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6.3 — Coq: A Prover based on Higher-order Logic
6.3.1 Introduction & 6.3.2 Basics
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1. Introduction

What is Coq proof assistant?

e an environment for developing mathematical facts
e defining objects (integers, sets, trees, functions, programs ...)
 making statements (using basic predicates and logical connectives)
e writing proofs

Main functions of Coq?

e compiler
e automatically checks the correctness of definitions
e automatically checks the correctness of proofs
* environment
e advanced notations; proof search; modular developments
e program extraction towards languages like Ocaml and Haskell
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1. Introduction

Impressive examples in different areas?

e pure mathematics
e the Fundamental theorem of Algebra
e every polynomial has a root in complex field
e Feit-Thompson theorem on finite groups
e the four-color theorem ...
e formalizing programming environments
e JavaCard platform ~ the Gemalto and Trusted Logic companies
e the highest level of certification (common criteria EAL 7)
e CompCert: a certified optimizing compiler for C
e Certicrypt: an environment of formal proofs for computational cryptography

e Ynot library: for proving imperative programs using separation logic


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

1. Introduction

Related systems?

e similar to HOL systems

e a family of interactive theorem provers based on Church’s higher-
order logic

* including Isabelle/HOL, HOL4, HOL-light, PVS
e Difference from HOL systems
e Cog is based on an intuitionistic type theory
e functions are programs that can be computed

Websites or Books?

e Official website: https://coq.inria.fr

e Coqg’art book
e Software Foundations

e CoqginaHurry
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1. Introduction

Coq architecture (v8.14.1,v8.15.1)

e Two-levels architecture

e small kernel based on a language with few primitive constructions
e functions, (co)-inductive definitions, product types, sorts
* a limited number of rules for type-checking and computation

* rich environment
* 10 help designing theories and proofs offering mechanisms

e |ike user extensible notations, tactics for proof automation,
libraries

* can be used and extended safely

e ultimately any definition and proof is checked by a safe kernel
5=2+3

Geq 2 (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI
xH)))
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1. Introduction

Program verification in Coq

 One can express the property “the program p is correct” as a
mathematical statement, and prove it is correct

 One can develop a specific program analyzer (model-checking,
abstract interpretation,. . . ) in Coq, prove it correct and use it

* One can
e represent the program p by a Coq term t
e represent the specification by atype T
e such thatt: T (which is automatically checked) implies p is correct
e |t works well for functional (possibly monadic) programs

 One can use an external tool to generate proof obligations and then
use Coq to solve obligations.
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2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type

Command: Check term

e takes a ferm as an argument
e checks it is well-formed

e displays its type

Check nat.

nat
: Set

The object nat is a predefined type for natural numbers
e jtstype is a special constant Set called a sort.
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2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type

Check 0.

0
¢ nat

The constant O has type nat

Check S.

S
: nat -> nat

The object S is the successor function

e it has type nat — nat

Check plus.

Nat.add
: nat -> nat -> nat

The binary function plus has type nat — nat — nat

e which should be read as nat — nat — nat
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2. Basics - 2.1 Basic Terms

A function f can be applied to a term # using the notation f 1.

e The term f 1, t, stands for (f 1) 1,

* The natural number 10
e a notation for the successor function applied 10 times to O

e The usual infix notation #; + ¢, can be used instead of plus ¢, 1,

Check (3+2).

3 + 2
¢ nat


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.1 Basic Terms

In Coq, logical propositions are also seen as terms.

* The type of propositions is the sort Prop

Paper notations ~ Coq input

1 T t=ult#u|"PIPNQ|PVQ|P— Q| P&Q
False|True| t=u [t<>u| P[P /\ QP \/ QP -> QP <-> Q
Va, P|forall x, P|forall x:T, Plforall T (x y:T) (z:nat),P
dx, Plexists x, Plexists x:T, P|no multiple bindings

10
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2. Basics - 2.1 Basic Terms

The command Check verifies a proposition is well-formed

e but does not say if it is true or not

Check (1+2=3).

1 + 2 =3
: Prop

Check (forall x:nat, exists y, x=yty).

forall x : nat, exists y : nat, x =y + vy
: Prop

11
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2. Basics - 2.2 Logical rules and tactics

Ia): How to produce a proof to establish a proposition is true?

