形式化方法导引 第6章案例分析

6.3 – Coq: A Prover based on Higher-order Logic

6.3.1 Introduction & 6.3.2 Basics

黄文超

https://faculty.ustc.edu.cn/huangwenchao

What is Coq proof assistant?

- an environment for developing mathematical facts
 - defining objects (integers, sets, trees, functions, programs ...)
 - making statements (using basic predicates and logical connectives)
 - writing proofs

Main functions of Coq?

- compiler
 - automatically checks the correctness of definitions
 - automatically checks the correctness of proofs
- environment
 - advanced notations; proof search; modular developments
 - program extraction towards languages like Ocaml and Haskell

Impressive examples in different areas?

- pure mathematics
 - the Fundamental theorem of Algebra
 - every polynomial has a root in complex field
 - Feit-Thompson theorem on finite groups
 - the four-color theorem ...
- formalizing programming environments
 - JavaCard platform ~ the Gemalto and Trusted Logic companies
 - the highest level of certification (common criteria EAL 7)
 - CompCert: a certified optimizing compiler for C
 - Certicrypt: an environment of formal proofs for computational cryptography
 - Ynot library: for proving imperative programs using separation logic

Related systems?

- similar to HOL systems
 - a family of interactive theorem provers based on Church's higherorder logic
 - including Isabelle/HOL, HOL4, HOL-light, PVS
- Difference from HOL systems
 - Coq is based on an intuitionistic type theory
 - functions are programs that can be computed

Websites or Books?

- Official website: <u>https://coq.inria.fr</u>
- Coq'art book
- <u>Software Foundations</u>
- Coq in a Hurry

Coq architecture (v8.14.1,v8.15.1)

- Two-levels architecture
 - small kernel based on a language with few primitive constructions
 - functions, (co)-inductive definitions, product types, sorts
 - a limited number of rules for type-checking and computation
 - rich environment
 - to help designing theories and proofs offering mechanisms
 - like user extensible notations, tactics for proof automation, libraries
 - can be used and extended safely
 - ultimately any definition and proof is checked by a safe kernel

```
5=2+3
```

```
@eq Z (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI
xH)))
```

Program verification in Coq

- One can express the property "the program p is correct" as a mathematical statement, and prove it is correct
- One can develop a specific program analyzer (model-checking, abstract interpretation, . . .) in Coq, prove it correct and use it
- One can
 - represent the program p by a Coq term t
 - represent the specification by a type T
 - such that t : T (which is automatically checked) implies p is correct
 - It works well for functional (possibly monadic) programs
- One can use an external tool to generate proof obligations and then use Coq to solve obligations.

A Coq object in the environment has a *name* and a *type*

Command: Check term

- takes a *term* as an argument
- checks it is well-formed
- displays its type

Check nat.

nat

: Set

The object nat is a predefined type for natural numbers

• its type is a special constant Set called a sort.

A Coq object in the environment has a *name* and a *type*

Check 0.

0

: nat

The constant 0 has type nat

Check S.

S

: nat -> nat

The object S is the successor function

• it has type nat \rightarrow nat

Check plus.

Nat.add

: nat -> nat -> nat

The binary function plus has type nat \rightarrow nat \rightarrow nat

• which should be read as nat \rightarrow nat \rightarrow nat <u>https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm</u>

A function f can be applied to a term t using the notation f t.

- The term $f t_1 t_2$ stands for $(f t_1) t_2$
- The natural number 10
 - a notation for the successor function applied 10 times to 0
- The usual infix notation $t_1 + t_2$ can be used instead of plus $t_1 t_2$

Check (3+2). 3 + 2 : nat

In Coq, logical propositions are also seen as terms.

The type of propositions is the sort Prop

Paper notations ~ Coq input

$\forall x, P$	forall	x, F	forall	x:T,	Ρ	forall T (x y:T) (z:nat),P
$\exists x, P$	exists	x, F	exists	x:T,	Ρ	no multiple bindings

The command Check verifies a proposition is well-formed

• but does not say if it is true or not

问: How to produce a proof to establish a proposition is true?

Backward reasoning with tactics

- A tactic transforms a goal into a set of subgoals
 - solving these subgoals is sufficient to solve the original goal

问: How to introduce a new goal?

Command: the following commands with prop (prop : Prop)

- Lemma id : prop
- Theorem id : prop
- Goal prop.

Lemma ex1: forall A B C:Prop, (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C.

问: The format of a proof?

Curry-Howard isomorphism (<u>柯里-霍华德同构</u>)

• A proof of a proposition A is represented by a term of type A

问: Result of Curry-Howard isomorphism?

