
形式化方法导引
第 6 章 案例分析

6.3 Coq: A Prover based on Higher-order Logic
6.3.1 Introduction | 6.3.2 Basics

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

本章代码链接
(Tested in v8.14.1, v8.15.1)

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction

Coq proof assistant
”Rooster”: a symbol of France
Calculus of constructions
Thierry Coquand

Renamed: ROCQ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 2 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction

推荐网站及书目:

【康奈尔】Coq 编程基础
Coq’Art book
Coq/ROCQ 官方网站
Software Foundations
Coq in a Hurry
形式化方法公开课之定理证明

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 3 / 52

https://www.bilibili.com/video/BV1kd4y1t7bw/?spm_id_from=333.788.videopod.episodes&vd_source=970e3332ca4e5c544ebe730377c9b97e
https://link.springer.com/book/10.1007/978-3-662-07964-5
https://rocq-prover.org/
https://softwarefoundations.cis.upenn.edu/lf-current/toc.html
https://cel.archives-ouvertes.fr/file/index/docid/459139/filename/coq-hurry.pdf
https://tcfm.ccf.org.cn/FormalNEW.html
https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction

Coq Features
Define computable functions and logical predicates
State mathematical theorems and software specifications
Develop proofs of theorems, interactively
Machine-check the proofs
Extract certified code from the proofs, e.g., OCaml, Haskell, Scheme

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 4 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction
Impressive examples in different areas

Pure mathematics
the Fundamental theorem of Algebra

every polynomial has a root in complex field
Feit-Thompson theorem on finite groups
the four-color theorem

Related systems
Lean: a theorem prover and programming language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 5 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction
Impressive examples in different areas

Formalizing programming environments
CompCert: a certified optimizing compiler for C
Certicrypt: an environment of formal proofs for computational
cryptography
JavaCard platform - the Gemalto and Trusted Logic companies

the highest level of certification (common criteria EAL 7)
Ynot library: for proving imperative programs using separation logic

Related systems
Isabelle/HOL: a generic proof assistant

Sel4: a microkernel that has been formally verified

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 6 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction
Two-levels architecture

Rich environment
to help designing theories and proofs offering mechanisms

like user extensible notations, tactics for proof automation, libraries
can be used and extended safely

ultimately any definition and proof is checked by a safe kernel

1 5=2+3

Small kernel based on a language with few primitive constructions
functions, (co)-inductive definitions, product types, sorts
a limited number of rules for type-checking and computation

1 @eq Z (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI xH)))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 7 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

1. Introduction

Program verification in Coq:
One can express the property “the program p is correct” as a
mathematical statement, and prove it is correct
One can develop a specific program analyzer (model-checking,
abstract interpretation, …) in Coq, prove it correct and use it
One can

represent the program p by a Coq term t
represent the specification by a type T
such that t : T (which is automatically checked) implies p is correct
It works well for functional (possibly monadic) programs

One can use an external tool to generate proof obligations and then
use Coq to solve obligations.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 8 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Name and Type in Type Theory
A Coq object in the environment has a name and a type

Command: Check term
The command Check is used to check the type of an object

1 Check nat.

1 nat
2 : Set

The object nat is a predefined type for natural numbers
its type is a special constant Set called a sort.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 9 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Command: Check term
The command Check is used to check the type of an object

1 Check 0.

1 0
2 : nat

The constant 0 has type nat.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 10 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Command: Check term
The command Check is used to check the type of an object

1 Check S.

1 S
2 : nat -> nat

The object S is the successor function
it has type nat -> nat

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 11 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Command: Check term
The command Check is used to check the type of an object

1 Check plus.

1 Nat.add
2 : nat -> nat -> nat

The binary function plus has type nat -> nat -> nat
which should be read as nat -> (nat -> nat)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 12 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Application of functions
The application of a function to its arguments is written as

f x y for a function f of type A -> B -> C and arguments x and y
of type A and B

The term f x y stands for (f x) y
The natural number 10 is represented by the term S (S (S (S (S
(S (S (S (S (S 0)))))))))
The usual infix notation x+y can be used instead of plus x y

1 Check (3+2).

1 3 + 2
2 : nat

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 13 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Propositions as terms
In Coq, logical propositions are also seen as terms.

the type of a proposition is called its sort Prop

The command Check verifies a proposition is well-formed
but does not say if it is true or not

1 Check (1+2=3).

1 1 + 2 = 3
2 : Prop

1 Check (forall x:nat, exists y, x=y+y).

1 forall x : nat, exists y : nat, x = y + y
2 : Prop

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 14 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.1 Basic Terms

Introducing goals as propositions:

Commands:
Lemma id: prop.
Theorem id: prop.
Goal prop.

1 Lemma ex1: forall A B C:Prop,
2 (A -> B -> C) -> (A -> B) -> A -> C.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 15 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Type of proofs: The type of a proof is the proposition it proves.