Backward reasoning with tactics
e A tactic transforms a goal into a set of subgoals
e solving these subgoals is sufficient to solve the original goal

1a): How to introduce a new goal?

Command: the following commands with prop (prop : Prop)
e Lemma id : prop

e Theorem id : prop

e Goal prop.

Lemma exl: forall A B C:Prop,
(A ->B ->C) -> (A ->B) -> A -> C.

12
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2. Basics - 2.2 Logical rules and tactics

1a]: The format of a proof?

Curry-Howard isomorphism (1o BB -E L 1E[E )

e A proof of a proposition A is represented by a term of type A

18]: Result of Curry-Howard isomorphism?

There is only one form of judgment ' = p : A
e The environment I is a list of names associated with types x : T
e When A is a type of objects (e.g., X : nat - x : nat)
e pis well-formed in the environment I and has type A
e When A is a proposition (e.g.,x:nat, h:x=1F...:x#0)

e Ais provable under the assumption of I " and p is a witness of that
proof

13
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2. Basics - 2.2 Logical rules and tactics

1a): Rules for a proof?

e axiom rule
e Introduction rules
e elimination rules

Axiom rule

* The goal to be proven is directly a hypothesis

 The logical rule and tactics:

h:Acl

I'h: A

exact h or assumption

14
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2. Basics - 2.2 Logical rules and tactics

Introduction rules for some connectives (e.g., = ,V,A...)

e give a mean to prove a proposition formed with that connective
e if we can prove simpler propositions

I'"h:A+7:B

I'-7:A—B

intro h

o A tactic will work with a still unresolved goal

Jpi

e that we indicate using ? in place of the proof-term

¢

P

¢ — Y

15
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2. Basics - 2.2 Logical rules and tactics

Elimination rules for some connectives (e.g., =& ,V,A...)

e explains how we can use a proof of a proposition with that
connective

I'~h:A—B I'=7:A

e.g. PR apply h

6 oY
)

e
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%l: Lemmaex1:VA B C : Prop, A > B—>C)> A—->B) —>A->C

h:Ael n _ I''h:A-7:B 0t h
exact h or assumption intro
I'h: A P I'-7:A—B

I'-h:A—B I'=7:A
I'=7:B

apply h

Lemma exl: forall A B C:Prop,
(A -> B ->C) -> (A ->B) -=> A -> C.
Proof.

intro hl.

intro h2.

intro h3.

intro h4.

intro h5.

intro hé6.

apply h4.

assumption.

apply h5.

assumption.

Qed.

17
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2. Basics - 2.2 Logical rules and tactics

introduction elimination
r+7:False
exfalso
I'=7:.C
I'h:A+?:False |. I'h:—A I'+7:A
intro h destruct h
I'=7:—=A I'=7.C
I''h:A-7:B . I'-h:A—B I'=7:A
intro h apply h
I'=7:A—B I'=7?:B
I'y:AR?: Blx<+vy] . I'th:Vx:A,B I't: A .
intro vy apply h with (x:=t)
I'~7?:vz:A,B I'=7:B[x<+t]
I'-7?A I'H7":B . I'~h:ANB TI'Jl:A,m:BF7:C
split destruct h as (I, m)
I'=7:ANB I'=7.C
I'=7:A
left
I'=7:AvB I'-h:AvB TIl:A-?7.C I,l:BF?7:C
destruct h as [l|I]
I'+7:B : renc
right
I'=7:AvB
I'~t:A I'+7:Blx<t] . I'th:3x:A,B I',x:A,l:B-?:C
exists t destruct h as (x,!)
I'=7.4x:A,B Ir+7.C

18



https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.2 Logical rules and tactics

introduction elimination
t=u L. I'h:t=wu I'=7:Clx<+u] )
reflexivity rewrite h
I'=7:t=u I'=7:Clx<t]

e Two terms f and u are convertible (written ¥ = u) when they
represent the same value after computation.

 The elimination rule allows to replace a term by an equal in any

context.

I'=7:u=t
I'F7:t=u

symmetry

I'F7:t=v I'F7:v=u

I'=7:t=u

transitivity v

I'E?:f=g

F|—?:t1 =Uu1l ...FI—?:tn:un

I'E?:fti..th,=gui...un

f_equal

19
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2. Basics - 2.2 Logical rules and tactics

oljgm: How to produce a proof to establish a proposition is true?

