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3. Inductive Declarations 

• A data-type name can be declared by specifying a set of 
constructors. 





• name is the name of the type to be defined


• sort is one of Set or Type (or even Prop)


•   are the names of the constructors


•  is the type of the constructor 

Inductive name : sort := c1 : C1 ∣ … ∣ cn : Cn .

ci

Ci ci
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Inductive Data Types 

Print nat.

Inductive nat : Set :=
    O : nat | S : nat -> nat.

A data-type name can be declared by specifying a set of constructors. Each constructor ci is given a type Ci which declares the type of its expected argu- ments. A 
constructor possibly accepts arguments (which can be recursively of type name), and when applied to all its arguments, a constructor has type the inductive definition 
name itself. There are some syntactic restrictions over the type of constructors to make sure that the definition is well-founded.
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3. Inductive Declarations 

• The declaration of an inductive definition 

• introduces new primitive objects for the type itself and its 

constructors; 

• generates theorems which provide induction principles to reason 

on objects in inductive types
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Inductive Data Types 

Print bool.

Inductive bool : Set :=
    true : bool | false : bool.

Check bool_ind.

bool_ind
     : forall P : bool -> Prop,
       P true ->
       P false -> forall b : bool, P b
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3. Inductive Declarations 

• The declaration of an inductive definition 

• introduces new primitive objects for the type itself and its 

constructors; 

• generates theorems which provide induction principles to reason 

on objects in inductive types 
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Inductive Data Types 

Print nat.

Inductive nat : Set :=
    O : nat | S : nat -> nat.

Check nat_ind.

nat_ind
     : forall P : nat -> Prop,
       P 0 ->
       (forall n : nat, P n -> P (S n)) ->
       forall n : nat, P n
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3. Inductive Declarations 

• The declaration of an inductive definition 

• introduces new primitive objects for the type itself and its 

constructors; 

• generates theorems which provide induction principles to reason 

on objects in inductive types 
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Inductive Data Types 

Print prod.

Inductive prod (A B : Type) : Type :=
    pair : A -> B -> A * B.

• It is a polymorphic definition, parametrized by two type A and B

• The constructor pair takes two arguments and pairs them in an 

object of type A ∗ B


• which is what is expected for a product representation. 
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3. Inductive Declarations 

• The constructors of an inductive type are injective and distinct, e.g.,


• 


•  and 

•  Tactics to prove for new inductive types:


• discriminate H: prove any goal if H is a proof of  with  and 
 starting with different constructors 

true ≠ false

S n = S m → n = m S n ≠ 0

t1 = t2 t1
t2

6

Inductive Types and Equality 

Goal (forall n, S (S n) = 1 -> 0=1).
intros n H.
discriminate H.
Qed.
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3. Inductive Declarations 

•  Tactics to prove for new inductive types:


• injection H: assumes H is a proof of  with  and  starting 
with the same constructor


• It will deduce equalities  between 
corresponding subterms and add these equalities as new 
hypotheses. 

t1 = t2 t1 t2

u1 = u2, v1 = v2, …
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Inductive Types and Equality 

Goal (forall n m, S n = S (S m) -> 0<>n).
intros n m H.
injection H.
intro j.
intro k.
assert (0 = S m).
transitivity n.
assumption.
assumption.
discriminate H0.
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3. Inductive Declarations 

• All propositional connectives, except for negation, implication and 
universal quantifier, are declared using inductive definitions

• False is a degenerated case where there are no constructors. 


• True is the proposition with only one proof I

8

Inductive Propositions. 

Print False.

Inductive False : Prop :=  .

Check False_ind.

False_ind
     : forall P : Prop, False -> P

Print True.

Inductive True : Prop :=  I : True.
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3. Inductive Declarations 

• All propositional connectives, except for negation, implication and 
universal quantifier, are declared using inductive definitions

• Conjunction of two propositions corresponds to the product type


•

9

Inductive Propositions. 

Check and_ind.

and_ind
     : forall A B P : Prop,
       (A -> B -> P) -> A /\ B -> P

Print and.