Curry-Howard isomorphism (柯里-霍华德同构)
It proposes a deep connection between the world of logic and the world of
computation:

propositions are types
proofs are programs

proofs are computations

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 16 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Specific explanation of the Curry-Howard correspondence:

There is only one form of judgment Γ ⊢ p : A

The environment Γ is a list of names associated with types
When A is a type of objects, p is a term of type A

e.g., x : nat ⊢ x : nat
p is well-formed in the environment Γ and has type A

When A is a proposition, p is a proof of A

e.g., x : nat, h : x = 1 ⊢ ... : x ̸= 0
A is provable under the assumption of Γ and p is a witness of that
proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 17 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Specific explanation of the Curry-Howard correspondence:

There is only one form of judgment Γ ⊢ p : A

The environment Γ is a list of names associated with types
When A is a type of objects, p is a term of type A

e.g., x : nat ⊢ x : nat
p is well-formed in the environment Γ and has type A

When A is a proposition, p is a proof of A

e.g., x : nat, h : x = 1 ⊢ ... : x ̸= 0
A is provable under the assumption of Γ and p is a witness of that
proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 17 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Specific explanation of the Curry-Howard correspondence:

There is only one form of judgment Γ ⊢ p : A

The environment Γ is a list of names associated with types
When A is a type of objects, p is a term of type A

e.g., x : nat ⊢ x : nat
p is well-formed in the environment Γ and has type A

When A is a proposition, p is a proof of A

e.g., x : nat, h : x = 1 ⊢ ... : x ̸= 0
A is provable under the assumption of Γ and p is a witness of that
proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 17 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

柯里-霍华德同构的作用

让“写程序”变成“写证明”
编程变成构造逻辑证明，程序等于正确性。

支持“程序 = 证明”的语言和工具
可机器验证 (Type System) 的形式化证明和可信软件系统。

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 18 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics

Producing a proof
To establish that a proposition is true, we construct a proof using the
following steps:

State the proposition using Lemma, Theorem, or Goal.
Enter the proof mode using the Proof. command.
Apply tactics to manipulate the goal and subgoals until all are
resolved.
Conclude the proof with Qed. or Admitted. (if incomplete).

1 Lemma ex0: forall A B C:Prop,
2 (A -> B -> C) -> (A -> B) -> A -> C.
3 Proof.
4 intros. apply H.
5 - assumption.
6 - apply H0. assumption.
7 Qed.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 19 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Proving process:
Lexing and Parsing
Proof Environment Initialization
Tactic Interpretation and Execution
Proof Term Construction
Type Checking

extracts a term p and the trusted kernel has to check that
Γ ⊢ p : A is a valid judgment by elementary rules

Subgoal Management
QED and Globalization

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 20 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Rules of proofs:
axioms rules: introduce new assumptions
introduction rules: introduce new variables
elimination rules: manipulate the goal

Default proof routine: Backward reasoning with tactics
A tactic transforms a goal into a set of subgoals

solving these subgoals is sufficient to solve the original goal

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 21 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Axiom rules:
assumption tactic: solves the goal if it is an assumption
exact tactic: solves the goal if it is exactly equal to a hypothesis

6 Christine Paulin-Mohring

In the following, term will denote any Coq term, name or id represents an
identifier, type represents a so-called “type” which is a term with type Type,
Set or Prop. We use prop instead of type when we expect a term of type Prop,
however the same commands will usually also work with a more general type.

2.3 Logical rules and tactics

In order to establish a proposition is true, we need to produce a proof. Following
the approach introduced by R. Milner for the LCF system, we use backward
reasoning with tactics. A tactic transforms a goal into a set of subgoals such that
solving these subgoals is su�cient to solve the original goal. The proof succeeds
when no subgoals are left.

In practice, we introduce a new goal in Coq using one of the following com-
mands with prop representing a logical proposition (a well-formed term of type
Prop).

Lemma id : prop. Theorem id : prop. Goal prop.

Coq implements a natural deduction logical system. Following Curry-Howard
isomorphism, a proof of a proposition A is represented by a term of type A.
So there is only one form of judgment � ` p : A. The environment � is a
list of names associated with types x : T . When A is a type of objects, it is
interpreted as “the term p is well-formed in the environment � and has type A”.
For instance x : nat ` x+ 1 : nat. When A is a proposition, it is interpreted as
“A is provable under the assumption of � and p is a witness of that proof”. For
instance x : nat, h : x = 1 ` . . . : x 6= 0

Axiom. The basic rule of natural deduction is the axiom rule when the goal to
be proven is directly an hypothesis. The logical rule and corresponding tactics
are:

h : A 2 �

� ` h : A
exact h or assumption

Connectives. The rules for a connective are separated between introduction
rule(s) giving a mean to prove a proposition formed with that connective if
we can prove simpler propositions, and a rule of elimination which explains how
we can use a proof of a proposition with that connective. In the figure 2, we
give the logical rule and the corresponding tactics. A tactic will work with a still
unresolved goal, that we indicate using ? in place of the proof-term.

It would be painful to apply only atomic rules as given in the figure. Tactics
usually combine in one step several introductions or elimination rules. The tactic
intros does multiple introductions and infer names when none are given. The
tactic apply takes as an argument a proof h of a proposition

8x1 . . . xn, A1 ! · · ·Ap ! B.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 22 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Introduction and elimination rules: (Recall in Chapter 3)1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 23 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Introduction and elimination rules: (Recall in Chapter 3)

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 24 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Introduction and elimination rules: (Recall in Chapter 3)

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 25 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Introduction rule for →:

支持 ! 和 algorithms
1. Propositional Logic | Natural Deduction | Summary

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

黄文超 http://staff.ustc.edu.cn/~huangwc/fm.html 形式化方法导引 24 / 44

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

Introduction rules: introduce new variables: h

Backward reasoning: give a mean to prove a proposition with →
if we can prove simpler propositions

A tactic will work with a still unresolved goal
that we indicate using ? in place of the proof-term

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 26 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Elimination rule for →:

支持 ! 和 algorithms
1. Propositional Logic | Natural Deduction | Summary

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

黄文超 http://staff.ustc.edu.cn/~huangwc/fm.html 形式化方法导引 24 / 44

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

Elimination rule: manipulate the goal
apply h: Explains how we can use a proof (h) of a proposition with →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 27 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Example for assumption, intro and apply:
1 Lemma ex1: forall A B C:Prop,
2 (A -> B -> C) -> (A -> B) -> A -> C.
3 Proof.
4 intro h1.
5 intro h2.
6 intro h3.
7 intro h4.
8 intro h5.
9 intro h6.

