declaration nounifF .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 63 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | How to solve?

(3.4) Which sel(R) to choose?
答: (3.4.2) use heuristics, for example:

using destructors when possible yields better performance than
equations
adjusting the arguments of patterns that represent names
When ProVerif does not terminate, tuning the selection function of
the resolution algorithm may help.

e.g., one can tell ProVerif to avoid selecting a fact that matches F , by
the declaration nounifF .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 63 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
Outline

1 问题介绍: Study security protocols manually
Model: A simple example a security protocol
Assumption: Introducing the Dolev-Yao model
Specification: Specifying the properties
Algorithm: Manual Analysis

2 应用: Modeling and Verification using ProVerif
Modeling in language of Pi-calculus
Specification: Specifying the properties
Modeling in language of Pi-calculus
Run ProVerif

3 理论: Algorithms
How to ensure the code is well-typed?
How to translate the code into Horn clauses?
How to solve?
Performance Analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 64 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | Performance Analysis

问 (4): Performance Analysis
Pros

High efficiency due to abstractions into Horn clauses
Cons

still may not terminate
incompleteness

since Horn clauses introduce approximations
attack reconstruction fails corresponds to an “I do not know”answer

小问: What approximation?
小答: Ignores non-monotonous state transition, e.g.,

repetitions (or not) of actions are ignored
in case some value first needs to be kept secret and is revealed later in
the protocol

bad support for private channels
out(M, N)|P : P can be executed only after sending N on channel M .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 65 / 67

https://faculty.ustc.edu.cn/huangwenchao

1. ProVerif
1.4 理论: Algorithms | Performance Analysis

问 (4): Performance Analysis
Pros

High efficiency due to abstractions into Horn clauses
Cons

still may not terminate
incompleteness

since Horn clauses introduce approximations
attack reconstruction fails corresponds to an “I do not know”answer

小问: What approximation?
小答: Ignores non-monotonous state transition, e.g.,

repetitions (or not) of actions are ignored
in case some value first needs to be kept secret and is revealed later in
the protocol

bad support for private channels
out(M, N)|P : P can be executed only after sending N on channel M .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 65 / 67

https://faculty.ustc.edu.cn/huangwenchao

作业

实验大作业 (可选): 做 ProVerif 相关的大实验。题目开放，下面为参考
选题，但不限于下面选题

选题 (1): 使用 ProVerif 验证更复杂安全协议, 可模仿一下 CCF A，
B 类论文，来进行建模, 并成功验证
选题 (2): 尝试设计核心验证算法，改进 ProVerif 的验证效率
选题 (3): 阅读其它验证器的论文和代码，自己模仿设计新的验证
器, 或修改核心模块 (不要求完整实现，可以只包含核心求解算法)
注：评分标准根据实现难度和工作量来评定，不要求完整实现所有
内容, 上述实现需尽可能提供完整文档

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 66 / 67

https://faculty.ustc.edu.cn/huangwenchao

本章节大作业参考论文

大作业可参考论文 (但不限于下列论文):
应用

Just fast keying in the pi calculus
Hash Gone Bad: Automated discovery of protocol attacks that
exploit hash function weaknesses
Verified Models and Reference Implementations for the
TLS 1.3 Standard Candidate
Automated Formal Analysis of a Protocol for Secure File Sharing
on Untrusted Storage
Election Verifiability with ProVerif
A Formal Analysis of 5G Authentication

工具实现
The TAMARIN Prover for the Symbolic Analysis of Security Protocols
An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 67 / 67

https://dl.acm.org/doi/10.1145/1266977.1266978
https://www.usenix.org/system/files/sec23summer_211-cheval-prepub.pdf
https://www.usenix.org/system/files/sec23summer_211-cheval-prepub.pdf
https://ieeexplore.ieee.org/document/7958594
https://ieeexplore.ieee.org/document/7958594
https://ieeexplore.ieee.org/document/4531168
https://ieeexplore.ieee.org/document/4531168
https://www.computer.org/csdl/proceedings-article/csf/2023/219200a488/1On91kycBXy
https://dl.acm.org/doi/10.1145/3243734.3243846
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://bblanche.gitlabpages.inria.fr/proverif/publications/BlanchetCSFW01.html
https://faculty.ustc.edu.cn/huangwenchao

	问题介绍: Study security protocols manually
	Model: A simple example a security protocol
	Assumption: Introducing the Dolev-Yao model
	Specification: Specifying the properties
	Algorithm: Manual Analysis

	应用: Modeling and Verification using ProVerif
	Modeling in language of Pi-calculus
	Specification: Specifying the properties
	Modeling in language of Pi-calculus
	Run ProVerif

	理论: Algorithms
	How to ensure the code is well-typed?
	How to translate the code into Horn clauses?
	How to solve?
	Performance Analysis