Inductive and (A B : Prop) : Prop :=
    conj : A -> B -> A /\ B.
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3. Inductive Declarations 

• All propositional connectives, except for negation, implication and 
universal quantifier, are declared using inductive definitions

• Disjunction to an inductive proposition with two constructors

10

Inductive Propositions. 

Print or.

Inductive or (A B : Prop) : Prop :=
    or_introl : A -> A \/ B
  | or_intror : B -> A \/ B.

Check or_ind.

or_ind
     : forall A B P : Prop,
       (A -> P) -> (B -> P) -> A \/ B -> P
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3. Inductive Declarations 

• At each step it is possible to choose one line or 
one column and to inverse the color of each token 
on that line or column.


• We want to study when a configuration is 
reachable from a starting configuration.

11

The Board Example

16 Christine Paulin-Mohring

1 subgoal
n : nat
m : nat
H : S n = S (S m)
============================
0 < n

Coq < injection H.
1 subgoal

n : nat
m : nat
H : S n = S (S m)
============================
n = S m -> 0 < n

Remark on Inductive Propositions. The sort in an inductive definition can
also be Prop allowing the inductive declaration of logical propositions. Following
the Curry-Howard correspondence between proposition and types, all proposi-
tional connectives except for negation, implication and universal quantifier are
declared using inductive definitions. False is a degenerated case where there are
no constructors. True is the proposition with only one proof I (corresponding
to the unit type with only one constructor). Conjunction of two propositions
corresponds to the product type and disjunction to an inductive proposition
with two constructors. Existential quantifiers and equality are also inductively
defined.

Coq < Print False.
Inductive False : Prop :=
Coq < Check False_ind.
False_ind : forall P : Prop , False -> P
Coq < Print or.
Inductive or (A B : Prop) : Prop :=

or_introl : A -> A \/ B | or_intror : B -> A \/ B
Coq < Check or_ind.
or_ind : forall A B P : Prop ,

(A -> P) -> (B -> P) -> A \/ B -> P

The Board Example. The game we want to study involves nine bicolor tokens
(one side black and one side white) which are placed on a 3⇥ 3 board.

A B C
A

B

C

At each step it is possible to choose one line or one column and to inverse the
color of each token on that line or column. We want to study when a configuration
is reachable from a starting configuration.

Inductive color : Type := White | Black.
Inductive pos : Type := A | B | C.
Inductive triple M := Triple : M -> M -> M -> triple M.

• A line White/Black/White will be represented by 

• the term Triple White Black White, with M to be explicitly given 

• So, the Coq internal term is Triple color White Black White


• To tell Coq to infer type arguments whenever possible 
Set Implicit Arguments.
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3. Inductive Declarations 

• Introduce a special notation for triples: 

12

The Board Example

Notation "[ x | y | z ]" := (Triple _ x y z).

•  define a function:

• Input: an element m in M

• Output: a triple with the value m in the three positions.

Definition triple_x M (m:M) : triple M := [m | m | m].
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3. Inductive Declarations 

• When a term t belongs to some inductive type, it is possible to 

• build a new term by case analysis over the various constructors 

• which may occur as the head of t when it is evaluated. 


• In this construction, the expression term has an inductive type with n 
constructors . 


• The term  is the term to build when the evaluation of t produces 
the constructor .

c1, . . . , cn

termi
ci

13

Definitions by pattern-matching 

Introduction to the Coq proof-assistant for practical software verification 17

The data types involved in that example are the state of each token (black or
white) which can be represented by a boolean or a special inductive type with
two values. We need to identify a column and a line by a position (three possible
values).

Coq < Inductive color : Type := White | Black.
Coq < Inductive pos : Type := A | B | C.

Finally we need to represent the board. It is convenient to represent it as three
lines, each line being composed of three colors. In order to reuse functions, one
can introduce a polymorphic type of triples of elements in an arbitrary type M

(the definition is very similar to the definition of the product type).

Coq < Inductive triple M := Triple : M -> M -> M -> triple M.

