Hﬁﬁﬂﬁ?’iﬁa‘—:@ |
3 ESbagiiy

6.3 - Coq: A Prover based on Higher-order Logic

6.3.3 Inductive Declarations

g

https://faculty.ustc.edu.cn/huangwenchao

(A ERIEEES

https://faculty.ustc.edu.cn/huangwenchao
https://recapi.ustc.edu.cn/api/v2/link/direct_url/6e086570-6e40-11ed-865e-810bd2b53408/02176cc0-b5a5-11ed-8a6b-612dddc73081.v

3. Inductive Declarations

Inductive Data Types

* A data-type name can be declared by specifying a set of
constructors.

Inductive name : sort :=c;: C,| ... |¢c,: C,.

name is the name of the type to be defined

sort is one of Set or Type (or even Prop)

¢; are the names of the constructors

C,; is the type of the constructor c;

Print nat.

Inductive nat : Set :=
O : nat | S : nat -> nat.

A data-type name can be declared by specifying a set of constructors. Each constructor ci is given a type Ci which declares the type of its expected argu- ments. A
constructor possibly accepts arguments (which can be recursively of type name), and when applied to all its arguments, a constructor has type the inductive definition
name itself. There are some syntactic restrictions over the type of constructors to make sure that the definition is well-founded.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Data Types

¢ The declaration of an inductive definition

e introduces new primitive objects for the type itself and its
constructors;

* generates theorems which provide induction principles to reason
on objects in inductive types

Print bool.

Inductive bool : Set :=
true : bool | false : bool.

Check bool ind.

bool ind
: forall P : bool -> Prop,
P true ->
P false -> forall b : bool, P b

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Data Types

¢ The declaration of an inductive definition

e introduces new primitive objects for the type itself and its
constructors;

* generates theorems which provide induction principles to reason
on objects in inductive types

Print nat.

Inductive nat : Set :=
O : nat | S : nat -> nat.

Check nat_ind.

nat ind
: forall P : nat -> Prop,
PO —>
(forall n : nat, Pn -> P (S n)) ->

forall n : nat, P n

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Data Types

¢ The declaration of an inductive definition

e introduces new primitive objects for the type itself and its
constructors;

* generates theorems which provide induction principles to reason
on objects in inductive types

Print prod.
Inductive prod (A B : Type) : Type :=
pair : A -> B -> A * B.
* |t is a polymorphic definition, parametrized by two type A and B

* The constructor pair takes two arguments and pairs them in an
object of type A « B

e which is what is expected for a product representation.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Types and Equality

* The constructors of an inductive type are injective and distinct, e.g.,
e true # false
eSn=Sm->n=mandSn#0

» Tactics to prove for new inductive types:

e discriminate H: prove any goal if H is a proof of 7, = 7, with #; and
1, starting with different constructors

Goal (forall n, S (Sn) =1 -> 0=1).
intros n H.

discriminate H.

Qed.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Types and Equality

e Tactics to prove for new inductive types:

e injection H: assumes H is a proof of 7, = 7, with #; and ¢, starting
with the same constructor

* It will deduce equalities u; = u,,v; = v,, ... between
corresponding subterms and add these equalities as new
hypotheses.

Goal (forall nm, S n =S8 (S m) -> 0<>n).
intros n m H.

injection H.

intro j.

intro k.

assert (0 = S m).

transitivity n.

assumption.

assumption.

discriminate HO.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Propositions.

* All propositional connectives, except for negation, implication and
universal quantifier, are declared using inductive definitions
» False is a degenerated case where there are no constructors.

Print False.

Inductive False : Prop :=

Check False_ind.

False_ind
: forall P : Prop, False -> P

e True is the proposition with only one proof |

Print True.

Inductive True : Prop := I : True.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Propositions.

* All propositional connectives, except for negation, implication and
universal quantifier, are declared using inductive definitions

e Conjunction of two propositions corresponds to the product type

Print and.

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> A /\ B.

Check and ind.

and ind
: forall A B P : Prop,
(A ->B ->P) ->A /\B ->P

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Inductive Propositions.

* All propositional connectives, except for negation, implication and
universal quantifier, are declared using inductive definitions

 Disjunction to an inductive proposition with two constructors

Print or.

Inductive or (A B : Prop) : Prop :=
or introl : A -> A \/ B
| or_intror : B -> A \/ B.

Check or_ ind.

or_ind
¢ forall A B P : Prop,
(A ->P) -> (B->P) ->A\/ B ->P

10

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

The Board Example

e At each step it is possible to choose one line or
one column and to inverse the color of each token | A
on that line or column.

* We want to study when a configuration is c
reachable from a starting configuration.

@00~
000 -

000>

Inductive color : Type := White | Black.
Inductive pos : Type := A | B | C.
Inductive triple M := Triple : M -> M -> M -> triple M.

