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Software Analysis

1. Abstract Interpretation

MODULE main

A 1
y : 0..15000;
ASSIGN _
G 0..69
init(y) := 0; ® G (yin ( )
TRANS e return false
case e G (yin (0..71))

y=70 : next(y)=0;
TRUE : next(y)=y+1;
esac
LTLSPEC
G (y in (0..70))

Deductive verifiers require annotations (e.g.,
loop invariants) from users

@ Fortunately, many techniques that can automatically learn loop
invariants
e A common framework for this purpose is Abstract Interpretation (Al)
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Software Analysis

1. Abstract Interpretation

@ Abstract interpretation forms the basis of most static analyzers
o A framework for computing over-approximations of program states

( ] )
All possible states
Bad
states
States
computed Actual
by static states
analysis
\ Y,

@ Cons: Cannot reason about the exact program behavior
@ Pros: It can be enough to prove program correctness
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Software Analysis

1. Abstract Interpretation

@ Motivation Example: Insertion Sort

1 for i=1 to 99 do

2

3 p:=T[i]; j = i+1;

4

5 while j <= 100 and T[j] < p do
6

7 Ti-1] == T[]l § = j+L
8

9 end ;

10

11 T[j—1] = p;

12 end;

[@: Is there any out of bound array access?
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Software Analysis

1. Abstract Interpretation

11
12 end;

Motivation Example: Insertion Sort

i=1 to 99 do
// i€ [1,99]
p:=T[i]; j = i+1;

// 1€[1,99], j€ [2,100]

while j <= 100 and T[j] < p do
/) 1€[1,99], j€ [2,100]
T(i-1] == T[j]; | == j+1L;
/) i€[1,99], je€[3,101]

end;

// 1€[1,99], je[2,101]

T[i—1] = p;

[@: Is there any out of bound array access?
Z: No

by interval analysis, using an Al tool, e.g., Apron
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Software Analysis

1. Abstract Interpretation
@ Graphic Example:

y2(t)

Possible
trajectories
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Software Analysis

1. Abstract Interpretation

@ Graphic Example: Specification

z(t)
Forbidden zone
Possible

. trajectories
I
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Software Analysis

1. Abstract Interpretation

@ Graphic Example: Test — main problem: absence of coverage

z(t)
Forbidden zone — Error I!!

Possible
trajectories

Test of a few trajectories

I
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Software Analysis

1. Abstract Interpretation

@ Graphic Example: Abstract interpretation — Soundness

z(t)

Forbidden zone

Possible
trajectories

Abstraction of the trajectories

A https://faculty.ustc.edu.cn/huz BRI ESS|


https://faculty.ustc.edu.cn/huangwenchao

Software Analysis

1. Abstract Interpretation

@ Graphic Example: Erroneous abstraction — Unsound

z(t)

Forbidden zone Error !N!

Possible
trajectories

Erroneous trajectory abstraction
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Software Analysis

1. Abstract Interpretation

@ Graphic Example: Imprecision — False alarms

z(t)

Forbidden zone False alarm

Possible
trajectories

Imprecise trajectory abstraction
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Software Analysis

1. Abstract Interpretation

The Al Recipe

@ Define abstract domain - fixes “shape” of the invariants
o eg., 1 <x <y (intervals), or £z +y < ¢ (octagons)

@ Define abstract semantics (transformers)
o Define how to symbolically execute each statement in the chosen
abstract domain
e Must be sound wrt to concrete semantics

© lterate abstract transformers until fixed point
o The fixed-point is an over-approximation of program behavior
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L—Software Analysis

Abstract interpretation provides
approximations of program behavior

a

recipe

for

computing

over-



Software Analysis
1. Abstract Interpretation | 1.1 Abstract Domain

Simple Example: Sign Domain

Suppose we want to infer invariants of the form z 1 0 where
o e {>,=,><}

@ i.e., zero, non-negative, positive, negative

Each element in
this lattice is an
“abstract value",

This corresponds to the following abstract domain represented as /attice:
Lattice is a partially ordered set

/non_( \ e i.e, (S,C), where
(¢|5eZAz>0} /\ @ each pair of elements has
pos  zero o a least upper bound
\\/ @ i.e., join U

