形式化方法导引第 6 章案例分析

6.3 －Coq：A Prover based on Higher－order Logic 6．3．1 Introduction \＆6．3．2 Basics

黄文超
https：／／faculty．ustc．edu．cn／huangwenchao

1. Introduction

What is Coq proof assistant?

- an environment for developing mathematical facts
- defining objects (integers, sets, trees, functions, programs ...)
- making statements (using basic predicates and logical connectives)
- writing proofs

Main functions of Coq?

- compiler
- automatically checks the correctness of definitions
- automatically checks the correctness of proofs
- environment
- advanced notations; proof search; modular developments
- program extraction towards languages like Ocaml and Haskell

1. Introduction

Impressive examples in different areas?

- pure mathematics
- the Fundamental theorem of Algebra
- every polynomial has a root in complex field
- Feit-Thompson theorem on finite groups
- the four-color theorem ...
- formalizing programming environments
- JavaCard platform ~ the Gemalto and Trusted Logic companies
- the highest level of certification (common criteria EAL 7)
- CompCert: a certified optimizing compiler for C
- Certicrypt: an environment of formal proofs for computational cryptography
- Ynot library: for proving imperative programs using separation logic

1. Introduction

Related systems?

- similar to HOL systems
- a family of interactive theorem provers based on Church's higherorder logic
- including Isabelle/HOL, HOL4, HOL-light, PVS
- Difference from HOL systems
- Coq is based on an intuitionistic type theory
- functions are programs that can be computed

Websites or Books?

- Official website: https://coq.inria.fr
- Coq'art book
- Software Foundations
- Coq in a Hurry

1. Introduction

Coq architecture (v8.14.1,v8.15.1)

- Two-levels architecture
- small kernel based on a language with few primitive constructions
- functions, (co)-inductive definitions, product types, sorts
- a limited number of rules for type-checking and computation
- rich environment
- to help designing theories and proofs offering mechanisms
- like user extensible notations, tactics for proof automation, libraries
- can be used and extended safely
- ultimately any definition and proof is checked by a safe kernel

```
5=2+3
@eq Z (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI
xH ) ) )
```


1. Introduction

Program verification in Coq

- One can express the property "the program p is correct" as a mathematical statement, and prove it is correct
- One can develop a specific program analyzer (model-checking, abstract interpretation,. . .) in Coq, prove it correct and use it
- One can
- represent the program p by a Coq term t
- represent the specification by a type T
- such that $\mathrm{t}: \mathrm{T}$ (which is automatically checked) implies p is correct
- It works well for functional (possibly monadic) programs
- One can use an external tool to generate proof obligations and then use Coq to solve obligations.

2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type
Command: Check term

- takes a term as an argument
- checks it is well-formed
- displays its type

```
Check nat.
nat
    : Set
```

The object nat is a predefined type for natural numbers

- its type is a special constant Set called a sort.

2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type
Check 0 。
0
: nat

The constant 0 has type nat
Check S.
S
: nat -> nat

The object S is the successor function

- it has type nat \rightarrow nat

Check plus.
Nat.add
: nat -> nat -> nat

The binary function plus has type nat \rightarrow nat \rightarrow nat

- which should be read as nat \rightarrow nat \rightarrow nat

2. Basics - 2.1 Basic Terms

A function f can be applied to a term t using the notation $f t$.

- The term $f t_{1} t_{2}$ stands for $\left(f t_{1}\right) t_{2}$
- The natural number 10
- a notation for the successor function applied 10 times to 0
- The usual infix notation $t_{1}+t_{2}$ can be used instead of plus $t_{1} t_{2}$

```
Check (3+2).
3+2
    : nat
```


2. Basics - 2.1 Basic Terms

In Coq, logical propositions are also seen as terms.

