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1. Introduction

• an environment for developing mathematical facts

• defining objects (integers, sets, trees, functions, programs ...) 

• making statements (using basic predicates and logical connectives)

• writing proofs 
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What is Coq proof assistant?

Main functions of Coq?

• compiler

• automatically checks the correctness of definitions 

• automatically checks the correctness of proofs


• environment

• advanced notations; proof search; modular developments

• program extraction towards languages like Ocaml and Haskell 
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1. Introduction

• pure mathematics


• the Fundamental theorem of Algebra


• every polynomial has a root in complex field


• Feit-Thompson theorem on finite groups


• the four-color theorem …


• formalizing programming environments


• JavaCard platform ~ the Gemalto and Trusted Logic companies 


• the highest level of certification (common criteria EAL 7) 


• CompCert: a certified optimizing compiler for C


• Certicrypt: an environment of formal proofs for computational cryptography 


• Ynot library: for proving imperative programs using separation logic
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Impressive examples in different areas?
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1. Introduction

• similar to HOL systems

• a family of interactive theorem provers based on Church’s higher-

order logic

• including Isabelle/HOL, HOL4, HOL-light, PVS


• Difference from HOL systems

• Coq is based on an intuitionistic type theory

• functions are programs that can be computed
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Related systems?

Websites or Books?

• Official website: https://coq.inria.fr

• Coq’art book

• Software Foundations 

• Coq in a Hurry 
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1. Introduction

• Two-levels architecture

• small kernel based on a language with few primitive constructions

• functions, (co)-inductive definitions, product types, sorts

• a limited number of rules for type-checking and computation


• rich environment

• to help designing theories and proofs offering mechanisms 

• like user extensible notations, tactics for proof automation, 

libraries

•  can be used and extended safely

• ultimately any definition and proof is checked by a safe kernel
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Coq architecture （v8.14.1,v8.15.1）

@eq Z (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI 
xH)))

5=2+3
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1. Introduction

• One can express the property “the program p is correct” as a 
mathematical statement, and prove it is correct


• One can develop a specific program analyzer (model-checking, 
abstract interpretation,. . . ) in Coq, prove it correct and use it


• One can 


• represent the program p by a Coq term t 


• represent the specification by a type T


• such that t : T (which is automatically checked) implies p is correct 


• It works well for functional (possibly monadic) programs


• One can use an external tool to generate proof obligations and then 
use Coq to solve obligations. 
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Program verification in Coq 
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2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type

7

Check nat.

nat
     : Set

Command：Check term


• takes a term as an argument

• checks it is well-formed

• displays its type 

The object nat is a predefined type for natural numbers

•  its type is a special constant Set called a sort. 
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2. Basics - 2.1 Basic Terms

A Coq object in the environment has a name and a type
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The constant 0 has type nat 

Check 0.

0
     : nat

Check S.

S
     : nat -> nat

The object S is the successor function


•  it has type nat → nat

Check plus.

Nat.add
     : nat -> nat -> nat

The binary function plus has type 


•  which should be read as 

nat → nat → nat

nat → nat → nat

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.1 Basic Terms
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Check (3+2).

3 + 2
     : nat

A function  can be applied to a term  using the notation . f t f t

• The term   stands for   


• The natural number 10 

• a notation for the successor function applied 10 times to 0 


• The usual infix notation  can be used instead of plus  

f t1 t2 ( f t1) t2

t1 + t2 t1 t2
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2. Basics - 2.1 Basic Terms
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In Coq, logical propositions are also seen as terms. 

• The type of propositions is the sort Prop
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2.2 Basic terms

A Coq object in the environment has a name and a type. The Check term
command takes a name (or more generally a term) as an argument; it checks it
is well-formed and displays its type.

Coq < Check nat.
nat : Set
Coq < Check 0.
0 : nat

The object nat is a predefined type for natural numbers, its type is a special
constant Set called a sort. The constant 0 has type nat. The object S is the
successor function, it has type nat ! nat. The binary function plus has type
nat ! nat ! nat which should be read as nat ! (nat ! nat).