- e a greatest lower bound
@ i.e., meet N
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

The “meaning” of abstract domain is given by abstraction and
concretization functions that relate concrete and abstract values

Concretization function (7)

It maps each abstract value to sets of concrete elements
e y(pos) ={z|ze€ZANx >0}

Abstraction function («)

It maps sets of concrete elements to the most precise value in the
abstract domain

e a({2,10,0}) = non-neg
e «({3,99}) = pos
o a({-3,2})=T

FOL# https://faculty.ustc.edu.cn/hu: BRI ESS|
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Interval abstraction «

7

{z:[1,99],y:[2,77)}
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Interval concretization ~

Y
Y-

{z:[1,99],9: [2,77]}
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Requirement 1: The abstraction « is monotone

90

61 {z :[33,89],y : [48,61]}

C

48 {z:[1,99],y : [2,90]}

XCY =alX)CaY)
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Requirement 2: The concretization  is monotone

y
90t

61 -

a8

— | {z:[33,89],y: [48,61]}
. :

T {z:[1,99],y : [2,90]}

2 |-

F3GHA https://faculty.ustc.edu

XLY =7(X)Cr(Y)

.cn/huz BRI ESS|
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Requirement 3: The v o @ composition is extensive

y
s
+ * : * + {CE . [1,99],y . [2,77]}
2 _ //
1 99 " Z

X Cyea(X)
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

@ Requirement 4: The « o~ composition is reductive

Yy
77t
{z:[1,99],y:[2,77]}
P — :/l;
{z:[1,99],v:[2, 77|}
2} :
1 939 T

aoq(Y)=/CY
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Software Analysis

1. Abstract Interpretation | 1.1 Abstract Domain

Total requirement: concrete domain D and abstract domain D must be
related through Galois connection:

Galois connection

Vo € D,Vé € D.a(z) C & < x C (%)

D gl D

«

Intuitively, this says that «,~ respect the orderings of D, D
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Software Analysis

1. Abstract Interpretation | 1.2 Abstract Semantics

Step 2: Abstract Semantics

Define abstract transformers (i.e., semantics) for each statement, given
abstract domain, «,

@ Describes how statements affect our abstraction

@ Abstract counter-part of operational semantics rules

Operational Semantics Abstract Semantics

S: Var—»Concrete value A: Var— Abstract value

X=yopz

X=yopz

S': Var—+Concrete value

A': Var— Abstract value

#8 https://faculty.ustc.edu.cn/huz
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Software Analysis

1. Abstract Interpretation | 1.2 Abstract Semantics

@ Back to Our Example, we can define abstract transformer for
x =1y + z as follows:

pos | neg zero non-neg | T | L

pos pos | T pos pos T L
neg T | neg neg T T L
zero pos | neg zero non-neg | T | L
non-neg | pos | T | non-neg | non-neg | T | L
T T T T T T 4L

1 1 1 1 1 1L
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Software Analysis
1. Abstract Interpretation | 1.2 Abstract Semantics

Set of traces

4

L]
o % ; s 1 $ ' ‘ N
: 5 ¢ ‘ ‘ ! 4 . L] " :

L] o
Traces of sets G o o M N M R B e
I :. . . ,;- :- ‘:. _e—>®

= Lo

e e oo . f ;r . o8

4

Trace of Intervals l»i+!_E_H>Hi
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Software Analysis

1. Abstract Interpretation | 1.2 Abstract Semantics

Soundness of Abstract Transformers

e Total requirement: Abstract semantics must be sound wrt (i.e.,
faithfully models) the concrete semantics

Soundness of '

If F' is the concrete transformer and F' is its abstract counterpart,
soundness of F' means:

Ve € D,V2 € D.a(z) C 2 = ofF(z)) C F(2)

Note: recall Galois connection

@ In other words, If Z is an overapproximation of x, then ﬁ’(fc) is an
over-approximation of F'(x)
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point

Step 3: Fixed-Point Computation

Repeated symbolic execution of the program using abstract semantics
until our approximation of the program reaches an equilibrium:

L] £4(L)

1€Z

@
Ab,

Stract don, \
N Fixed-point :\’:ﬁ::g

Abstract engine %

semantics -
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point

An example:
1 x = 0;
2y =1;
3 while(y <= n) {
4 if (z=0) {
5 x = x+1;
6
7 else {
8 X =X +Y;
o }
10 y = y+1;
u }

@ Specification: Is x always
non-negative inside the
loop?