- The type of propositions is the sort Prop

Paper notations ~ Coq input

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \perp & \mathrm{T} & t=u & t \neq u & \neg P & P \wedge Q & P \vee Q & P \rightarrow Q & P \Leftrightarrow Q \\
\hline \text { False } & \text { True } & \mathrm{t}=\mathrm{u} & \mathrm{t}<>\mathrm{u} & & \\
\hline
\end{array}
$$

$\forall x, P$	forall x, P	forall $\mathrm{x}: \mathrm{T}, \mathrm{P}$	forall T ($\mathrm{x} \mathrm{y}: \mathrm{T}$) ($\mathrm{z}: \mathrm{nat}$), P
$\exists x, P$	exists x, P	exists $\mathrm{x}: \mathrm{T}, \mathrm{P}$	no multiple bindings

2. Basics - 2.1 Basic Terms

The command Check verifies a proposition is well-formed

- but does not say if it is true or not

```
Check (1+2=3).
1 + 2 = 3
    : Prop
Check (forall x:nat, exists y, x=y+y).
forall x : nat, exists y : nat, x = y + y
    : Prop
```


2. Basics - 2.2 Logical rules and tactics

问: How to produce a proof to establish a proposition is true?
Backward reasoning with tactics

- A tactic transforms a goal into a set of subgoals
- solving these subgoals is sufficient to solve the original goal

问: How to introduce a new goal?
Command: the following commands with prop (prop : Prop)

- Lemma id : prop
- Theorem id : prop
- Goal prop.

Lemma ex1: forall A B C:Prop,
$(\mathbf{A}->\boldsymbol{B} \rightarrow \mathbf{C}) \rightarrow(\boldsymbol{A} \rightarrow \mathbf{B})->\boldsymbol{A} \rightarrow \mathbf{C}$.

2．Basics－2．2 Logical rules and tactics

问：The format of a proof？
Curry－Howard isomorphism（柯里－霍华德同构）
－A proof of a proposition A is represented by a term of type A

问：Result of Curry－Howard isomorphism？
There is only one form of judgment $\Gamma \vdash p: A$
－The environment Γ is a list of names associated with types $x: T$
－When A is a type of objects（e．g．，x ：nat $\vdash x$ ：nat）
－p is well－formed in the environment Γ and has type A
－When A is a proposition（e．g．，$x:$ nat，$h: x=1 \vdash \ldots: x \neq 0$ ）
－A is provable under the assumption of Γ and p is a witness of that proof

2. Basics - 2.2 Logical rules and tactics

问: Rules for a proof?

- axiom rule
- introduction rules
- elimination rules

Axiom rule

- The goal to be proven is directly a hypothesis
- The logical rule and tactics:

$$
\begin{array}{|l|l|}
\hline \frac{h: A \in \Gamma}{\Gamma \vdash h: A} & \text { exact } h \text { or assumption } \\
\hline
\end{array}
$$

2．Basics－2．2 Logical rules and tactics

Introduction rules for some connectives（e．g．，$\rightarrow, \vee, \wedge \ldots$ ）
－give a mean to prove a proposition formed with that connective
－if we can prove simpler propositions
e．g

\rightarrow	$\frac{\Gamma, h: A \vdash ?: B}{\Gamma \vdash ?: A \rightarrow B}$	intro h

－A tactic will work with a still unresolved goal

－that we indicate using ？in place of the proof－term

2．Basics－2．2 Logical rules and tactics

Elimination rules for some connectives（e．g．，$\rightarrow, \vee, \wedge \ldots$ ）
－explains how we can use a proof of a proposition with that connective

$\frac{\Gamma \vdash h: A \rightarrow B \quad \Gamma \vdash ?: A}{\Gamma \vdash ?: B}$	apply h

回顾第3章

$$
\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow \mathrm{e}
$$

例: Lemma ex1: $\forall A B C:$ Prop, $(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow A \rightarrow C$

| $\frac{h: A \in \Gamma}{\Gamma \vdash h: A}$ | exact h or assumption |
| :--- | :--- | :--- | :--- |$\quad \rightarrow \frac{\Gamma, h: A \vdash ?: B}{\Gamma \vdash ?: A \rightarrow B} \quad$ intro h

$$
\begin{array}{c|c}
\hline \frac{\Gamma \vdash h: A \rightarrow B \quad \Gamma \vdash ?: A}{\Gamma \vdash ?: B} & \text { apply } h \\
\hline
\end{array}
$$

Lemma ex1: forall A B C:Prop,

```
(A -> B -> C) -> (A -> B) -> A -> C.
```

Proof.
intro h1.
intro h2.
intro h3.
intro h4.
intro h5.
intro h6.
apply h4.
assumption.
apply h5.
assumption.
Qed.