* A line White/Black/White will be represented by
 the term Triple White Black White, with M to be explicitly given
* So, the Coq internal term is Triple color White Black White
 To tell Coq to infer type arguments whenever possible

Set Implicit Arguments.
11

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

The Board Example

e Introduce a special notation for triples:

Notation "[x | y | 2z]" := (Triple x vy z).

define a function:
e |nput: an element m in M
e Qutput: a triple with the value m in the three positions.

Definition triple x M (m:M) : triple M := [m | m | m].

12

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Definitions by pattern-matching

* When a term t belongs to some inductive type, it is possible to
* build a new term by case analysis over the various constructors
e which may occur as the head of t when it is evaluated.

match term with ¢y args; = term; ... ¢, args,, = term, end

* In this construction, the expression term has an inductive type with n

constructors ¢y, ..., C,.
o The term term; is the term to build when the evaluation of t produces

the constructor c;.

Definition iszero n :=
match n with | 0 => true | S x => false end.

13

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Definitions by pattern-matching
e The board example
* inverses a color

Definition turn color (c: color) : color :=
match ¢ with | White => Black | Black => White end.

 given a function f, and a triple (a,b,c), applies f to all components

Definition triple map M f (t: triple M) : triple M:=
match t with (Triple a b c) => [(f a)|(f b)|(f ¢)] end.

e expects a position and applies the function f at that position

Definition triple map select M f p t : triple M :=
match t with (Triple a b c

)
match p with | A => [(f a) | b | ¢]
| B=>[a | (£Eb) | c]
| ¢c=>1a | b | (fc)]
end

end.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Generalized Pattern-Matching Definitions.

Patterns can match several terms at the same time
* they may contain the universal pattern which filters any expression

Patterns are examined in a sequential way
* they must cover the whole domain of the inductive type

Definition nozero n m :=
match n, m with

| 0, => false | _, 0 => false | _, _ => true
end.

15

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Some Equivalent Notations

* In the case of an inductive type with a single constructor C:
let (z1,..,2,):=t in u

e is equivalent to match ¢t with Czy..x,, = u end

Definition fst (A B:Set) (p:A * B) := let (x,) := p in x.
Definition fst (A B:Set) (H:A * B) := match H with

| pair x y => x
end.

* In the case of an inductive type with two constructors (like
booleans) ¢; and ¢,
if t then u; else uq

e isequivalentto match t with ¢; = u1|co = us end.

16

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Fixpoint Definitions
A function can be defined by fixpoint,

e if one of its formal arguments, say x, has an inductive type and

e if each recursive call is performed on a term which can be
checked to be structurally smaller than x.

Fixpoint name (z; : type;) ... (mp : type,){struct z;} : type := term

 The variable x; following the struct keyword is the recursive argument.

e Its type fype; must be an instance of an inductive type.

17

To define interesting functions over recursive data types, we use recursive functions. General fixpoints are not allowed since they lead to an unsound logic.
Only structural recursion is allowed. The basic idea is that x will usually be the main argument of a match and then recursive calls can be performed in each branch
on some variables of the corresponding pattern.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Fixpoint Definitions

e decreasing on 1st argument

Fixpoint plusl (n m:nat) : nat :=
match n with | 0 => m | S p => S (plusl p m) end.

e decreasing on 2nd argument

Fixpoint plus2 (n m:nat) : nat :=
match m with | 0 => n | S p => S (plus2 n p) end.

e Error: Cannot guess decreasing argument of fix.

Fixpoint test (b:bool) (n m:nat) : bool
:= match (n,m) with
| (0,) => true | (_,0) => false

| (S p,S gq)=> if b then test b p m else test b n g
end.

* There should be one decreasing argument for each fixpoint

18

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Computing

* One can reduce a term and prints its normal form with Eval compute in term

Eval compute in (2 + 3)%nat.

Eval compute in (turn_color White).

Eval compute in (triple map turn color [Black|White|White]).

19

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Fixpoint Definitions

¢ Ackermann function

m+ 1 ifn=0
A(n,m) =1 A(n—-1,1) ifm=0
A(n—1,A(n,m—1)) otherwise
Fixpoint ack (n m:nat) {struct n} : nat
:= match n with

| 0 =>Sm
| 8 p => let fix ackn (m:nat) {struct m} :=
match m with 0 => ack p 1
| 8 g => ack p (ackn q)
end
in ackn m

end.
Goal forall n, ack (S n) 0 = ack n 1.

Goal forall n m, ack (S n) (S m) = ack n (ack (S n) m).
20

However, it is possible to define functions with more elaborated recursive schemes using higher order functions like the Ackermann function.
We may remark the internal definition of fixpoint using the let fix construction which defines the value of ack n as a new function ackn with one argument and a

structurally smaller recursive call.
As an exercise, you may prove that the following equations are solved using reflexivity.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Algorithms on lists

* How to prove algorithms on arrays?

Require Import List ZArith.
Open Scope Z_scope.

Open Scope list_ scope.
Print list.