A https://faculty.ustc.edu.cn/huz

Control Flow Graph

x=0
=1

|

loop head |«

apN

exit block branch

g

X=x+1 X=X+Y

N/

loop end

y=y+1

BRI ESS|
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Least fixed-point

Least fixed-point
@ Start with underapproximation
@ Want to compute abstract values at every program point

@ Grow the approximation until it stops growing

Least fixed-point

@ /nitialize all abstract states to L

@ Repeat until no abstract state changes at any program point:
o Compute abstract state on entry to a basic block B by taking the join
of B's predecessors
e Symbolically execute each basic block using abstract semantics

o M JF: Assuming correctness of your abstract semantics, the least
fixed point is an overapproximation of the program!

FOL# https://faculty.ustc.edu.cn/hu: BRI ESS|


https://faculty.ustc.edu.cn/huangwenchao

Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Least fixed-point

Control Flow Graph - Initialization

x

x
I

Ly
Ly
Ly

| —
L —t>
| —

>

loop head [«

x=1,y=1 —

LN

exit block branch

x=1,y=1 —>»
2\

X=x+1 xexay €T XL y=1
—xfl,y=1

\ / B
x=_1, y=1 —ploop end
x=L, y=1 —pp YV

x=1,y=1

x=1,y=1 —

x=1,y=1 —
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Widening

Interval Analysis
@ In the interval domain, abstract values are of the form [c;, c2] where

c1 is a lower bound and ¢ has an upper bound
@ If the abstract value for x is [1, 3] at some program point P, this
means 1 < x < 3 is an invariant of P

Does not have

o ['ic'x] finite-height
Fo2g " @27 property!
(1 @ T e et
- 0lg T L 0 [0
l-x,-lh "', [-2,0) o [[1,1] ° '.-[o,z] .[1,ac]
oty etz et ® o1 . o~
L el gl el 11 02,
~o
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Software Analysis
1. Abstract Interpretation | 1.3 Fixed Point | Widening

Requirements on widening V operator

O Va,be D.alUbLC avb

@ For all increasing chains dg C d; C ..., the ascending chains
dy Cdy C ... eventually stabilizes where dj = dy and

div_H = diVVdi-i-l

.

T4
@ Overapproximate least-fixed-point by using widening operator rather
than join
e Sound and guaranteed to terminate

@ This is called post-fixed-point
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L—Software Analysis

If abstract domain does not have this property, we need a widening V
operator that forces convergence



Software Analysis
1. Abstract Interpretation | 1.3 Fixed Point | Widening

f5]: Widening in Interval Domain

[a,b]V L = [a,b]
1V]a,b] = [a,b]
[a,b]V[c,d] = [(¢c < a? — o0 :a),(b<d?+ o0 :b)]
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L—Software Analysis

For the interval domain, we can define the simple widening operator.



Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Widening

Example with widening

Widening - Initialization

i=*
x=5
y=7

l{—x:[S, 5), y=[7, 7], i[~o0, o0

x=L,y=L, i=L )Ioop head |«

i<0/ ‘\Azo

vl G— x=1,y=1,i=L
exit block =
x=L,y=L,i=Ll— P E1 < x=L, =1, i=L
—

Widening - step1

i="
X=
y=
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Narrowing

e [G@: In many cases, widening overshoots and generates imprecise
results
o fi:
1 x=1;
2 while (%) {
3 X = 2;
4 }
o After widening, x’s abstract value will be [1, 00| after the loop; but
more precise value is [1, 2]
o FRRTFTE: After finding a post-fixed-point (using widening), have a

second pass using a narrowing operator
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Software Analysis
1. Abstract Interpretation | 1.3 Fixed Point | Narrowing

Requirements on Narrowing A\ operator (Recall Widening V)