Backward reasoning with tactics
e A tactic transforms a goal into a set of subgoals
e solving these subgoals is sufficient to solve the original goal

It is often useful to do forward reasoning

by adding new facts in the goal to be proven

I'=?:B I'h:BF7:A
I'=7:A

assert (h: B)
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2. Basics - 2.2 Logical rules and tactics

It would be painful to apply only atomic rules

e Tactics usually combine in one step several introductions or
elimination rules.

* The tactic intros does multiple introductions and infer names
when none are given.

e The tactic apply takes as an argument a proof /1 of a proposition

Vx,...x,A > ...A,—> B

o |t tries to find terms 7; such that the current goal is equivalent to
Blx; « t]

i=1...n

» and generates subgoals corresponding to A;[x; < #,],_; ,

21


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.2 Logical rules and tactics

It would be painful to apply only atomic rules

Lemma exl: forall A B C:Prop,

(A -> B ->C) -=> (A ->B) -> A -> C.
Proof.

intros.

apply H.

assumption.

apply HO.

assumption.

Qed.

22
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2. Basics - 2.2 Logical rules and tactics

It would be painful to apply only atomic rules

Some tactics are doing proof search to help solve a goal:

contradiction Esolves the goal when False, or A and —A appear in the hypotheses

................................................................................................................................................................................................................

tauto Jsolves propositional tautologies

trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal
intuition ~ removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

Lemma exl: forall A B C:Prop,

(A ->B ->C) -> (A ->B) ->A -> C.
Proof.

auto.

Qed.
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2. Basics - 2.2 Logical rules and tactics

Finishing proofs

e Commands: Theorem and Lemma

e given a name name and a property A
e enter the interactive proof mode

* in which tactics are used to transform the goal
e after some effort there will be no remaining subgoals

e the proof of A is finished
e Actually, Coq is doing one more check before accepting the proof
e extracts a term p and the trusted kernel has to check that
e ' p: Aisavalid judgment
e by elementary rules for type-checking p
e Commands: Qed and Save

24
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2. Basics - 2.2 Logical rules and tactics

If a proof is not finished:

e Using the command Admitted instead of Qed
e gives the possibility to finish the proof
* introducing the original goal as an axiom.

Lemma exl: forall A B C:Prop,

(A ->B ->C) -> (A ->B) ->A -> C.
Proof.

Admitted.

* |t is convenient to postpone a proof but it is also potentially dangerous

e Safety in Coq is only guaranteed if there are no axioms left in the
proof.

* The command Print Assumptions name can be used to display all
axioms used in the theorem name.

Print Assumptions exl.

25
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2. Basics - 2.2 Logical rules and tactics

Command: Definitions

* A new definition is introduced by:

Definition name args : type := term.

e The identifier name: an abbreviation for the term term.
* The type type: optional as well as the arguments

 The arguments: a list of identifiers possibly associated with types
Definition square (x:nat) : nat := X * X.

* A Coq definition name can be unfolded in a goal by using the
tactic:

e unfold name (in the conclusion)
e unfold name in H (in hypothesis H).

20
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2. Basics - 2.2 Logical rules and tactics

Command: Section name

e |t is often convenient to introduce a local context of variables and
properties, which are shared between several definitions.

* Then objects can be introduced using the syntax

Variable name : type or Hypothesis name : prop

e command Variables: introduce variables with the same type

e command End: end the section

Section test.

Variable A : Type.

Variables x y : A.

Definition double : A * A := (X,X).
Definition triple : A * A * A := (X,Y,X).
End test.

27
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2. Basics - 2.2 Logical rules and tactics

Command: Section name

Section test.
Variable A : Type.
Variables x y : A.

Definition double : A * A := (X,X).
Definition triple : A * A * A := (X,Y,X).
End test.

e After ending the section, the objects A, x and y are not accessible
anymore

* one can observe the new types of double and triple.

Print double.

double =
fun (A : Type) (X : A) => (X, X)
forall A : Type, A -=> A * A

28
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2. Basics - 2.3 Libraries in Coq

The Coqg environment is organized in a modular way

e Some libraries are already loaded when starting the system

Print Libraries.

Loaded library files:

Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.
Coq.