10 apply h4.
11 assumption.
12 apply h5.
13 assumption.
14 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 28 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Recall the example, It would be painful to apply only atomic rules
Tactics usually combine in one step several introductions or
elimination rules.

Tactic: intros
Introduce all assumptions in the context.

Do multiple introductions and infer names when none are given

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 29 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Recall the example, It would be painful to apply only atomic rules
1 Lemma ex2: forall A B C:Prop,
2 (A -> B -> C) -> (A -> B) -> A -> C.
3 Proof.
4 intros.
5 apply H.
6 assumption.
7 apply H0.
8 assumption.
9 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 30 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Some tactics are doing proof search to help solve a goal:

contradiction solves the goal when False, or A and ¬A appear in the hypotheses
tauto solves propositional tautologies
trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal

intuition removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

1 Lemma ex3: forall A B C:Prop,
2 (A -> B -> C) -> (A -> B) -> A -> C.
3 Proof.
4 auto.
5 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 31 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Keyword: Variable
Objects can be introduced using the syntax

Variable x : A. Variables x y z : A.

Keyword: Section
A section is a block of code that can be used to group related definitions
and theorems. It is defined using the syntax

Section S. End S.

1 Section SectionExample.
2 Variables A B C: Prop.
3 Lemma ex4 : (A -> B -> C) -> (A -> B) -> A -> C.
4 Proof.
5 intros. apply H. assumption. apply H0. assumption.
6 Qed.
7 End SectionExample.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 32 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

It is convenient to postpone a proof but it is also potentially dangerous
Keyword: Admitted

introducing the original goal as an axiom.
Safety is only guaranteed if there are no axioms left in the proof.

1 Variables A B C: Prop.
2 Lemma falselemma: (A -> B) -> C.
3 Proof.
4 Admitted.

1 Lemma falseconclusion: B -> C.
2 Proof.
3 intros.
4 apply falselemma.
5 intros. exact H.
6 Qed.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 33 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Logical rules and tactics:
Implication rules: →
Conjunction rules: ∧
Disjunction rules: ∨
Negation rules: ¬
Contradiction rules: ⊥
Double negation rules: ¬¬
Universal quantification rules: ∀
Existential quantification rules: ∃
Equality rules: =

Current Coq tactics: axiom intro apply → ∧ ∨ ¬ ⊥ ¬¬ ∀ ∃ =

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 34 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – →

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

See intro apply

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 35 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∧

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variables A B : Prop
2 Lemma and_intro : A -> B -> A /\ B.
3 Proof.
4 intros HA HB.
5 split.
6 exact HA.
7 exact HB.
8 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 36 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∧

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variables A B : Prop.
2 Lemma and_elim_ascii : A /\ B -> A.
3 Proof.
4 intros H.
5 destruct H as [HA HB].
6 exact HA.
7 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 37 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∨

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 38 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∨

1 Variables A B : Prop.
2 Lemma or_intro_left_example : A -> A \/ B.
3 Proof.
4 intros HA.
5 left.
6 exact HA.
7 Qed.

1 Variables A B C : Prop.
2 Lemma or_elim_example : A \/ B -> (A -> C) -> (B -> C) -> C.
3 Proof.
4 intros H_or HA_to_C HB_to_C.
5 destruct H_or as [HA | HB].
6 - apply HA_to_C. exact HA.
7 - apply HB_to_C. exact HB.
8 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 39 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ¬

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variables A : Prop.
2 Lemma not_intro_example : (A -> False) -> ~A.
3 Proof.
4 intros H.
5 exact H.
6 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 40 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ¬

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : Prop.
2 Lemma not_elim_with_destruct : A -> ~A -> False.
3 Proof.
4 intros HA HNA.
5 destruct HNA.
6 exact HA.
7 Qed.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 41 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ⊥

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : Prop.
2 Lemma false_elim_with_exfalso : A -> ~A -> forall B : Prop, B.
3 Proof.
4 intros HA HNA B.
5 exfalso.
6 apply HNA. exact HA.
7 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 42 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ̸̸

Rules in Classical Logics

1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.

Rules in Coq

Does not exist!!! Why?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 43 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∀

Rules in Classical Logics

110 2 Predicate logic

ones. Clearly, what went wrong was that y became bound in the process of
substitution; y is not free for x in φ. Thus, in going from ∀xφ to φ[t/x],
we have to enforce the side condition that t be free for x in φ: use a fresh
variable for y to change φ to, say, ∃z (x < z) and then apply [y/x] to that
formula, rendering ∃z (y < z).

The rule ∀x i is a bit more complicated. It employs a proof box similar
to those we have already seen in natural deduction for propositional logic,
but this time the box is to stipulate the scope of the ‘dummy variable’ x0

rather than the scope of an assumption. The rule ∀x i is written

x0
...