2. Basics-2.2 Logical rules and tactics

	introduction		elimination	
\perp			$\frac{\Gamma \vdash ?: \mathrm{False}}{\Gamma \vdash ?: C}$	exfalso
\neg	$\frac{\Gamma, h: A \vdash ?: \mathrm{False}}{\Gamma \vdash ?: \neg A}$	intro h	$\frac{\Gamma \vdash h: \neg A \quad \Gamma \vdash ?: A}{\Gamma \vdash ?: C}$	destruct h
\rightarrow	$\frac{\Gamma, h: A \vdash ?: B}{\Gamma \vdash ?: A \rightarrow B}$	intro h	$\frac{\Gamma \vdash h: A \rightarrow B \quad \Gamma \vdash ?: A}{\Gamma \vdash ?: B}$	apply h
\forall	$\frac{\Gamma, y: A \vdash ?: B[x \leftarrow y]}{\Gamma \vdash ?: \forall x: A, B}$	intro y	$\frac{\Gamma \vdash h: \forall x: A, B \quad \Gamma \vdash t: A}{\Gamma \vdash ?: B[x \leftarrow t]}$	apply h with $(x:=t)$
\wedge	$\frac{\Gamma \vdash ?: A \quad \Gamma \vdash ?: B}{\Gamma \vdash ?: A \wedge B}$	split	$\frac{\Gamma \vdash h: A \wedge B \quad \Gamma, l: A, m: B \vdash ?: C}{\Gamma \vdash ?: C}$	destruct h as (l, m)
V	$\begin{gathered} \Gamma \vdash ?: A \\ \Gamma \vdash ?: A \vee B \\ \frac{\Gamma \vdash ?: B}{\Gamma \vdash ?: A \vee B} \end{gathered}$	left right	$\begin{array}{cc} \Gamma \vdash h: A \vee B \quad \Gamma, l: A \vdash ?: C \quad \Gamma, l: B \vdash ?: C \\ \Gamma \vdash ?: C \end{array}$	destruct h as $[l \mid l]$
\exists	$\frac{\Gamma \vdash t: A \quad \Gamma \vdash ?: B[x \leftarrow t]}{\Gamma \vdash ?: \exists x: A, B}$	exists t	$\frac{\Gamma \vdash h: \exists x: A, B \quad \Gamma, x: A, l: B \vdash ?: C}{\Gamma \vdash ?: C}$	destruct h as (x, l)

2. Basics-2.2 Logical rules and tactics

	introduction		elimination	
$=$	$\frac{t \equiv u}{\Gamma \vdash ?: t=u}$	reflexivity	$\frac{\Gamma \vdash h: t=u \quad \Gamma \vdash ?: C[x \leftarrow u]}{\Gamma \vdash ?: C[x \leftarrow t]}$	rewrite h

- Two terms t and u are convertible (written $t \equiv u$) when they represent the same value after computation.
- The elimination rule allows to replace a term by an equal in any context.

$\frac{\Gamma \vdash ?: u=t}{\Gamma \vdash ?: t=u}$	symmetry
$\frac{\Gamma \vdash ?: t=v \quad \Gamma \vdash ?: v=u}{\Gamma \vdash ?: t=u}$	transitivity v
$\frac{\Gamma \vdash ?: f=g \quad \Gamma \vdash ?: t_{1}=u_{1} \ldots \Gamma \vdash ?: t_{n}=u_{n}}{\Gamma \vdash ?: f t_{1} \ldots t_{n}=g u_{1} \ldots u_{n}}$	f_equal

2. Basics - 2.2 Logical rules and tactics

回顾: How to produce a proof to establish a proposition is true?
Backward reasoning with tactics

- A tactic transforms a goal into a set of subgoals
- solving these subgoals is sufficient to solve the original goal

It is often useful to do forward reasoning

- by adding new facts in the goal to be proven

$$
\begin{array}{|c|c|}
\hline \frac{\Gamma \vdash ?: B \quad \Gamma, h: B \vdash ?: A}{\Gamma \vdash ?: A} & \\
\hline
\end{array}
$$