The term funx! t (or fun (x : T )! t to indicate the type T of variable x)
represents a function f such that f(a) ⌘ t[x a].

A function f can be applied to a term t using the notation f t. The term
f t1 t2 stands for (f t1) t2. The natural number 10 is just a notation for the
successor function applied 10 times to 0 and the usual infix notation t1 + t2 can
be used instead of plus t1 t2.

Coq < Check (3+2).
3 + 2 : nat

The standard library defines the type of booleans bool with two inhabitants
true and false. A choice on a boolean term b is written if b then t1 else t2.

Propositions. In Coq, logical propositions are also seen as terms. The type
of propositions is the sort Prop will be the type of propositions. We present
a summary of Coq syntax for logical propositions (first line presents paper
notation and second line the corresponding Coq input).

? > t = u t 6= u ¬P P ^Q P _Q P ! Q P , Q

False True t=u t<>u ~P P /\ Q P \/ Q P -> Q P <-> Q

The arrow represents implication, it associates to the right and T1->T2->T3 is
interpreted as T1->(T2->T3)

Quantifiers. Syntax for universal and existential quantifiers is given below with
possible variants:

8x, P forall x, P forall x:T, P forall T (x y:T) (z:nat),P

9x, P exists x, P exists x:T, P no multiple bindings

The command Check verifies a proposition is well-formed but does not say if it
is true or not.

Coq < Check (1+2=3).
1 + 2 = 3 : Prop
Coq < Check (forall x:nat , exists y, x=y+y).
forall x : nat , exists y : nat , x = y + y : Prop
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A Coq object in the environment has a name and a type. The Check term
command takes a name (or more generally a term) as an argument; it checks it
is well-formed and displays its type.

Coq < Check nat.
nat : Set
Coq < Check 0.
0 : nat

The object nat is a predefined type for natural numbers, its type is a special
constant Set called a sort. The constant 0 has type nat. The object S is the
successor function, it has type nat ! nat. The binary function plus has type
nat ! nat ! nat which should be read as nat ! (nat ! nat).

The term funx! t (or fun (x : T )! t to indicate the type T of variable x)
represents a function f such that f(a) ⌘ t[x a].

A function f can be applied to a term t using the notation f t. The term
f t1 t2 stands for (f t1) t2. The natural number 10 is just a notation for the
successor function applied 10 times to 0 and the usual infix notation t1 + t2 can
be used instead of plus t1 t2.

Coq < Check (3+2).
3 + 2 : nat

The standard library defines the type of booleans bool with two inhabitants
true and false. A choice on a boolean term b is written if b then t1 else t2.

Propositions. In Coq, logical propositions are also seen as terms. The type
of propositions is the sort Prop will be the type of propositions. We present
a summary of Coq syntax for logical propositions (first line presents paper
notation and second line the corresponding Coq input).

? > t = u t 6= u ¬P P ^Q P _Q P ! Q P , Q

False True t=u t<>u ~P P /\ Q P \/ Q P -> Q P <-> Q

The arrow represents implication, it associates to the right and T1->T2->T3 is
interpreted as T1->(T2->T3)

Quantifiers. Syntax for universal and existential quantifiers is given below with
possible variants:
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2. Basics - 2.1 Basic Terms
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The command Check verifies a proposition is well-formed 

• but does not say if it is true or not

Check (1+2=3).

1 + 2 = 3
     : Prop

Check (forall x:nat, exists y, x=y+y).

forall x : nat, exists y : nat, x = y + y
     : Prop
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2. Basics - 2.2 Logical rules and tactics 
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问: How to produce a proof to establish a proposition is true? 

Backward reasoning with tactics

• A tactic transforms a goal into a set of subgoals

• solving these subgoals is sufficient to solve the original goal 

问: How to introduce a new goal?

Command: the following commands with prop (prop : Prop)

• Lemma id : prop

• Theorem id : prop

• Goal prop.
Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
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2. Basics - 2.2 Logical rules and tactics
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问: The format of a proof?