There is only one form of judgment $\Gamma \vdash p : A$

- The environment Γ is a list of names associated with types x : T
- When A is a type of objects (e.g., $x : nat \vdash x : nat$)
 - p is well-formed in the environment Γ and has type A
- When A is a proposition (e.g., $x : nat, h : x = 1 \vdash \ldots : x \neq 0$)
 - A is provable under the assumption of Γ and p is a witness of that proof

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

问: Rules for a proof?

- axiom rule
- introduction rules
- elimination rules

Axiom rule

- The goal to be proven is directly a hypothesis
- The logical rule and tactics:

$$\boxed{\frac{h:A\in \Gamma}{\Gamma\vdash h:A}} \texttt{exact}\; h \; \texttt{or assumption}$$

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

Introduction rules for some connectives (e.g., \rightarrow , \lor , \land ...)

- give a mean to prove a proposition formed with that connective
 - if we can prove simpler propositions

e.g.
$$\rightarrow \frac{\Gamma, h: A \vdash ?: B}{\Gamma \vdash ?: A \rightarrow B}$$
 intro h

that we indicate using ? in place of the proof-term

回顾第3章:

Elimination rules for some connectives (e.g., \rightarrow , \lor , \land ...)

 explains how we can use a proof of a proposition with that connective

例: Lemma ex1:
$$\forall A \ B \ C : Prop, (A \to B \to C) \to (A \to B) \to A \to C$$

$\left \frac{h: A \in \Gamma}{\Gamma \vdash h: A} \right \texttt{exact } h$	or assumption	\rightarrow	$\frac{\Gamma,h:A\vdash}{\Gamma\vdash?:A}$		intro h
	$\Gamma \vdash h {:} A {\rightarrow} B$	$\Gamma \vdash $?:A a	pply h	
	$\Gamma \vdash ?:B$				

Lemma ex1: forall A B C:Prop, $(\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C}) \rightarrow (\mathbf{A} \rightarrow \mathbf{B}) \rightarrow \mathbf{A} \rightarrow \mathbf{C}$. Proof. intro h1. intro h2. intro h3. intro h4. intro h5. intro h6. apply h4. assumption. apply h5. assumption. Qed.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

	introduc	tion	elimination		
			$\frac{\Gamma \vdash ?: \texttt{False}}{\Gamma \vdash ?: C}$	exfalso	
	$\frac{\Gamma,h:A\vdash ?:False}{\Gamma\vdash ?:\neg A}$	intro h	$\frac{\Gamma \vdash h: \neg A \qquad \Gamma \vdash ?:A}{\Gamma \vdash ?:C}$	destruct h	
\rightarrow	$\frac{\Gamma, h: A \vdash ?: B}{\Gamma \vdash ?: A \to B}$	intro h	$ \begin{array}{c} \Gamma \vdash h : A \rightarrow B \qquad \Gamma \vdash ? : A \\ \hline \Gamma \vdash ? : B \end{array} $	apply h	
\forall	$\frac{\Gamma, y: A \vdash ?: B[x \leftarrow y]}{\Gamma \vdash ?: \forall x: A, B}$	intro y	$\frac{\Gamma \vdash h: \forall x: A, B \qquad \Gamma \vdash t: A}{\Gamma \vdash ?: B[x \leftarrow t]}$	apply h with $(x:=t)$	
\wedge	$\frac{\Gamma \vdash ?:A \Gamma \vdash ?:B}{\Gamma \vdash ?:A \land B}$	split	$ \begin{array}{c c} \Gamma \vdash h: A \land B & \Gamma, l: A, m: B \vdash ?: C \\ \hline \Gamma \vdash ?: C \end{array} $	$\texttt{destruct}\ h \texttt{ as } (l,m)$	
	$\frac{\Gamma \vdash ?:A}{\Gamma \vdash ?:A \lor B}$	left	$ \Gamma \vdash h: A \lor B \Gamma, l: A \vdash ?: C \Gamma, l: B \vdash ?: C $	destruct h as $\left[l l ight]$	
v 	$\frac{\Gamma \vdash ?:B}{\Gamma \vdash ?:A \lor B}$	right	$\Gamma \vdash ?:C$		
Ξ	$ \begin{array}{c c} \Gamma \vdash t : A & \Gamma \vdash ? : B[x \leftarrow t] \\ \hline \Gamma \vdash ? : \exists x : A, B \end{array} $	exists t	$ \begin{array}{c c} \Gamma \vdash h: \exists x:A, B & \Gamma, x:A, l:B \vdash ?:C \\ \hline \Gamma \vdash ?:C \end{array} \end{array} $	$\texttt{destruct}\ h \texttt{ as } (x,l)$	

introduc	tion	elimination		
$t\equiv u$	reflexivity	$\Gamma \vdash h:t=u$	$\Gamma \vdash ?: C[x \leftarrow u]$	rewrite h
$\Gamma \vdash ?:t=u$			$:C[x \leftarrow t]$	

- Two terms *t* and *u* are convertible (written $t \equiv u$) when they represent the same value after computation.
- The elimination rule allows to replace a term by an equal in any context.