φ[x0/x]

∀xφ
∀x i.

It says: If, starting with a ‘fresh’ variable x0, you are able to prove some
formula φ[x0/x] with x0 in it, then (because x0 is fresh) you can derive
∀xφ. The important point is that x0 is a new variable which doesn’t occur
anywhere outside its box ; we think of it as an arbitrary term. Since we
assumed nothing about this x0, anything would work in its place; hence the
conclusion ∀xφ.

It takes a while to understand this rule, since it seems to be going from
the particular case of φ to the general case ∀xφ. The side condition, that
x0 does not occur outside the box, is what allows us to get away with
this.

To understand this, think of the following analogy. If you want to prove
to someone that you can, say, split a tennis ball in your hand by squashing
it, you might say ‘OK, give me a tennis ball and I’ll split it.’ So we give you
one and you do it. But how can we be sure that you could split any tennis
ball in this way? Of course, we can’t give you all of them, so how could we
be sure that you could split any one? Well, we assume that the one you did
split was an arbitrary, or ‘random,’ one, i.e. that it wasn’t special in any
way – like a ball which you may have ‘prepared’ beforehand; and that is
enough to convince us that you could split any tennis ball. Our rule says
that if you can prove φ about an x0 that isn’t special in any way, then you
could prove it for any x whatsoever.

To put it another way, the step from φ to ∀xφ is legitimate only if we have
arrived at φ in such a way that none of its assumptions contain x as a free
variable. Any assumption which has a free occurrence of x puts constraints

2.3 Proof theory of predicate logic 109

A proof for (2.6) is:

1 t1 = t2 premise

2 t1 = t1 =i

3 t2 = t1 =e 1, 2

where φ is x = t1. A proof for (2.7) is:

1 t2 = t3 premise

2 t1 = t2 premise

3 t1 = t3 =e 1, 2

where φ is t1 = x, so in line 2 we have φ[t2/x] and in line 3 we obtain φ[t3/x],
as given by the rule =e applied to lines 1 and 2. Notice how we applied the
scheme =e with several di!erent instantiations.

Our discussion of the rules =i and =e has shown that they force equality
to be reflexive (2.5), symmetric (2.6) and transitive (2.7). These are minimal
and necessary requirements for any sane concept of (extensional) equality.
We leave the topic of equality for now to move on to the proof rules for
quantifiers.

The proof rules for universal quantification The rule for eliminat-
ing ∀ is the following:

∀xφ

φ[t/x]
∀x e.

It says: If ∀xφ is true, then you could replace the x in φ by any term t
(given, as usual, the side condition that t be free for x in φ) and conclude
that φ[t/x] is true as well. The intuitive soundness of this rule is self-evident.

Recall that φ[t/x] is obtained by replacing all free occurrences of x in φ
by t. You may think of the term t as a more concrete instance of x. Since φ
is assumed to be true for all x, that should also be the case for any term t.

Example 2.11 To see the necessity of the proviso that t be free for x in
φ, consider the case that φ is ∃y (x < y) and the term to be substituted
for x is y. Let’s suppose we are reasoning about numbers with the usual
‘smaller than’ relation. The statement ∀xφ then says that for all numbers
n there is some bigger number m, which is indeed true of integers or real
numbers. However, φ[y/x] is the formula ∃y (y < y) saying that there is a
number which is bigger than itself. This is wrong; and we must not allow a
proof rule which derives semantically wrong things from semantically valid

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : nat -> Prop.
2 Variable H : forall n : nat, A n.
3 Lemma forall_intro_example2 : forall n : nat, A n.
4 Proof.
5 intros n.
6 apply H.
7 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 44 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∀

Rules in Classical Logics

110 2 Predicate logic

ones. Clearly, what went wrong was that y became bound in the process of
substitution; y is not free for x in φ. Thus, in going from ∀xφ to φ[t/x],
we have to enforce the side condition that t be free for x in φ: use a fresh
variable for y to change φ to, say, ∃z (x < z) and then apply [y/x] to that
formula, rendering ∃z (y < z).

The rule ∀x i is a bit more complicated. It employs a proof box similar
to those we have already seen in natural deduction for propositional logic,
but this time the box is to stipulate the scope of the ‘dummy variable’ x0

rather than the scope of an assumption. The rule ∀x i is written

x0
...

φ[x0/x]

∀xφ
∀x i.

It says: If, starting with a ‘fresh’ variable x0, you are able to prove some
formula φ[x0/x] with x0 in it, then (because x0 is fresh) you can derive
∀xφ. The important point is that x0 is a new variable which doesn’t occur
anywhere outside its box ; we think of it as an arbitrary term. Since we
assumed nothing about this x0, anything would work in its place; hence the
conclusion ∀xφ.

It takes a while to understand this rule, since it seems to be going from
the particular case of φ to the general case ∀xφ. The side condition, that
x0 does not occur outside the box, is what allows us to get away with
this.

To understand this, think of the following analogy. If you want to prove
to someone that you can, say, split a tennis ball in your hand by squashing
it, you might say ‘OK, give me a tennis ball and I’ll split it.’ So we give you
one and you do it. But how can we be sure that you could split any tennis
ball in this way? Of course, we can’t give you all of them, so how could we
be sure that you could split any one? Well, we assume that the one you did
split was an arbitrary, or ‘random,’ one, i.e. that it wasn’t special in any
way – like a ball which you may have ‘prepared’ beforehand; and that is
enough to convince us that you could split any tennis ball. Our rule says
that if you can prove φ about an x0 that isn’t special in any way, then you
could prove it for any x whatsoever.