Curry-Howard isomorphism (柯⾥-霍华德同构)


• A proof of a proposition  is represented by a term of type  A A

问: Result of Curry-Howard isomorphism?

There is only one form of judgment   


• The environment  is a list of names associated with types    

• When  is a type of objects    (e.g., )


•  is well-formed in the environment  and has type  


• When  is a proposition   (e.g., )


• A is provable under the assumption of  and  is a witness of that 
proof 

Γ ⊢ p : A
Γ x : T

A x : nat ⊢ x : nat

p Γ A
A x : nat, h : x = 1 ⊢ . . . : x ≠ 0

Γ p
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2. Basics - 2.2 Logical rules and tactics
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问: Rules for a proof?

• axiom rule

• introduction rules

• elimination rules

Axiom rule

6 Christine Paulin-Mohring

In the following, term will denote any Coq term, name or id represents an
identifier, type represents a so-called “type” which is a term with type Type,
Set or Prop. We use prop instead of type when we expect a term of type Prop,
however the same commands will usually also work with a more general type.

2.3 Logical rules and tactics

In order to establish a proposition is true, we need to produce a proof. Following
the approach introduced by R. Milner for the LCF system, we use backward
reasoning with tactics. A tactic transforms a goal into a set of subgoals such that
solving these subgoals is su�cient to solve the original goal. The proof succeeds
when no subgoals are left.

In practice, we introduce a new goal in Coq using one of the following com-
mands with prop representing a logical proposition (a well-formed term of type
Prop).

Lemma id : prop. Theorem id : prop. Goal prop.

Coq implements a natural deduction logical system. Following Curry-Howard
isomorphism, a proof of a proposition A is represented by a term of type A.
So there is only one form of judgment � ` p : A. The environment � is a
list of names associated with types x : T . When A is a type of objects, it is
interpreted as “the term p is well-formed in the environment � and has type A”.
For instance x : nat ` x+ 1 : nat. When A is a proposition, it is interpreted as
“A is provable under the assumption of � and p is a witness of that proof”. For
instance x : nat, h : x = 1 ` . . . : x 6= 0

Axiom. The basic rule of natural deduction is the axiom rule when the goal to
be proven is directly an hypothesis. The logical rule and corresponding tactics
are:

h : A 2 �

� ` h : A
exact h or assumption

Connectives. The rules for a connective are separated between introduction
rule(s) giving a mean to prove a proposition formed with that connective if
we can prove simpler propositions, and a rule of elimination which explains how
we can use a proof of a proposition with that connective. In the figure 2, we
give the logical rule and the corresponding tactics. A tactic will work with a still
unresolved goal, that we indicate using ? in place of the proof-term.

It would be painful to apply only atomic rules as given in the figure. Tactics
usually combine in one step several introductions or elimination rules. The tactic
intros does multiple introductions and infer names when none are given. The
tactic apply takes as an argument a proof h of a proposition

8x1 . . . xn, A1 ! · · ·Ap ! B.

• The logical rule and tactics:

• The goal to be proven is directly a hypothesis 
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支持 ! 和 algorithms
1. Propositional Logic | Natural Deduction | Summary

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.
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Introduction rules for some connectives (e.g., )→ , ∨ , ∧ . . .

• give a mean to prove a proposition formed with that connective

• if we can prove simpler propositions 

回顾第3章:

• A tactic will work with a still unresolved goal

• that we indicate using ? in place of the proof-term 

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi  ti]i=1...n

and generates subgoals corresponding to Aj [xi  ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:
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Elimination rules for some connectives (e.g., )→ , ∨ , ∧ . . .

• explains how we can use a proof of a proposition with that 
connective 

回顾第3章
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Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
intro h1.
intro h2.
intro h3.
intro h4.
intro h5.
intro h6.
apply h4.
assumption.
apply h5.
assumption.
Qed.
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In the following, term will denote any Coq term, name or id represents an
identifier, type represents a so-called “type” which is a term with type Type,
Set or Prop. We use prop instead of type when we expect a term of type Prop,
however the same commands will usually also work with a more general type.