2. Basics - 2.2 Logical rules and tactics

It would be painful to apply only atomic rules

- Tactics usually combine in one step several introductions or elimination rules.
- The tactic intros does multiple introductions and infer names when none are given.
- The tactic apply takes as an argument a proof h of a proposition

$$
\forall x_{1} \ldots x_{n}, A_{1} \rightarrow \ldots A_{p} \rightarrow B
$$

- It tries to find terms t_{i} such that the current goal is equivalent to

$$
B\left[x_{i} \leftarrow t_{i}\right]_{i=1 \ldots n}
$$

- and generates subgoals corresponding to $A_{j}\left[x_{i} \leftarrow t_{i}\right]_{i=1 \ldots n}$

2. Basics-2.2 Logical rules and tactics

It would be painful to apply only atomic rules

```
Lemma exl: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
intros.
apply H.
assumption.
apply HO.
assumption.
Qed.
```


2. Basics - 2.2 Logical rules and tactics

It would be painful to apply only atomic rules
Some tactics are doing proof search to help solve a goal:

contradiction	solves the goal when False, or A and $\neg \mathrm{A}$ appear in the hypotheses
tauto	solves propositional tautologies
trivial	tries very simple lemmas to solve the goal
auto	searches in a database of lemmas to solve the goal
intuition	removes the propositional structure of the goal then auto
omega	solves goals in linear arithmetic
emma ex1: $\text { A }->\text { B }->$ roof. uto. ed.	orall A B C:Prop, $->(\mathbf{A}->B)->A-C$.

2. Basics - 2.2 Logical rules and tactics

Finishing proofs

- Commands: Theorem and Lemma
- given a name name and a property A
- enter the interactive proof mode
- in which tactics are used to transform the goal
- after some effort there will be no remaining subgoals
- the proof of A is finished
- Actually, Coq is doing one more check before accepting the proof
- extracts a term p and the trusted kernel has to check that
- $\Gamma \vdash p: A$ is a valid judgment
- by elementary rules for type-checking p
- Commands: Qed and Save

2. Basics - 2.2 Logical rules and tactics

If a proof is not finished:

- Using the command Admitted instead of Qed
- gives the possibility to finish the proof
- introducing the original goal as an axiom.

```
Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
Admitted.
```

- It is convenient to postpone a proof but it is also potentially dangerous
- Safety in Coq is only guaranteed if there are no axioms left in the proof.
- The command Print Assumptions name can be used to display all axioms used in the theorem name.

```
Print Assumptions ex1.
```


2. Basics-2.2 Logical rules and tactics

Command: Definitions

- A new definition is introduced by:

$$
\text { Definition name args : type }:=\text { term. }
$$

- The identifier name: an abbreviation for the term term.
- The type type: optional as well as the arguments
- The arguments: a list of identifiers possibly associated with types

Definition square (x:nat) : nat $:=x$ * x.

- A Coq definition name can be unfolded in a goal by using the tactic:
- unfold name (in the conclusion)
- unfold name in H (in hypothesis H).

2. Basics - 2.2 Logical rules and tactics

Command: Section name

- It is often convenient to introduce a local context of variables and properties, which are shared between several definitions.
- Then objects can be introduced using the syntax
Variable name : type or Hypothesis name : prop
- command Variables: introduce variables with the same type
- command End: end the section

```
Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x).
End test.
```


2. Basics - 2.2 Logical rules and tactics

Command: Section name

```
Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x).
End test.
```

- After ending the section, the objects A, x and y are not accessible anymore
- one can observe the new types of double and triple.

```
Print double.
double =
fun (A : Type) (x : A ) => (x, x)
    : forall A : Type, A -> A * A
```


2. Basics - 2.3 Libraries in Coq

The Coq environment is organized in a modular way

- Some libraries are already loaded when starting the system

```
Print Libraries.
Loaded library files:
    Coq.Init.Notations
    Coq.Init.Ltac
    Coq.Init.Logic
    Coq.Init.Datatypes
    Coq.Init.Logic_Type
    Coq.Init.Specif
    Coq.Init.Decimal
    Coq.Init.Hexadecimal
    Coq.Init.Number
    Coq.Init.Nat
    Coq.Init.Byte
    Coq.Init.Numeral
```


2. Basics-2.3 Libraries in Coq

Searching the environment

- Search name: display all declarations id : type in the environment such that name appears in type.

```
Search plus.
```

- Search [name $_{1}$. . name ${ }_{n}$]: find objects with types mentioning all the names name ${ }_{i}$

Search [plus 0].