Q@ Vr,yc D.(yCz)=>yLC (zAy) Cx
@ For all decreasing chains g J x; J ..., the chains yg, y1, -
eventually stabilizes where yy = ¢ and
Yit1 = YiDTit1 )
[a,b]AL = [a,b]
1 Ala,b] = [a, b]
[a,b]Ale,d] = [(a = —o0?c: a), (b= 007d : b)]

BRI ESS|
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Narrowing

Example with narrowing

Narrowing - After Widening

x=1
<« x=[1,1]
v
x=[1,00] | Ioop head [«
/ \ | x=[1,09]
x=[1, 0o]

’ )eXIt block x=2 4 X=[2, 2]
—

Narrowing - step1

(R https://faculty.ustc.edu.cn/huz

x=1
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

Both the sign and interval domain are non-relational domains
e i.e., do not relate different program variables

Relational domains track relationships between variables
e more powerful

@ A motivating example

1 x=0; y=0;

2 while (%) {

3 = x+1; y = y+1;
4 }

5 assert(x=y);

Cannot prove this assertion using interval domain
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

e Karr's domain: Tracks equalities between variables (e.g., z = 2y +z )

@ Octagon domain: Constraints of the form +z +y < ¢

@ Polyhedra domain: Constraints of the form ciz1 +...chx, < ¢

@ Polyhedra domain most precise among these, but can be expensive
(exponential complexity)

@ Octagons less precise but cubic time complexity
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

@ Approximations of an [in]finite set of points

Yy oo 4:—++: ++
T : {...,Q9,77),...,
o (20, 03),...}

B https://faculty.ustc.edu.cn/hu: BRI ESS|


https://faculty.ustc.edu.cn/huangwenchao

Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

o Effective computable approximations of an [in]finite set of points:

e Signs
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

e Effective computable approximations of an [in]finite set of points:

@ Intervals

z € [19, 77]
{ y € [20, 03]
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

o Effective computable approximations of an [in]finite set of points:

@ Octagons

1<z<9
z+y <77
1<y<9
z—1y <99
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

o Effective computable approximations of an [in]finite set of points:
@ Polyhedra

19z 4 77y < 2004
20z 4+ 03y >0
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o Effective computable approximations of an

e Simple congruences

20 mod 99

z = 19 mod 77
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

o Effective computable approximations of an [in]finite set of points:

@ Linear congruences

v,
:o:o:o:-:o:o:o:.:o 1$+9y:7m0d8
..b....i........... 2m_1y:9m0d9
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Software Analysis

1. Abstract Interpretation | 1.3 Fixed Point | Relational Abstract Domains

e Effective computable approximations of an [in]finite set of points:

@ Trapezoidal linearcongruences

1z 49y € [0, 77] mod 10
2z — 1y € [0,99] mod 11
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Software Analysis

1. Abstract Interpretation | 1.4 FRAMA-C

Tools supporting Abstract Interpretation

e FRAMA-C

e https://frama-c.com/
e https://frama-c.com/download/frama-c-user-manual.pdf
e Eva, an Evolved Value Analysis

@ https://frama-c.com/fc-plugins/eva.html
o Infer

e https://fbinfer.com/
o Infer.Al framework

@ https://fbinfer.com/docs/absint-framework/
@ Apron
e https://antoinemine.github.io/Apron/doc/
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Software Analysis

1. Abstract Interpretation | 1.4 FRAMA-C

VALUE/ EVA
1
JESSIE Wp .
: . . AORAT
Abstract Interpretation AN S ' RTE
¢ NS HR e

-~
. Dedu ctive Verification  Specification Generation

-~
SLICING N ',/ __.—‘
- -
SPARECODE 4 Formal Methods Jtiiat PATHCRAWLER
RO S - o E-AcSL
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4
4
.
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Dynamic Analysis
LN Se.
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Software Analysis
1. Abstract Interpretation | 1.4 FRAMA-C

Revisit the widening example:

$ frama-c -eva loop.c
[kernel] Parsing loop.c (with preprocessing)

[eva] Analyzing a complete application starting at main
[eva:initial-state] Values of globals at initialization

[eva] loop.c:6: starting to merge loop iterations
[eva:alarm] loop.c:7: Warning: signed overflow. assert y + 1 < 2147483647;
====== VALUES COMPUTED ======
[eva:final-states] Values at end of function main:
i €{-1}
x5}
y €[7..2147483647]