2.3 Logical rules and tactics

In order to establish a proposition is true, we need to produce a proof. Following
the approach introduced by R. Milner for the LCF system, we use backward
reasoning with tactics. A tactic transforms a goal into a set of subgoals such that
solving these subgoals is su�cient to solve the original goal. The proof succeeds
when no subgoals are left.

In practice, we introduce a new goal in Coq using one of the following com-
mands with prop representing a logical proposition (a well-formed term of type
Prop).

Lemma id : prop. Theorem id : prop. Goal prop.

Coq implements a natural deduction logical system. Following Curry-Howard
isomorphism, a proof of a proposition A is represented by a term of type A.
So there is only one form of judgment � ` p : A. The environment � is a
list of names associated with types x : T . When A is a type of objects, it is
interpreted as “the term p is well-formed in the environment � and has type A”.
For instance x : nat ` x+ 1 : nat. When A is a proposition, it is interpreted as
“A is provable under the assumption of � and p is a witness of that proof”. For
instance x : nat, h : x = 1 ` . . . : x 6= 0

Axiom. The basic rule of natural deduction is the axiom rule when the goal to
be proven is directly an hypothesis. The logical rule and corresponding tactics
are:

h : A 2 �

� ` h : A
exact h or assumption

Connectives. The rules for a connective are separated between introduction
rule(s) giving a mean to prove a proposition formed with that connective if
we can prove simpler propositions, and a rule of elimination which explains how
we can use a proof of a proposition with that connective. In the figure 2, we
give the logical rule and the corresponding tactics. A tactic will work with a still
unresolved goal, that we indicate using ? in place of the proof-term.

It would be painful to apply only atomic rules as given in the figure. Tactics
usually combine in one step several introductions or elimination rules. The tactic
intros does multiple introductions and infer names when none are given. The
tactic apply takes as an argument a proof h of a proposition

8x1 . . . xn, A1 ! · · ·Ap ! B.
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• Two terms  and  are convertible (written ) when they 
represent the same value after computation. 


• The elimination rule allows to replace a term by an equal in any 
context. 

t u t ≡ u

8 Christine Paulin-Mohring

contradiction solves the goal when False, or A and ¬A appear in the hypotheses
tauto solves propositional tautologies
trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal
intuition removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

Proving Equalities. The introduction rule of equality is reflexivity. In Coq, two
terms t and u are convertible (written t ⌘ u) when they represent the same
value after computation. The elimination rule allows to replace a term by an
equal in any context. As a consequence, we have the following derived rules and
corresponding tactics:

�`?:u=t

�`?:t=u
symmetry

�`?:t=v �`?:v=u

�`?:t=u
transitivity v

�`?:f=g �`?:t1=u1...�`?:tn=un

�`?:f t1...tn=g u1...un

f equal

Variants of the rewrite rule includes rewrite <- H when H is a proof of t = u

(or a generalization of it) which replaces u by t and the tactic replace u with
t which does the replacement but also generates the goal t = u.

The rewrite tactics by default replace all the occurrences of u in P (u). To
rewrite selected occurrences, there is a variant: rewrite H at occs.

Another useful tactic for dealing with equalities is subst. When x is a variable
and the context contains an hypothesis x = t (or t = x) with x not occurring
in t, then the tactic subst x will substitute t for x and remove both x and
the hypothesis from the context. The tactic subst without argument do the
substitution on all possible variables in the context.

Finishing Proofs. The commands Theorem and Lemma, given a name name
and a property A, enter the interactive proof mode in which tactics are used
to transform the goal. Hopefully, after some e↵ort there will be no remaining
subgoals : the proof of A is finished. Actually,Coq is doing one more check before
accepting the proof. From the tactics used, the system extracts a term p and
the trusted kernel has to check that � ` p : A is a valid judgment, which is done
by elementary rules for type-checking p. This step is done with the commands
Qed or Save. The proof is recorded in the environment and given the name
name with type A. It can be used in other proofs like any hypothesis in the
environment. It might seem useless to check again the proof, however, this choice
of architecture allows to freely extend the set of tactics without compromising
the safety of the proofs. Actually, some correctness checking (universes, well-
formed definition of recursive functions) are not done during interactive proof
mode and consequently, it might be the case (in rare occasions) that a “finished
proof” is actually not a correct proof.
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Backward reasoning with tactics

• A tactic transforms a goal into a set of subgoals

• solving these subgoals is sufficient to solve the original goal 

回顾: How to produce a proof to establish a proposition is true? 