Init
Init
Init
Init
Init

Init
Init
Init
Init
Init
Init

.Notations
.Ltac
.Logic
.Datatypes
.Logic Type
Init.

Specif

.Decimal
.Hexadecimal
. Number

.Nat

.Byte

. Numeral

29
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2. Basics - 2.3 Libraries in Coq

Searching the environment

e Search name: display all declarations id : type in the environment
such that name appears in type.

Search plus.

e Search [ name;- - - name,]: find objects with types mentioning all
the names name,

Search [plus 0].

e Search pattern: find objects with types mentioning an instance of
the pattern

e which is a term possibly using the special symbol “_” to
represent an arbitrary term.

Search (~ <-> ).

30
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2. Basics - 2.3 Libraries in Coq

Other Commands w.r.t libraries

e Check term: checks if term can be typed and displays its type.
* Print name: prints the definition of name together with its type.
 About /d: displays the type of the object id

* (plus other informations like qualified name or implicit
arguments).

About pair.
pair : forall {A B : Type}, A -> B -> A * B

palr is template universe polymorphic

on prod.ul0 prod.ul

Arguments pair {A B}%type scope

Expands to: Constructor Coq.Init.Datatypes.pair

31


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.3 Libraries in Coq

Load New Libraries

e Command: Require Import name
* checks if module name is already present in the environment
e If not, and if a file name.vo occurs in the load-path
e then it is loaded and opened (its contents is revealed)

Require Import Arith.

e Command: Print Libraries

e display the set of loaded modules
e Command: Print LoadPath

e display the load-path

32
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2. Basics - 2.4 Examples

 Define an absolute value function on mathematical integers
e prove the result is positive

 Mathematical integers in Coq are defined as a type Z

* Their representation is based on a binary representation of
positive numbers (type positive)

Require Import ZArith.
Open Scope Z scope.

e Find a function: Z.leb
Search (Z->Z->bool).
Z.leb: Z -> Z -> bool

e Search properties for Z.leb
Search Z.leb.

Zle cases: forall nm : Z, if n <=? m then n <= m else n > m

33
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2. Basics - 2.4 Examples

 Define an absolute value function on mathematical integers

e prove the result is positive

e Ready to Go

Require Import ZArith.
Open Scope Z_ scope.

Definition abs (n:2) : 2 := if
Lemma abs pos : forall n, 0 <=
intro n.

unfold abs.

assert (if Z.leb 0 n then 0 <=
apply Zle cases.

destruct (Z.leb 0 n);auto with
Qed.

Z.leb 0 n then n else -n.
abs n.

n else 0 > n).

zarith.

34


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.4 Examples

 Define an absolute value function on mathematical integers
e prove the result is positive

e Ready to Go (without proof search)

Require Import ZArith.
Open Scope Z_ scope.

Definition abs (n:2) : 2 := if Z.leb 0 n then n else -n.
Lemma abs pos : forall n, 0 <= abs n.

intro n.

unfold abs.

assert (1f Z.leb 0 n then 0 <= n else 0 > n).

apply Zle cases.

destruct (Z.leb 0 n).

apply H.

Search [Z.lt Z.gt]. assert (n<0). apply Z.gt 1t. assumption.
assert (n<=0).

Search [Z.1lt Z.le]. apply Z.1lt le incl. assumption.

Search [Z.le Z.opp]. apply Z.opp nonneg nonpos. assumption.
Qed.

35
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2. Basics - 2.5 Intuitionistic Logic v.s Classical Logic

A V —A is not an axiom in intuitionistic logic

e Coq implements an intuitionistic logic

e Actually, both A Vv B anddx : A, B have a strong constructive
meaning.

e from a proof of dx : A, B
e one can compute f such that B|x < 7] is provable
e from a proof of A V B

e one can compute a boolean b and proofs of b = true — A and
b = false > B
* |t is also possible to use classical versions of logical connectives
* negative formulas are classical, e.g.,m A - A
e alibrary Classical introduces the excluded middle as an axiom

Require Import Classical.
36
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Lemma exl: forall A, -~~~ A -> ~ A.

Lemma ex2:

Lemma ex3: forall T (P:T -> Prop),
(~ exists x, P x) -> forall x, -~ P Xx.
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forall AB, A\/ B ->~ (~A /\ ~ B).
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