To put it another way, the step from φ to ∀xφ is legitimate only if we have
arrived at φ in such a way that none of its assumptions contain x as a free
variable. Any assumption which has a free occurrence of x puts constraints

2.3 Proof theory of predicate logic 109

A proof for (2.6) is:

1 t1 = t2 premise

2 t1 = t1 =i

3 t2 = t1 =e 1, 2

where φ is x = t1. A proof for (2.7) is:

1 t2 = t3 premise

2 t1 = t2 premise

3 t1 = t3 =e 1, 2

where φ is t1 = x, so in line 2 we have φ[t2/x] and in line 3 we obtain φ[t3/x],
as given by the rule =e applied to lines 1 and 2. Notice how we applied the
scheme =e with several di!erent instantiations.

Our discussion of the rules =i and =e has shown that they force equality
to be reflexive (2.5), symmetric (2.6) and transitive (2.7). These are minimal
and necessary requirements for any sane concept of (extensional) equality.
We leave the topic of equality for now to move on to the proof rules for
quantifiers.

The proof rules for universal quantification The rule for eliminat-
ing ∀ is the following:

∀xφ

φ[t/x]
∀x e.

It says: If ∀xφ is true, then you could replace the x in φ by any term t
(given, as usual, the side condition that t be free for x in φ) and conclude
that φ[t/x] is true as well. The intuitive soundness of this rule is self-evident.

Recall that φ[t/x] is obtained by replacing all free occurrences of x in φ
by t. You may think of the term t as a more concrete instance of x. Since φ
is assumed to be true for all x, that should also be the case for any term t.

Example 2.11 To see the necessity of the proviso that t be free for x in
φ, consider the case that φ is ∃y (x < y) and the term to be substituted
for x is y. Let’s suppose we are reasoning about numbers with the usual
‘smaller than’ relation. The statement ∀xφ then says that for all numbers
n there is some bigger number m, which is indeed true of integers or real
numbers. However, φ[y/x] is the formula ∃y (y < y) saying that there is a
number which is bigger than itself. This is wrong; and we must not allow a
proof rule which derives semantically wrong things from semantically valid

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : nat -> Prop.
2 Lemma forall_elim_example : (forall n : nat, A n) -> A 0.
3 Proof.
4 intros H.
5 apply H.
6 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 45 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∃

Rules in Classical Logics

112 2 Predicate logic

will write ∀i and ∀e when we speak about such rules without concern for the
actual quantifier variable.

Notice also that, although the square brackets representing substitution
appear in the rules ∀i and ∀e, they do not appear when we use those rules.
The reason for this is that we actually carry out the substitution that is asked
for. In the rules, the expression φ[t/x] means: ‘φ, but with free occurrences
of x replaced by t.’ Thus, if φ is P (x, y) → Q(y, z) and the rule refers to
φ[a/y], we carry out the substitution and write P (x, a) → Q(a, z) in the
proof.

A helpful way of understanding the universal quantifier rules is to com-
pare the rules for ∀ with those for ∧. The rules for ∀ are in some sense
generalisations of those for ∧; whereas ∧ has just two conjuncts, ∀ acts like
it conjoins lots of formulas (one for each substitution instance of its vari-
able). Thus, whereas ∧i has two premises, ∀x i has a premise φ[x0/x] for
each possible ‘value’ of x0. Similarly, where and-elimination allows you to
deduce from φ ∧ ψ whichever of φ and ψ you like, forall-elimination allows
you to deduce φ[t/x] from ∀xφ, for whichever t you (and the side condition)
like. To say the same thing another way: think of ∀x i as saying: to prove
∀xφ, you have to prove φ[x0/x] for every possible value x0; while ∧i says
that to prove φ1 ∧ φ2 you have to prove φi for every i = 1, 2.

The proof rules for existential quantification The analogy between
∀ and ∧ extends also to ∃ and ∨; and you could even try to guess the rules
for ∃ by starting from the rules for ∨ and applying the same ideas as those
that related ∧ to ∀. For example, we saw that the rules for or-introduction
were a sort of dual of those for and-elimination; to emphasise this point, we
could write them as

φ1 ∧ φ2

φk
∧ek

φk

φ1 ∨ φ2
∨ik

where k can be chosen to be either 1 or 2. Therefore, given the form of
forall-elimination, we can infer that exists-introduction must be simply

φ[t/x]
∃xφ

∃x i.

Indeed, this is correct: it simply says that we can deduce ∃xφ whenever we
have φ[t/x] for some term t (naturally, we impose the side condition that t
be free for x in φ).

In the rule ∃i, we see that the formula φ[t/x] contains, from a compu-
tational point of view, more information than ∃xφ. The latter merely says

2.3 Proof theory of predicate logic 113

that φ holds for some, unspecified, value of x; whereas φ[t/x] has a witness
t at its disposal. Recall that the square-bracket notation asks us actually to
carry out the substitution. However, the notation φ[t/x] is somewhat mis-
leading since it suggests not only the right witness t but also the formula
φ itself. For example, consider the situation in which t equals y such that
φ[y/x] is y = y. Then you can check for yourself that φ could be a number
of things, like x = x or x = y. Thus, ∃xφ will depend on which of these φ
you were thinking of.