A line White/Black/White will be represented by the term Triple White Black
White. The Coq kernel requires the type argument M to be explicitly given, so
theCoq internal term is Triple color White Black White. However, the type
color can be easily deduced from the type of White and can be systematically
omitted in the input, thanks to the Coq declaration:

Coq < Set Implicit Arguments.

which tells Coq to infer type arguments whenever possible. Alternatively, the
command Implicit Arguments name [args] can be used to force the implicit
arguments of a given object name. On can also introduce a special notation for
triples:

Coq < Notation "[ x | y | z ]" := (Triple x y z).

and define a function which given an element m in M builds a triple with the
value m in the three positions.

Coq < Definition triple_x M (m:M) : triple M := [ m | m | m ].

3.2 Definitions by pattern-matching

The Pattern-Matching Operator. When a term t belongs to some inductive type,
it is possible to build a new term by case analysis over the various constructors
which may occur as the head of t when it is evaluated. Such definitions are known
in functional programming languages as pattern-matching. The Coq syntax is
the following:

match term with c1 args1 ) term1 . . . cn argsn ) termn end

In this construction, the expression term has an inductive type with n construc-
tors c1, ..., cn. The term termi is the term to build when the evaluation of t
produces the constructor ci.

Definition iszero n :=
  match n with | O => true | S x => false end.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

3. Inductive Declarations 

•  The board example

• inverses a color


• given a function f, and a triple (a,b,c), applies f to all components


• expects a position and applies the function f at that position 
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Definitions by pattern-matching 

Definition turn_color (c: color) : color :=
  match c with | White => Black | Black => White end.

Definition triple_map M f (t: triple M) : triple M:= 
  match t with (Triple _ a b c) => [(f a)|(f b)|(f c)] end.

Definition triple_map_select M f p t : triple M := 
  match t with (Triple _ a b c) =>
    match p with | A => [ (f a) | b | c ] 
                 | B => [ a | (f b) | c ] 
                 | C => [ a | b | (f c) ]
    end 
  end.
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3. Inductive Declarations 

• Patterns can match several terms at the same time

• they may contain the universal pattern which filters any expression


• Patterns are examined in a sequential way

• they must cover the whole domain of the inductive type 

15

Generalized Pattern-Matching Definitions. 

Definition nozero n m := 
  match n, m with
    | O, _ => false | _, O => false | _, _ => true 
  end.
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3. Inductive Declarations 

• In the case of an inductive type with a single constructor C:


• is equivalent to 


• In the case of an inductive type with two constructors (like 
booleans)  and 


•  is equivalent to 

c1 c2
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Some Equivalent Notations

18 Christine Paulin-Mohring

Example. If n has type nat, the function checking whether n is O can be defined
as follows:

Coq < Definition iszero n :=
match n with | O => true | S x => false end.

The board example. On can simply define a function which inverses a color:

Coq < Definition turn_color (c: color) : color :=
match c with | White => Black | Black => White end.

On our board example, given a function f of type M ! M , one can define a
function triple map which given a triple (a, b, c), applies f to all components,
and a function triple map select which also expects a position and applies the
function f at that position.

Coq < Definition triple_map M f (t: triple M) : triple M:=
match t with (Triple a b c) => [(f a)|(f b)|(f c)] end.

Coq < Definition triple_map_select M f p t : triple M :=
match t with (Triple a b c) =>

match p with | A => [ (f a) | b | c ]
| B => [ a | (f b) | c ]
| C => [ a | b | (f c) ]

end
end.

Generalized Pattern-Matching Definitions. More generally, patterns can match
several terms at the same time, they may be nested and they may contain the
universal pattern which filters any expression. Patterns are examined in a
sequential way (as in functional programming languages) and they must cover
the whole domain of the inductive type. Thus one may write for instance

Coq < Definition nozero n m :=
match n, m with
| O, _ => false | _, O => false | _, _ => true
end.

However, the generalized pattern-matching is not considered as a primitive con-
struct and is actually compiled into a sequence of primitive patterns.

Some Equivalent Notations. In the case of an inductive type with a single con-
structor C:

let (x1, .., xn):=t in u

can be used as an equivalent to match t with Cx1..xn ) u end.
In the case of an inductive type with two constructors (like booleans) c1 and

c2 (such as the type of booleans for instance) the construct

if t then u1 else u2

can be used as an equivalent to match t with c1 ) u1|c2 ) u2 end.
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c2 (such as the type of booleans for instance) the construct

if t then u1 else u2

can be used as an equivalent to match t with c1 ) u1|c2 ) u2 end.