It is often useful to do forward reasoning 
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• Tactics usually combine in one step several introductions or 
elimination rules.


• The tactic intros does multiple introductions and infer names 
when none are given.


• The tactic apply takes as an argument a proof  of a proposition





• It tries to find terms  such that the current goal is equivalent to 



• and generates subgoals corresponding to 

h

∀x1 . . . xn, A1 → . . . Ap → B

ti
B[xi ← ti]i=1...n

Aj[xi ← ti]i=1...n
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It would be painful to apply only atomic rules 

Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
intros.
apply H.
assumption.
apply H0.
assumption.
Qed.
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contradiction solves the goal when False, or A and ¬A appear in the hypotheses 
tauto solves propositional tautologies 
trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal
intuition removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

Some tactics are doing proof search to help solve a goal: 

Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
auto.
Qed.
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2. Basics - 2.2 Logical rules and tactics
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Finishing proofs

• Commands: Theorem and Lemma 

• given a name name and a property 

• enter the interactive proof mode 

• in which tactics are used to transform the goal


• after some effort there will be no remaining subgoals


• the proof of  is finished

• Actually, Coq is doing one more check before accepting the proof


• extracts a term  and the trusted kernel has to check that


•   is a valid judgment


•  by elementary rules for type-checking 


• Commands: Qed and Save

A

A

p
Γ ⊢ p : A

p
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2. Basics - 2.2 Logical rules and tactics

• Using the command Admitted instead of Qed

• gives the possibility to finish the proof

• introducing the original goal as an axiom.

25

If a proof is not finished:

Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
Admitted.

• It is convenient to postpone a proof but it is also potentially dangerous

• Safety in Coq is only guaranteed if there are no axioms left in the 

proof. 

• The command Print Assumptions name can be used to display all 

axioms used in the theorem name. 

Print Assumptions ex1.
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2. Basics - 2.2 Logical rules and tactics

• The identifier name: an abbreviation for the term term.

• The type type: optional as well as the arguments

• The arguments: a list of identifiers possibly associated with types

26

 Command: Definitions 

Introduction to the Coq proof-assistant for practical software verification 9

If a proof is not finished, it is possible to admit an intermediate goal using
the tactic admit. It will introduce an axiom corresponding to the current goal,
it uses this axiom to solve the goal and continue with the next unproven goal.
Using the command Admitted instead of Qed gives the possibility to finish the
proof, introducing the original goal A as an axiom. It is convenient to postpone
a proof but it is also potentially dangerous. Assuming a false property might
result in being able to prove ? and, consequently, everything becomes provable.

Safety in Coq is only guaranteed if there are no axioms left in the proof. The
command Print Assumptions name can be used to display all axioms used in
the theorem name.

Definitions. A new definition is introduced by:

Definition name args : type := term.

The identifier name is then an abbreviation for the term term . The type type is
optional as well as the arguments which are a list of identifiers possibly associated
with types. For instance, the square function can be defined as follows:

Coq < Definition square (x:nat) : nat := x * x.
square is defined

A Coq definition name can be unfolded in a goal by using the tactic unfold
name (in the conclusion) or unfold name in H (in hypothesis H).

Variables and axioms. It is often convenient to introduce a local context of vari-
ables and properties, which are shared between several definitions. It is done with
a section mechanism. A section name is opened using the command Section
name . Then objects can be introduced using the syntax:

Variable name : type or Hypothesis name : prop

Several variables with the same type can be introduced with a single command,
using the variant Variables and a blank-separated list of names. The following
definitions can refer to the objects in the context of the section. The section
is ended by the command End name ; then all definitions are automatically ab-
stracted with respect to the variables they depend on.