Extending the analogy between ∃ and ∨, the rule ∨e leads us to the
following formulation of ∃e:

∃xφ

x0 φ[x0/x]
...
χ

χ
∃e.

Like ∨e, it involves a case analysis. The reasoning goes: We know ∃xφ is
true, so φ is true for at least one ‘value’ of x. So we do a case analysis over
all those possible values, writing x0 as a generic value representing them
all. If assuming φ[x0/x] allows us to prove some χ which doesn’t mention
x0, then this χ must be true whichever x0 makes φ[x0/x] true. And that’s
precisely what the rule ∃e allows us to deduce. Of course, we impose the
side condition that x0 can’t occur outside its box (therefore, in particular,
it cannot occur in χ). The box is controlling two things: the scope of x0 and
also the scope of the assumption φ[x0/x].

Just as ∨e says that to use φ1 ∨ φ2, you have to be prepared for either of
the φi, so ∃e says that to use ∃xφ you have to be prepared for any possible
φ[x0/x]. Another way of thinking about ∃e goes like this: If you know ∃xφ
and you can derive some χ from φ[x0/x], i.e. by giving a name to the thing
you know exists, then you can derive χ even without giving that thing a
name (provided that χ does not refer to the name x0).

The rule ∃x e is also similar to ∨e in the sense that both of them are
elimination rules which don’t have to conclude a subformula of the formula
they are about to eliminate. Please verify that all other elimination rules
introduced so far have this subformula property.2 This property is computa-
tionally very pleasant, for it allows us to narrow down the search space for
a proof dramatically. Unfortunately, ∃x e, like its cousin ∨e, is not of that
computationally benign kind.

2 For ∀x e we perform a substitution [t/x], but it preserves the logical structure of φ.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : nat -> Prop.
2 Lemma exists_intro_example : A 0 -> exists n : nat, A n.
3 Proof.
4 intros H.
5 exists 0.
6 exact H.
7 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 46 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – ∃

Rules in Classical Logics

112 2 Predicate logic

will write ∀i and ∀e when we speak about such rules without concern for the
actual quantifier variable.

Notice also that, although the square brackets representing substitution
appear in the rules ∀i and ∀e, they do not appear when we use those rules.
The reason for this is that we actually carry out the substitution that is asked
for. In the rules, the expression φ[t/x] means: ‘φ, but with free occurrences
of x replaced by t.’ Thus, if φ is P (x, y) → Q(y, z) and the rule refers to
φ[a/y], we carry out the substitution and write P (x, a) → Q(a, z) in the
proof.

A helpful way of understanding the universal quantifier rules is to com-
pare the rules for ∀ with those for ∧. The rules for ∀ are in some sense
generalisations of those for ∧; whereas ∧ has just two conjuncts, ∀ acts like
it conjoins lots of formulas (one for each substitution instance of its vari-
able). Thus, whereas ∧i has two premises, ∀x i has a premise φ[x0/x] for
each possible ‘value’ of x0. Similarly, where and-elimination allows you to
deduce from φ ∧ ψ whichever of φ and ψ you like, forall-elimination allows
you to deduce φ[t/x] from ∀xφ, for whichever t you (and the side condition)
like. To say the same thing another way: think of ∀x i as saying: to prove
∀xφ, you have to prove φ[x0/x] for every possible value x0; while ∧i says
that to prove φ1 ∧ φ2 you have to prove φi for every i = 1, 2.

The proof rules for existential quantification The analogy between
∀ and ∧ extends also to ∃ and ∨; and you could even try to guess the rules
for ∃ by starting from the rules for ∨ and applying the same ideas as those
that related ∧ to ∀. For example, we saw that the rules for or-introduction
were a sort of dual of those for and-elimination; to emphasise this point, we
could write them as

φ1 ∧ φ2

φk
∧ek

φk

φ1 ∨ φ2
∨ik

where k can be chosen to be either 1 or 2. Therefore, given the form of
forall-elimination, we can infer that exists-introduction must be simply

φ[t/x]
∃xφ

∃x i.

Indeed, this is correct: it simply says that we can deduce ∃xφ whenever we
have φ[t/x] for some term t (naturally, we impose the side condition that t
be free for x in φ).

In the rule ∃i, we see that the formula φ[t/x] contains, from a compu-
tational point of view, more information than ∃xφ. The latter merely says

2.3 Proof theory of predicate logic 113

that φ holds for some, unspecified, value of x; whereas φ[t/x] has a witness
t at its disposal. Recall that the square-bracket notation asks us actually to
carry out the substitution. However, the notation φ[t/x] is somewhat mis-
leading since it suggests not only the right witness t but also the formula
φ itself. For example, consider the situation in which t equals y such that
φ[y/x] is y = y. Then you can check for yourself that φ could be a number
of things, like x = x or x = y. Thus, ∃xφ will depend on which of these φ
you were thinking of.

Extending the analogy between ∃ and ∨, the rule ∨e leads us to the
following formulation of ∃e:

∃xφ

x0 φ[x0/x]
...
χ

χ
∃e.

Like ∨e, it involves a case analysis. The reasoning goes: We know ∃xφ is
true, so φ is true for at least one ‘value’ of x. So we do a case analysis over
all those possible values, writing x0 as a generic value representing them
all. If assuming φ[x0/x] allows us to prove some χ which doesn’t mention
x0, then this χ must be true whichever x0 makes φ[x0/x] true. And that’s
precisely what the rule ∃e allows us to deduce. Of course, we impose the
side condition that x0 can’t occur outside its box (therefore, in particular,
it cannot occur in χ). The box is controlling two things: the scope of x0 and
also the scope of the assumption φ[x0/x].