$\frac{\Gamma \vdash ?: u = t}{\Gamma \vdash ?: t = u}$	symmetry
$ \begin{array}{ c c c c } \hline & \Gamma \vdash ?:t = v & \Gamma \vdash ?:v = u \\ \hline & & & \\ & & & \\ \hline \\ \hline$	$\texttt{transitivity} \ v$
$\boxed{\begin{array}{ccc} \varGamma \vdash ?:f = g & \varGamma \vdash ?:t_1 = u_1 \dots \varGamma \vdash ?:t_n = u_n \\ \hline & \Gamma \vdash ?:f \ t_1 \dots t_n = g \ u_1 \dots u_n \end{array}}$	f_equal

回顾: How to produce a proof to establish a proposition is true?

Backward reasoning with tactics

- A tactic transforms a goal into a set of subgoals
 - solving these subgoals is sufficient to solve the original goal

It is often useful to do forward reasoning

by adding new facts in the goal to be proven

$$\boxed{ \begin{array}{c|c} \Gamma \vdash ?:B & \Gamma, h: B \vdash ?:A \\ \hline \Gamma \vdash ?:A \end{array}} \text{assert} (h:B) \end{array}$$

It would be painful to apply only atomic rules

- Tactics usually combine in one step several introductions or elimination rules.
 - The tactic **intros** does multiple introductions and infer names when none are given.
 - The tactic **apply** takes as an argument a proof *h* of a proposition

$$\forall x_1 \dots x_n, A_1 \to \dots A_p \to B$$

- It tries to find terms t_i such that the current goal is equivalent to $B[x_i \leftarrow t_i]_{i=1...n}$
- and generates subgoals corresponding to $A_j[x_i \leftarrow t_i]_{i=1...n}$

It would be painful to apply only atomic rules

```
Lemma ex1: forall A B C:Prop,
(A -> B -> C) -> (A -> B) -> A -> C.
Proof.
intros.
apply H.
assumption.
apply H0.
assumption.
Qed.
```

It would be painful to apply only atomic rules

Some tactics are doing proof search to help solve a goal:

contradiction	solves the goal when False, or A and $\neg A$ appear in the hypotheses
tauto	solves propositional tautologies
trivial	tries very simple lemmas to solve the goal
auto	searches in a database of lemmas to solve the goal
intuition	removes the propositional structure of the goal then auto
omega	solves goals in linear arithmetic

```
Lemma ex1: forall A B C:Prop,

(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C.

Proof.

auto.

Qed.
```

Finishing proofs

- Commands: Theorem and Lemma
 - given a name name and a property A
 - enter the interactive proof mode
 - in which tactics are used to transform the goal
 - after some effort there will be no remaining subgoals
 - the proof of *A* is finished
- Actually, Coq is doing one more check before accepting the proof
 - extracts a term p and the trusted kernel has to check that
 - $\Gamma \vdash p : A$ is a valid judgment
 - by elementary rules for type-checking p
 - Commands: Qed and Save

If a proof is not finished:

- Using the command Admitted instead of Qed
 - gives the possibility to finish the proof
 - introducing the original goal as an axiom.

```
Lemma ex1: forall A B C:Prop,

(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C.

Proof.

Admitted.
```

- It is convenient to postpone a proof but it is also potentially dangerous
- Safety in Coq is only guaranteed if there are no axioms left in the proof.
 - The command Print Assumptions name can be used to display all axioms used in the theorem name.

```
Print Assumptions ex1.
```

Command: **Definitions**

• A new definition is introduced by:

Definition name args : type := term.

- The identifier *name*: an abbreviation for the term *term*.
- The type type: optional as well as the arguments
- The arguments: a list of identifiers possibly associated with types

Definition square (x:nat) : nat := x * x.

- A Coq definition name can be unfolded in a goal by using the tactic:
 - **unfold** name (in the conclusion)
 - **unfold** name in H (in hypothesis H).

Command: Section name

- It is often convenient to introduce a local context of variables and properties, which are shared between several definitions.
- Then objects can be introduced using the syntax

Variable name : type or Hypothesis name : prop

- command Variables: introduce variables with the same type
- command End: end the section

```
Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x).
End test.
```

Command: Section name

```
Section test.
Variable A : Type.
Variables x y : A.
Definition double : A * A := (x,x).
Definition triple : A * A * A := (x,y,x).
End test.
```

- After ending the section, the objects *A*, *x* and *y* are not accessible anymore
 - one can observe the new types of double and triple.

```
Print double.
double =
fun (A : Type) (x : A) => (x, x)
        : forall A : Type, A -> A * A
```

The Coq environment is organized in a modular way

• Some libraries are already loaded when starting the system

Print Libraries.