For instance, we can introduce a type A and two variables of this type using
the commands:

Coq < Section test.
Coq < Variable A : Type.
Coq < Variables x y : A.
Coq < Definition double : A * A := (x,x).
Coq < Definition triple : A * A * A := (x,y,x).
Coq < End test.

After ending the section, the objects A, x and y are not accessible anymore and
one can observe the new types of double and triple.

Definition square (x:nat) : nat := x * x.

•  A new definition is introduced by: 

•  A Coq definition name can be unfolded in a goal by using the 
tactic：


• unfold name (in the conclusion)

• unfold name in H (in hypothesis H). 
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2. Basics - 2.2 Logical rules and tactics

• It is often convenient to introduce a local context of variables and 
properties, which are shared between several definitions.


• Then objects can be introduced using the syntax
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 Command: Section name

Introduction to the Coq proof-assistant for practical software verification 9

If a proof is not finished, it is possible to admit an intermediate goal using
the tactic admit. It will introduce an axiom corresponding to the current goal,
it uses this axiom to solve the goal and continue with the next unproven goal.
Using the command Admitted instead of Qed gives the possibility to finish the
proof, introducing the original goal A as an axiom. It is convenient to postpone
a proof but it is also potentially dangerous. Assuming a false property might
result in being able to prove ? and, consequently, everything becomes provable.

Safety in Coq is only guaranteed if there are no axioms left in the proof. The
command Print Assumptions name can be used to display all axioms used in
the theorem name.

Definitions. A new definition is introduced by:

Definition name args : type := term.

The identifier name is then an abbreviation for the term term . The type type is
optional as well as the arguments which are a list of identifiers possibly associated
with types. For instance, the square function can be defined as follows:

Coq < Definition square (x:nat) : nat := x * x.
square is defined

A Coq definition name can be unfolded in a goal by using the tactic unfold
name (in the conclusion) or unfold name in H (in hypothesis H).

Variables and axioms. It is often convenient to introduce a local context of vari-
ables and properties, which are shared between several definitions. It is done with
a section mechanism. A section name is opened using the command Section
name . Then objects can be introduced using the syntax:

Variable name : type or Hypothesis name : prop

Several variables with the same type can be introduced with a single command,
using the variant Variables and a blank-separated list of names. The following
definitions can refer to the objects in the context of the section. The section
is ended by the command End name ; then all definitions are automatically ab-
stracted with respect to the variables they depend on.

For instance, we can introduce a type A and two variables of this type using
the commands:

Coq < Section test.
Coq < Variable A : Type.
Coq < Variables x y : A.
Coq < Definition double : A * A := (x,x).
Coq < Definition triple : A * A * A := (x,y,x).
Coq < End test.

After ending the section, the objects A, x and y are not accessible anymore and
one can observe the new types of double and triple.

• command Variables：introduce variables with the same type 

• command End：end the section 

Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x). 
End test.
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2. Basics - 2.2 Logical rules and tactics
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 Command: Section name

Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x). 
End test.

• After ending the section, the objects ,  and  are not accessible 
anymore

• one can observe the new types of double and triple. 

A x y

Print double.

double = 
fun (A : Type) (x : A) => (x, x)
     : forall A : Type, A -> A * A
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2. Basics - 2.3 Libraries in Coq

•  Some libraries are already loaded when starting the system

29

The Coq environment is organized in a modular way 

Print Libraries.

Loaded library files: 
  Coq.Init.Notations
  Coq.Init.Ltac
  Coq.Init.Logic
  Coq.Init.Datatypes
  Coq.Init.Logic_Type
  Coq.Init.Specif
  Coq.Init.Decimal
  Coq.Init.Hexadecimal
  Coq.Init.Number
  Coq.Init.Nat
  Coq.Init.Byte
  Coq.Init.Numeral
  …
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2. Basics - 2.3 Libraries in Coq
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Searching the environment 

• Search name: display all declarations id : type in the environment 
such that name appears in type. 

Search plus.