Inductive list (A : Type) : Type :=

nil : list A
| cons : A -> list A -> list A.

e Notations for lists include a::l for the operator cons and I1++I2 for

the concatenation of two lists.

21

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Algorithms on lists

e Sum and maximum

Fixpoint sum (1 : list Z) : Z :=
match 1 with nil => 0 | a::m => a + sum m end.

Fixpoint max (1 : list Z) : Z
match 1 with nil => 0
| a::nil => a
| a::m => let b:= max m in
if Zle_bool a b then b else a

end.

22

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations
Inductive Relations

Inductive name : arity :=c1 : C1 | ... | ¢y : Cy

e name: the name of the relation to be defined
e arity: its type

* for instance nat->nat->Prop for a binary relation over natural
numbers)

« as for data types, ¢; and C; are the names and types of
constructors respectively.

e Example: Vn:nat,0<n Vnm :nat,n < m = (Sn) < (Sm)

Inductive LE : nat -> nat -> Prop :=
| LE_O : forall n:nat, LE 0 n
| LE S : forall n m:nat, LE n m -> LE (S n) (S m).

23

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

The Board Example (Recall)

Inductive color : Type := White | Black.
Inductive pos : Type := A | B | C.
Inductive triple M := Triple : M -> M -> M -> triple M.

Set Implicit Arguments.

Notation "[x | y | 2z]" := (Triple x vy z).
Definition triple x M (m:M) : triple M := [m | m | m].
Definition turn_color (c: color) : color :=

match ¢ with | White => Black | Black => White end.

Definition triple map M f (t: triple M) : triple M:=
match t with (Triple a b c) => [(f a)|(f b)|(f ¢)] end.

Definition triple map select M f p t : triple M :=

match t with (Triple a b c) =>
match p with | A => [(f a) | b | ¢]
| B=>[a | (f£b) | c]
| €¢=>[a | b | (fc)]
end

end.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

The Board Example

Definition board := triple (triple color).

Definition start : board
:= [[White | White | Black]
[Black | White | White]
[Black | Black | Black]

(o

Definition target : boar
:= [[Black | Black | White]
[White | Black | Black]
[Black | Black | Black]

Definition turn row (p: pos)

triple map select (triple map turn color) p.

Definition turn col (p: pos)

triple map (triple map select turn color p).

|
1.

board

board

-> board

-> board

25

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

The Board Example

¢ Define the relation

Definition movel (bl b2: board) : Prop :=

(exists p : pos, b2=turn row p bl)
\/ (exists p : pos, b2=turn col p bl)

e An alternative direct inductive definition

Inductive move (bl:board) : board ->
move row : forall (p:pos), move bl
| move col : forall (p:pos), move bl

¢ Definition of reflexive-transitive closure

Inductive moves (bl:board): board ->
moves_init : moves bl bl
| moves_step : forall b2 b3,
moves bl b2 -> move

Prop :=
(turn_row p bl)
(turn _col p bl).

Prop :=

b2 b3 -> moves bl b3.

26

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

The Board Example

* Prove simple properties

Lemma move moves : forall bl b2, move bl b2 -> moves bl b2.
intros.

apply moves step with bl.

apply moves_ init.

assumption.

Qed.

* Prove reachability

Lemma reachable : moves start target.

apply moves step with (turn row A start).

apply move moves.

apply move row.

replace target with (turn row B (turn row A start)).
apply move row.

auto.

Qed.

7
cf

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations

Example: Needham-Schroeder Public Key protocol

Inductive agent : Set := A | B | I .
Inductive message : Set :=
Name : agent -> message
| Nonce : agent*agent -> message
| SK : agent -> message
| Enc : message -> agent -> message
| P : message -> message -> message.

Section Protocol.
Variable X:agent.

28

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

Inductive send agent -> message -> Prop :=

init send A (Enc (P (Nonce (A,X)) (Name A)) X)
| transl : forall d ¥,
receive B (Enc (P (Nonce d) (Name Y)) B)
-> send B (Enc (P (Nonce d) (Nonce (B,Y))) Y)
| trans2 : forall d,

receive A (Enc (P (Nonce (A,X))
-> send A (Enc (Nonce d) X)

(Nonce d)) A)

| cheat forall m, known m -> send I m
with receive agent -> message -> Prop :=
link forall m Y Z, send Y m -> receive Z m
with known : message -> Prop :=
spy forall m, receive I m -> known m
| name forall a, known (Name a)
| secret KI : known (SK I)
| decomp_1 forall m ml, known (P m ml) -> known m
| decomp r forall m ml, known (P m ml) -> known ml
| compose forall m ml, known m -> known ml -> known
| crypt forall m a, known m -> known (Enc m a)
| decrypt forall m a, known (Enc m a) -> known (SK a)

End Protocol.

Lemma flaw receive I B (Enc (Nonce (B,A)) B).

Lemma flawB known I (Nonce (B,A)).

(P m ml)

-> known m.

29

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