Just as ∨e says that to use φ1 ∨ φ2, you have to be prepared for either of
the φi, so ∃e says that to use ∃xφ you have to be prepared for any possible
φ[x0/x]. Another way of thinking about ∃e goes like this: If you know ∃xφ
and you can derive some χ from φ[x0/x], i.e. by giving a name to the thing
you know exists, then you can derive χ even without giving that thing a
name (provided that χ does not refer to the name x0).

The rule ∃x e is also similar to ∨e in the sense that both of them are
elimination rules which don’t have to conclude a subformula of the formula
they are about to eliminate. Please verify that all other elimination rules
introduced so far have this subformula property.2 This property is computa-
tionally very pleasant, for it allows us to narrow down the search space for
a proof dramatically. Unfortunately, ∃x e, like its cousin ∨e, is not of that
computationally benign kind.

2 For ∀x e we perform a substitution [t/x], but it preserves the logical structure of φ.

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variable A : nat -> Prop.
2 Lemma exists_elim_example : (exists n : nat, A n) -> forall P :

Prop, (forall x, A x -> P) -> P.
3 Proof.
4 intros Hexists P Hforall. destruct Hexists as [n HAn].
5 apply Hforall with (x := n). exact HAn.
6 Qed.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 47 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – =

Rules in Classical Logics

2.3 Proof theory of predicate logic 107

the term f(y, y) is
not free for x in
this formula

∀y

x →

P

x y

S

Q

∧

Figure 2.4. A parse tree for which a substitution has dire consequences.

2.3 Proof theory of predicate logic

2.3.1 Natural deduction rules

Proofs in the natural deduction calculus for predicate logic are similar to
those for propositional logic in Chapter 1, except that we have new proof
rules for dealing with the quantifiers and with the equality symbol. Strictly
speaking, we are overloading the previously established proof rules for the
propositional connectives ∧, ∨ etc. That simply means that any proof rule
of Chapter 1 is still valid for logical formulas of predicate logic (we origi-
nally defined those rules for logical formulas of propositional logic). As in
the natural deduction calculus for propositional logic, the additional rules
for the quantifiers and equality will come in two flavours: introduction and
elimination rules.

The proof rules for equality First, let us state the proof rules for
equality. Here equality does not mean syntactic, or intensional, equality,
but equality in terms of computation results. In either of these senses, any
term t has to be equal to itself. This is expressed by the introduction rule
for equality:

t = t
=i (2.5)

which is an axiom (as it does not depend on any premises). Notice that it

108 2 Predicate logic

may be invoked only if t is a term, our language doesn’t permit us to talk
about equality between formulas.

This rule is quite evidently sound, but it is not very useful on its own.
What we need is a principle that allows us to substitute equals for equals
repeatedly. For example, suppose that y ∗ (w + 2) equals y ∗ w + y ∗ 2; then
it certainly must be the case that z ≥ y ∗ (w + 2) implies z ≥ y ∗ w + y ∗ 2
and vice versa. We may now express this substitution principle as the rule
=e:

t1 = t2 φ[t1/x]
φ[t2/x]

=e.

Note that t1 and t2 have to be free for x in φ, whenever we want to apply
the rule =e; this is an example of a side condition of a proof rule.

Convention 2.10 Throughout this section, when we write a substitution
in the form φ[t/x], we implicitly assume that t is free for x in φ; for, as we
saw in the last section, a substitution doesn’t make sense otherwise.

We obtain proof

1 (x + 1) = (1 + x) premise

2 (x + 1 > 1) → (x + 1 > 0) premise

3 (1 + x > 1) → (1 + x > 0) =e 1, 2

establishing the validity of the sequent

x + 1 = 1 + x, (x + 1 > 1) → (x + 1 > 0) $ (1 + x) > 1 → (1 + x) > 0.

In this particular proof t1 is (x + 1), t2 is (1 + x) and φ is (x > 1) →
(x > 0). We used the name =e since it reflects what this rule is doing to
data: it eliminates the equality in t1 = t2 by replacing all t1 in φ[t1/x]
with t2. This is a sound substitution principle, since the assumption that
t1 equals t2 guarantees that the logical meanings of φ[t1/x] and φ[t2/x]
match.

The principle of substitution, in the guise of the rule =e, is quite powerful.
Together with the rule =i, it allows us to show the sequents

t1 = t2 $ t2 = t1 (2.6)
t1 = t2, t2 = t3 $ t1 = t3. (2.7)

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

Two terms u and v are convertible (written t ≡ u) when they
represent the same value after computation.
The elimination rule allows to replace a term by an equal in any
context.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 48 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics

Rules in Coq

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

8 Christine Paulin-Mohring

contradiction solves the goal when False, or A and ¬A appear in the hypotheses
tauto solves propositional tautologies
trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal
intuition removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

Proving Equalities. The introduction rule of equality is reflexivity. In Coq, two
terms t and u are convertible (written t ⌘ u) when they represent the same
value after computation. The elimination rule allows to replace a term by an
equal in any context. As a consequence, we have the following derived rules and
corresponding tactics:

�`?:u=t

�`?:t=u
symmetry

�`?:t=v �`?:v=u

�`?:t=u
transitivity v

�`?:f=g �`?:t1=u1...�`?:tn=un

�`?:f t1...tn=g u1...un

f equal

Variants of the rewrite rule includes rewrite <- H when H is a proof of t = u

(or a generalization of it) which replaces u by t and the tactic replace u with
t which does the replacement but also generates the goal t = u.