• Search [ name1 · · · namen ]: find objects with types mentioning all 
the names namei 

Search [plus 0].

• Search pattern: find objects with types mentioning an instance of 
the pattern

• which is a term possibly using the special symbol “_” to 

represent an arbitrary term. 
Search (~_ <->_).
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2. Basics - 2.3 Libraries in Coq

• Check term: checks if term can be typed and displays its type. 


• Print name: prints the definition of name together with its type. 


• About id: displays the type of the object id


• (plus other informations like qualified name or implicit 
arguments). 

31

Other Commands w.r.t libraries

pair : forall {A B : Type}, A -> B -> A * B

pair is template universe polymorphic 
on prod.u0 prod.u1
Arguments pair {A B}%type_scope _ _
Expands to: Constructor Coq.Init.Datatypes.pair

About pair.
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2. Basics - 2.3 Libraries in Coq

• Command: Require Import name 
• checks if module name is already present in the environment

• If not, and if a file name.vo occurs in the load-path

• then it is loaded and opened (its contents is revealed) 


• Command: Print Libraries 
• display the set of loaded modules


• Command: Print LoadPath 
• display the load-path

32

Load New Libraries

Require Import Arith.
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2. Basics - 2.4 Examples

• Mathematical integers in Coq are defined as a type Z

• Their representation is based on a binary representation of 

positive numbers (type positive)

33

• Define an absolute value function on mathematical integers

• prove the result is positive 

Require Import ZArith. 
Open Scope Z_scope.

• Find a function: Z.leb
Search (Z->Z->bool).

Z.leb: Z -> Z -> bool

• Search properties for Z.leb
Search Z.leb.

Zle_cases: forall n m : Z, if n <=? m then n <= m else n > m
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2. Basics - 2.4 Examples

•  Ready to Go

34

• Define an absolute value function on mathematical integers

• prove the result is positive 

Require Import ZArith. 
Open Scope Z_scope.
Definition abs (n:Z) : Z := if Z.leb 0 n then n else -n.
Lemma abs_pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 <= n else 0 > n).
apply Zle_cases.
destruct (Z.leb 0 n);auto with zarith.
Qed.
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2. Basics - 2.4 Examples

•  Ready to Go (without proof search)

35

• Define an absolute value function on mathematical integers

• prove the result is positive 

Require Import ZArith. 
Open Scope Z_scope.
Definition abs (n:Z) : Z := if Z.leb 0 n then n else -n.
Lemma abs_pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 <= n else 0 > n).
apply Zle_cases.
destruct (Z.leb 0 n).
apply H.
Search [Z.lt Z.gt]. assert (n<0). apply Z.gt_lt. assumption.
assert (n<=0).
Search [Z.lt Z.le]. apply Z.lt_le_incl. assumption.
Search [Z.le Z.opp]. apply Z.opp_nonneg_nonpos. assumption.
Qed.
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2. Basics - 2.5 Intuitionistic Logic v.s Classical Logic 

• Coq implements an intuitionistic logic


• Actually, both  and  have a strong constructive 
meaning.


• from a proof of 


• one can compute  such that  is provable 


• from a proof of 


• one can compute a boolean  and proofs of  and 



• It is also possible to use classical versions of logical connectives


• negative formulas are classical, e.g., 

• a library Classical introduces the excluded middle as an axiom 

A ∨ B ∃x : A, B

∃x : A, B
t B[x ← t]

A ∨ B
b b = true → A

b = false → B

¬¬A → A

36

 is not an axiom in intuitionistic logicA ∨ ¬A

Require Import Classical.
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作业

• 实验⼩作业，使⽤Coq证明如下命题（不允许使⽤搜索策略，不允许
使⽤Classical库）, 附上代码和⽂档（⽂档中列出每个证明步骤的输
出截图）

37

Lemma ex1: forall A, ~~~ A -> ~ A.

Lemma ex2: forall A B, A \/ B -> ~ (~ A /\ ~ B).

Lemma ex3: forall T (P:T -> Prop),
(~ exists x, P x) -> forall x, ~ P x.
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