L/NMEWL 3 : BEHEN—ERF, [FA frama-c B eva THEER S HT—
TIXMEF, AHIBIRE.
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Software Analysis

2. CEGAR

A method of software model checking:
e Counterexample-Guided Abstraction Refinement (CEGAR)
Keywords:
@ Predicate Abstraction
o Predicate Abstraction Lattice
@ Abstract Transformers
e Strongest Postcondition

@ Refinement
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Software Analysis

2. CEGAR

Example

x:=0; y:= 0;
while (x<100)

y = y+1;
}

assert(y = 100);

1
2
3
4 X = x+1;
5
6
7

@ Predicate set P = {z < 100,y = 100}
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Predicate Abstraction

Given a set of predicates P = {p1,...,pn}, predicate abstraction
computes for every program location, an abstract value [by, ..., b,] where:

@ b; indicates whether p; holds or not at that location

@ values of b; drawn from the set {0, 1, x} where * indicates unknown

o In the example, at Line 1, [b1, bo] = [1,0]

@ In other words, we have an abstract domain where each element is a
formula A, l; (sometimes called a cube), where I; = p; | —p;
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M JR: Predicate Abstraction Lattice
Given predicates P, (Cubes(P),=-) forms a complete lattice

o Cubes(P) is any formula A, p; where p; is a predicate or the negation
of a predicate in P

@ In other words, we have ¢1 C ¢» iff ¢1 = @9
eeg,piAp2Ep
e #5>]: How do we compute ¢ LI ¢9?,

o (p1Ap2)Upy ?
o (p1 Ap2)U—py
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Abstract Transformers

Given a statement S and cube ¢, define abstract transformer post™ (S, ¢)
to be the strongest cube ¢’ over P such that:

sp(S, ¢) = ¢’

where sp is the strongest post-condition of S wrt to ¢

.

Strongest Postcondition sp(S, ¢)

Executing statement S on any state sg in the ¢ region must result in a
state s in the sp(S, ¢) region

@ sp(assume ¢, ¢) < c A ¢
@ sp(v := e[v], p[v]) < Jug.v = e[vy] A P[vo]

.
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If s is the current state and s F sp(.5, ¢), then there exists a state sq such
that executing S on sg results in state s and sg E ¢



Software Analysis

2. CEGAR

Example: Given P = {z =y,x # y,z > y}, compute
postt (v =z + 1,2 = y)?

The answer is [b1, b2, b3] = [0, 1, 1]
esplz:=z+lx=y) Erpzr=a0+1A2o=y) & (r=y+1)
(] ¢,E(b1:0/\b2:1/\b3:1)
e since(x=y+1)=¢

{E)\l 4: Practice in program, compute
o post(r =z + 1,z < 100)
o post? (r:=z+ 1,2 < 100 Ay = 100)
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2. CEGAR

Motivation for CEGAR
@ Predicate abstraction is very sensitive to the set of predicates

e If you choose the right set, verification succeeds; otherwise, it fails

@ The CEGAR paradigm allows automatically and iteratively discovering
the right set of predicates
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2. CEGAR

Abstract .
interpretation A\ \Search
Key Steps: /
Program o) E"::’g':’:r"‘l ()
@ Program Abstraction P__L| Program | Pu | Model || OK
Req. @ Abstraction | ¢ Checking
@ Model Checking po—
F ibility Check (D)T © l“a"‘l"a Counter
@ reasipil ec i
Y Predicate | path | Feasibility | | SX2MP'e
@ Refinement Refinement Check 4
Craig j % t SMT
interpolation ~ solving
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2. CEGAR | Program Abstraction

CFA (Original)

Motivation for Program Abstraction
@ Given a program P, the state is a tuple
l,v1,v2,...,0,, where
e [ is the control location
e v; denotes the value of ith variable

@ The state space is large or even infinite! e
y++

Idea: construct a so-called boolean program
via predicate abstraction

assume(
x=100)

@ Replace concrete states with predicates

@ Operate over control-flow automaton
(CFA) assume(
=100

o Like CFG but nodes/edges are flipped + y=199)
explicit error locations

assume(
y#100)
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2. CEGAR | Program Abstraction