...

```
Loaded library files:
Coq.Init.Notations
Coq.Init.Ltac
Coq.Init.Logic
Coq.Init.Datatypes
Coq.Init.Logic_Type
Coq.Init.Specif
Coq.Init.Decimal
Coq.Init.Hexadecimal
Coq.Init.Hexadecimal
Coq.Init.Number
Coq.Init.Nat
Coq.Init.Byte
Coq.Init.Numeral
```

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

Searching the environment

• Search name: display all declarations id : type in the environment such that name appears in type.

Search plus.

 Search [name₁··· name_n]: find objects with types mentioning all the names name_i

Search [plus 0].

- Search pattern: find objects with types mentioning an instance of the pattern
 - which is a term possibly using the special symbol "_" to represent an arbitrary term.

Search $(\sim <->)$.

Other Commands w.r.t libraries

- Check term: checks if term can be typed and displays its type.
- Print name: prints the definition of name together with its type.
- About id: displays the type of the object id
 - (plus other informations like qualified name or implicit arguments).

```
About pair.
pair : forall {A B : Type}, A -> B -> A * B
pair is template universe polymorphic
on prod.u0 prod.u1
Arguments pair {A B}%type_scope ______
Expands to: Constructor Coq.Init.Datatypes.pair
```

Load New Libraries

- Command: Require Import name
 - checks if module name is already present in the environment
 - If not, and if a file *name.vo* occurs in the load-path
 - then it is loaded and opened (its contents is revealed)

Require Import Arith.

- Command: Print Libraries
 - display the set of loaded modules
- Command: Print LoadPath
 - display the load-path

2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Mathematical integers in Coq are defined as a type Z
 - Their representation is based on a binary representation of positive numbers (type positive)

```
Require Import ZArith.
Open Scope Z_scope.
```

• Find a function: Z.leb

Search $(\mathbf{Z} \rightarrow \mathbf{Z} \rightarrow \mathbf{bool})$.

- **Z**.leb: $\mathbf{Z} \rightarrow \mathbf{Z} \rightarrow \mathbf{bool}$
- Search properties for Z.leb

Search Z.leb.

Zle_cases: forall n m : Z, if n <=? m then n <= m else n > m

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Ready to Go

```
Require Import ZArith.
Open Scope Z_scope.
Definition abs (n:Z) : Z := if Z.leb 0 n then n else -n.
Lemma abs_pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 <= n else 0 > n).
apply Zle_cases.
destruct (Z.leb 0 n);auto with zarith.
Qed.
```

2. Basics - 2.4 Examples

- Define an absolute value function on mathematical integers
- prove the result is positive
- Ready to Go (without proof search)

```
Require Import ZArith.
Open Scope Z_scope.
Definition abs (n:\mathbf{Z}) : \mathbf{Z} := if \mathbf{Z}.leb 0 n then n else -n.
Lemma abs pos : forall n, 0 <= abs n.
intro n.
unfold abs.
assert (if Z.leb 0 n then 0 \le n else 0 > n).
apply Zle cases.
destruct (Z.leb 0 n).
apply H.
Search [Z.lt Z.gt]. assert (n<0). apply Z.gt lt. assumption.
assert (n \le 0).
Search [Z.lt Z.le]. apply Z.lt le incl. assumption.
Search [Z.le Z.opp]. apply Z.opp nonneg nonpos. assumption.
Qed.
```

2. Basics - 2.5 Intuitionistic Logic v.s Classical Logic

$A \lor \neg A$ is **not** an axiom in intuitionistic logic

- Coq implements an intuitionistic logic
- Actually, both $A \lor B$ and $\exists x : A, B$ have a strong constructive meaning.
 - from a proof of $\exists x : A, B$
 - one can compute *t* such that $B[x \leftarrow t]$ is provable
 - from a proof of $A \lor B$
 - one can compute a boolean b and proofs of $b = \text{true} \rightarrow A$ and $b = \text{false} \rightarrow B$
- It is also possible to use classical versions of logical connectives
 - negative formulas are classical, e.g., $\neg \neg A \rightarrow A$
 - a library Classical introduces the excluded middle as an axiom

Require Import Classical.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

作业

实验小作业,使用Coq证明如下命题(不允许使用搜索策略,不允许使用Classical库),附上代码和文档(文档中列出每个证明步骤的输出截图)

```
Lemma ex1: forall A, ~~~ A -> ~ A.
Lemma ex2: forall A B, A \setminus B -> ~ (~ A /\ ~ B).
Lemma ex3: forall T (P:T -> Prop),
(~ exists x, P x) -> forall x, ~ P x.
```