- Search pattern: find objects with types mentioning an instance of the pattern
- which is a term possibly using the special symbol "_" to represent an arbitrary term.

```
Search (~_ <->_).
```


2. Basics-2.3 Libraries in Coq

Other Commands w.r.t libraries

- Check term: checks if term can be typed and displays its type.
- Print name: prints the definition of name together with its type.
- About id: displays the type of the object id
- (plus other informations like qualified name or implicit arguments).

About pair.
pair : forall $\{\mathbf{A} \mathbf{B}:$ Type\}, $\boldsymbol{A}->\mathbf{B}->\boldsymbol{A}$ * \mathbf{B}
pair is template universe polymorphic
on prod.u0 prod.ul
Arguments pair \{A B\}\%type_scope
Expands to: Constructor Coq.Init.Datatypes.pair

2. Basics-2.3 Libraries in Coq

Load New Libraries

- Command: Require Import name
- checks if module name is already present in the environment
- If not, and if a file name.vo occurs in the load-path
- then it is loaded and opened (its contents is revealed)

```
Require Import Arith.
```

- Command: Print Libraries
- display the set of loaded modules
- Command: Print LoadPath
- display the load-path

2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Mathematical integers in Coq are defined as a type Z
- Their representation is based on a binary representation of positive numbers (type positive)

```
Require Import ZArith.
Open Scope Z_scope.
```

- Find a function: Z.leb

```
Search (Z->Z->bool).
```

Z.leb: Z -> Z -> bool

- Search properties for Z.leb

```
Search Z.leb.
```

Zle_cases: forall $n \mathrm{~m}: \mathbf{Z}$, if $\mathrm{n}<=$? m then $\mathrm{n}<=\mathrm{m}$ else $\mathrm{n}>\mathrm{m}$

2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Ready to Go

```
Require Import ZArith.
Open Scope Z_scope.
Definition abs (n:Z) : Z := if Z.leb 0 n then n else - n.
Lemma abs_pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 <= n else 0 > n).
apply Zle_cases.
destruct (Z.leb 0 n);auto with zarith.
qed.
```


2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Ready to Go (without proof search)

```
Require Import ZArith.
Open Scope Z_scope.
Definition abs (n:Z) : Z := if Z.leb 0 n then n else -n.
Lemma abs_pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 <= n else 0 > n).
apply Zle_cases.
destruct (Z.leb 0 n).
apply H.
Search [Z.lt Z.gt]. assert (n<0). apply Z.gt_lt. assumption.
assert (n<=0).
Search [Z.lt Z.le]. apply Z.lt_le_incl. assumption.
Search [Z.le Z.opp]. apply Z.opp_nonneg_nonpos. assumption.
Qed.
```


2. Basics - 2.5 Intuitionistic Logic v.s Classical Logic

$A \vee \neg A$ is not an axiom in intuitionistic logic

- Coq implements an intuitionistic logic
- Actually, both $A \vee B$ and $\exists x: A, B$ have a strong constructive meaning.
- from a proof of $\exists x: A, B$
- one can compute t such that $B[x \leftarrow t]$ is provable
- from a proof of $A \vee B$
- one can compute a boolean b and proofs of $b=\operatorname{true} \rightarrow A$ and $b=$ false $\rightarrow B$
- It is also possible to use classical versions of logical connectives
- negative formulas are classical, e.g., $\neg \neg A \rightarrow A$
- a library Classical introduces the excluded middle as an axiom

```
Require Import Classical.
```


作业

－实验小作业，使用Coq证明如下命题（不允许使用搜索策略，不允许使用Classical库），附上代码和文档（文档中列出每个证明步骤的输出截图）

```
Lemma ex1: forall A, ~~~ A -> ~ A.
Lemma ex2: forall A B,A \/ B -> ~ (~ A /\ ~ B).
Lemma ex3: forall T (P:T -> Prop),
(~ exists x, P x) -> forall x, ~ P x.
```