Program Abstraction CFA (Predicate Abstraction) CFA (Original)

@ state space

e From
6 % 232 x 232
to6%2%2

[a: How to translate
the program into a
boolean program?

assume(
x=100)

{EMV 5: Translate
statements in CFA

assume(

assume(
y#100)

y=100)

o1 —2
e 2—1

BRI ESS|
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Translating Statements

Given statement S and boolean b representing predicate p,
@ Compute the weakest cubes Pj, P> over P such that
e P, = wp(S,p) and P, = wp(S, —p)
@ Translate the statement S
1 if(P1) b := tru
b

2 else if(P2)
3 else b := %

I o

false

Weakest Precondition ([EI[El: Strongest Postcondition)
Every state s on which executing statement S leads to a state s’ in the ¢
region must be in the wp(.S, ¢) region

e wp(assume ¢, ¢) < ¢ — ¢

o wp(v := e, [v]) < ¢le]
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If s is the current state and

s F sp(S, ¢)

then there exists a state sy such that executing S on sq results in state s

and
sE ¢
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2. CEGAR | Program Abstraction

Example: Consider the predicates {z > 5,2 < 5,y = 5}, how to
translate the statement x := y in the boolean program with variables

b1, b, b3?

wp(z:=y,x >5) < (y >5)

wp(z:=y,x <5) < (y <b)

wp(z :=y,y =5) & (y =)

For by, since bs = —(y > 5), translation: if (b3) by := 0, else by := *
For by, since bs = —(y < 5), translation: if (b3) by := 0, else by := *
For b3, since bz = (y = 5) and —b3 = —(y = 5), translation: (Empty)

Totally, the translated statements of x := y are

if (b3) bl:=0, b2:=0
else bl:=%, b2:=x%

FOL# https://faculty.ustc.edu.cn/hu: BRI ESS|


https://faculty.ustc.edu.cn/huangwenchao

Software Analysis

2. CEGAR | Model Checking

CFA (Predicate Abstraction)

Model Checking

@ Initial states:

(07p17p2)a (07 _‘phPZ)» (Oaplv _'p2)7 (Oa —P1, _'p2)

@ There is a transition from (1,by,...,b,) to
(I',by, ..., b)) iff.
o There must be a transition from [ to I’ labeled
with S
o The formula sp(S, A, bi) A /\; b; must be
satisfiable. (query SAT solver)
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CFA (Predicate Abstraction)
£ >]: Which of these transition exist in the state

transition graph?

° (1,]71,])2) to (37ﬂp17p2)
o Yes

o (1,p1,p2) to (3,p1,p2)
o No

@ (3,—p1,p2) to (err,—pl, —py)
o Yes
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2. CEGAR | Model Checking

Partial transition system: CFA (Predicate Abstraction)

v v v

[0.7.F| [0.FED]| [0.T1]

Verification outputs FALSE because error state is
reachable!
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Feasibility Check

@ But if the error state is reachable, this could be due to imprecision in
the abstraction
e i.e., current set of predicates may not be fine-grain enough

@ To decide how to proceed, we need to check if the property is actually
violated

@ Fortunately, the model checker can provide a counterexample in the
form of a program trace!
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Transition System

FOL# https://faculty.ustc.edu.cn/hu:

CFA (Original)

assume(
x=>100)

assume(
y#100)

assume(
y=100)

BRI ESS|

Counterexample Trace

1 x = 0; y:=0;
> assume (x>=100);
3 assume(y!=100);

Clearly spurious
because the trace
formula is UNSAT:

z = 0A
y = 0A
x > 100A
y # 100


https://faculty.ustc.edu.cn/huangwenchao

Software Analysis

2. CEGAR | Model Checking | Refinement

Refinement

@ Goal: prevent the model checker from giving the same
counterexample trace as before

e [A]: How do we find predicates that will rule out this spurious trace?

@ Most basic idea: Compute strongest postcondition for each statement
in the counterexample trace; add these to set of predicates!
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Eliminating counterexamples using SP

o Let g =1 [ —%2 ... =5 [, be a spurious counterexample trace

Let po be true, and define p; as sp(s;, pi—1)

Claim: Adding p1,...,pn, to P will rule out this counterexample!