The rewrite tactics by default replace all the occurrences of u in P (u). To
rewrite selected occurrences, there is a variant: rewrite H at occs.

Another useful tactic for dealing with equalities is subst. When x is a variable
and the context contains an hypothesis x = t (or t = x) with x not occurring
in t, then the tactic subst x will substitute t for x and remove both x and
the hypothesis from the context. The tactic subst without argument do the
substitution on all possible variables in the context.

Finishing Proofs. The commands Theorem and Lemma, given a name name
and a property A, enter the interactive proof mode in which tactics are used
to transform the goal. Hopefully, after some e↵ort there will be no remaining
subgoals : the proof of A is finished. Actually,Coq is doing one more check before
accepting the proof. From the tactics used, the system extracts a term p and
the trusted kernel has to check that � ` p : A is a valid judgment, which is done
by elementary rules for type-checking p. This step is done with the commands
Qed or Save. The proof is recorded in the environment and given the name
name with type A. It can be used in other proofs like any hypothesis in the
environment. It might seem useless to check again the proof, however, this choice
of architecture allows to freely extend the set of tactics without compromising
the safety of the proofs. Actually, some correctness checking (universes, well-
formed definition of recursive functions) are not done during interactive proof
mode and consequently, it might be the case (in rare occasions) that a “finished
proof” is actually not a correct proof.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 49 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics – Forward reasoning

Recall Backward reasoning.

Forward reasoning
A tactic transforms a goal into a set of subgoals

solving these subgoals is sufficient to solve the original goal

Introduction to the Coq proof-assistant for practical software verification 7

introduction elimination

? �`?:False

�`?:C
exfalso

¬ �,h:A`False

�`?:¬A
intro h

�`h:¬A �`?:A

�`?:C
destruct h

! �,h:A`?:B

�`?:A!B
intro h

�`h:A!B �`?:A

�`?:B
apply h

8 �,y:A`?:B[x y]

�`?:8x:A,B
intro y

�`h:8x:A,B �`t:A

�`?:B[x t]
apply y with (x:=t)

^ �`?:A �`?:B

�`?:A^B
split

�`h:A^B �,l:A,m:B`?:C

�`?:C
destruct h as (l,m)

_

�`?:A

�`?:A_B

�`?:B

�`?:A_B

left

right

�`h:A_B �,l:A`?:C �,l:B`?:C

�`?:C
destruct h as [l|l]

9 �`t:A �`?:B[x t]

�`?:9x:A,B
exists t

�`h:9x:A,B �,x:A,l:B`?:C

�`?:C
destruct h as (x, l)

=
t⌘u

�`?:t=u
reflexivity

�`h:t=u �`?:C[x u]

�`?:C[x t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ti]i=1...n

and generates subgoals corresponding to Aj [xi ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

� ` ? : B �, h : B ` ? : A
� ` ? : A

assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,
(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.
Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).
Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals
t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails
repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:

1 Variables A B C : Prop.
2 Lemma assert_example : (A -> B) -> (B -> C) -> A -> C.
3 Proof.
4 intros H1 H2 HA.
5 assert (HB : B).
6 - apply H1. exact HA.
7 - apply H2. exact HB.
8 Qed.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 50 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics: Intuitionistic Logic v.s Classical Logic

Coq implements an intuitionistic logic, which differs from classical logic in
the following ways:

Law of Excluded Middle: P ∨ ¬P is not generally valid in Coq.
Double Negation Elimination: In Coq, ¬¬P → P is not valid unless
P is constructively proven.

P ∨ ¬P ⊢ ¬¬P → P in Coq (见作业５)
Constructive Proofs: Intuitionistic logic requires constructive proofs,
meaning that to prove ∃x, P (x), one must explicitly construct a
witness x such that P (x) holds.
Proof as Programs: Intuitionistic logic aligns with the Curry-Howard
correspondence.

It is also possible to use classical versions of logical connectives
a library Classical introduces the excluded middle as an axiom

1 Require Import Classical.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 51 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

2. Basics
2.2 Logical rules and tactics axiom intro apply → ∧ ∨ ¬ ⊥ ¬¬ ∀ ∃ =

实验小作业: 使用 Coq 证明如下命题（不允许使用搜索策略，不允许使
用 Classical 库）, 附上代码和文档（文档中列出每个证明步骤的输出截
图）

1 Section Homework.
2 Variables A B : Prop.
3 Variable T : Type.
4 Variable P : T -> Prop .
5

6 Lemma homework1: forall A, ~~~ A -> ~ A.
7 Lemma homework2: A \/ B -> ~ (~ A /\ ~ B).
8 Lemma homework3: (~ exists x, P x) -> forall x, ~ P x.
9 Lemma homework4: A -> ~~A.

10 Lemma homework5: (A \/ ~A) -> (~~A -> A).
11 End Homework.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引 本章代码链接 (Tested in v8.14.1, v8.15.1)形式化方法导引 52 / 52

https://faculty.ustc.edu.cn/huangwenchao
http://staff.ustc.edu.cn/~huangwc/fm/code/6.2.1-2.v