Why? Consider any potential path in the transition system:
(lo, @o) =" (1, 1) =2 -+ =" (ln, Pn)

© ¢; = p; (note: See the proof in notes)

@ It implies that such a path cannot exist in the transition system.
o Why?
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For any path (lo, o) =** (l1,¢1) =% -+ =" (In, ¢n), we have ¢; = p;

= Base case: Trivial since pyg is true

Induction:

By the inductive hypothesis, we have ¢; 1 = p;_1

By construction of transition systems, (I;—1, ¢;—1) =% (I;, ¢;)
exists if sp(s;, ®;—1) A @; is satisfiable, which implies
SAT(sp(si, pi—1) A ¢i)

Furthermore, we have either ¢; = p; or ¢; = —p; - why?

But if ¢; = —p;, we'd have UNSAT (sp(s;,pi—1) A ¢;)

Thus, qf)i = Di
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2. CEGAR | Model Checking | Refinement

The problem of the most basic idea
@ Only removes this counterexample trace

o ldeally, we want to learn predicates that allow us to remove multiple
spurious traces

@ Trick: We can learn more general predicates using a technique called
Craig interpolation
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Craig interpolation: Given an unsatisfiable formula ¢1 A ¢2, a Craig
interpolant is a formula ¢ such that:

e Y1 =1
o UNSAT (¢ A 4))

@ 1) is over the common variables of ¢1 and ¢o
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Interpolant Examples

mh=r<wAy>wAhz==x
Ppr=y<tht=z

@ Which of the following formulas are interpolants for ¢ A ¢27

Qy>=z
Qu>axNhz==x

Quy>:
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How to learn by Craig interpolation?

o Let g =1 1] —%2 ... =5 [, be a spurious counterexample trace

e For simplicity, suppose the trace is in SSA form and suppose enc(s;)
gives logical encoding of s;'s semantics

@ Then, we know that the following formula is UNSAT:

enc(sy) Aenc(sz) A--- Aenc(sy)

o Now let ¢; denote the trace formula up to statement i and ¢;"
denote the formula after ¢

@ Then, for each location I;, we have UNSAT (¢; A ¢;7) and the

interpolant gives predicates that are useful to track at ;!
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@ Consider the following counterexample trace that corresponds to
executing loop body once:

x0:=0; y0:=0;
assume(x0<100); zo=0Ayo=0Az9 <100 é
x1:=x0+1; zi=x0+1ANy1 =yo+1 1

assume(x1>=100);
assume(y1!=100); } [ z1 > 100 Ay; # 100 ] b2

@ Interpolant: 1 = y1 Axp < 100

@ Using the predicates in the interpolant, we can now verify the
correctness of this program!
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2. CEGAR | Model Checking | Refinement

Per-location Abstraction

@ In the basic form of predicate abstraction, we have a global set of
predicates that we ” track” everywhere

e But not all predicates are useful everywhere...

@ Observation: The interpolant tells us which predicates are useful
where!

@ Thus, rather than having a global set of predicates, we can have a
different predicate set for each different location

e Since the model checker is very sensitive to the number of predicates,
this is really important for scalability
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e Summary: (CEGAR)

Abstract - Search
interpretation V 2 earc
%i v \/é
(B)

A
Program A g;‘;'f:,"“
P | Program Pa Model OK.
Req. | |Abstraction|[ @ "] Checking o
Counter
(D) T (C) lsxample Counter
Infeasible}
Predi path | Feasibility | | ZX2MmPle
D Check g

Refinement

Z Lk%
Craig j,l K’ SMT
- solving

interpolation

@ Can both verify and give counterexamples

@ but no termination guarantees...
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REDKIELSEILL

KEW AT SE L (BRRF FFEX):
o £

e Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints

o MM
o AlI?: Safety and Robustness Certification of Neural Networks
with Abstract Interpretation
o Extracting Protocol Format as State Machine via Controlled
Static Loop Analysis
o Rule-Based Static Analysis of Network Protocol Implementations
e Precise Enforcement of Progress-Sensitive Security
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