Definition fst (A B:Set) (H:A * B) := match H with
  | pair x y => x
end.

Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
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3. Inductive Declarations 

• A function can be defined by fixpoint, 


• if one of its formal arguments, say , has an inductive type and

• if each recursive call is performed on a term which can be 

checked to be structurally smaller than . 

x

x

17

 Fixpoint Definitions
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3.3 Fixpoint Definitions

To define interesting functions over recursive data types, we use recursive func-
tions. General fixpoints are not allowed since they lead to an unsound logic.

Only structural recursion is allowed. It means that a function can be defined
by fixpoint if one of its formal arguments, say x, has an inductive type and if each
recursive call is performed on a term which can be checked to be structurally
smaller than x. The basic idea is that x will usually be the main argument
of a match and then recursive calls can be performed in each branch on some
variables of the corresponding pattern.

The Fixpoint Construct. The syntax for a fixpoint definition is the following:

Fixpoint name (x1 : type1) . . . (xp : typep){struct xi} : type := term

The variable xi following the struct keyword is the recursive argument. Its
type typei must be an instance of an inductive type. If the clause {struct xi} is
omitted, the system will try to infer an appropriate argument.

The type of name is forall (x1 : type1) . . . (xp : typep), type. Occurrences
of name in term must be applied to at least i arguments and the ith must be
structurally smaller than xi.

Examples. The following two definitions of plus by recursion over the first and
the second argument respectively are correct:

Coq < Fixpoint plus1 (n m:nat) : nat :=
Coq < match n with | O => m | S p => S (plus1 p m) end.
plus1 is recursively defined (decreasing on 1st argument)

Coq < Fixpoint plus2 (n m:nat) : nat :=
Coq < match m with | O => n | S p => S (plus2 n p) end.
plus2 is recursively defined (decreasing on 2nd argument)

Restrictions on Fixpoint Declarations. There are strong syntactic restrictions
on the kind of definitions that are accepted, there should be one decreasing
argument for each fixpoint, the following definition will not be accepted:

Coq < Fixpoint test (b:bool) (n m:nat) : bool
Coq < := match (n,m) with
Coq < | (O,_) => true | (_,0) => false
Coq < | (S p,S q) => if b then test b p m else test b n q
Coq < end.
Error: Cannot guess decreasing argument of fix.

However, it is possible to define functions with more elaborated recursive schemes
using higher order functions like the Ackermann function:

Coq < Fixpoint ack (n m:nat) {struct n} : nat
Coq < := match n with

• The variable  following the struct keyword is the recursive argument. 


• Its type  must be an instance of an inductive type.


xi

typei

To define interesting functions over recursive data types, we use recursive functions. General fixpoints are not allowed since they lead to an unsound logic.

    Only structural recursion is allowed. The basic idea is that x will usually be the main argument of a match and then recursive calls can be performed in each branch 
on some variables of the corresponding pattern.
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3. Inductive Declarations 

•  decreasing on 1st argument 

18

Fixpoint plus1 (n m:nat) : nat :=
match n with | O => m | S p => S (plus1 p m) end.

Fixpoint plus2 (n m:nat) : nat :=
match m with | O => n | S p => S (plus2 n p) end.

•  decreasing on 2nd argument 

• Error: Cannot guess decreasing argument of fix. 
Fixpoint test (b:bool) (n m:nat) : bool
  := match (n,m) with
 | (O,_) => true | (_,0) => false
 |(S p,S q)=> if b then test b p m else test b n q
end.

• There should be one decreasing argument for each fixpoint 

 Fixpoint Definitions
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3. Inductive Declarations 

•  One can reduce a term and prints its normal form with Eval compute in term

19

Computing

Eval compute in (2 + 3)%nat.

Eval compute in (turn_color White).

Eval compute in (triple_map turn_color [Black|White|White]).
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3. Inductive Declarations 

•  Ackermann function 

20

 Fixpoint Definitions

A(n, m) =
m + 1 if n = 0
A(n − 1,1) if m = 0
A(n − 1,A(n, m − 1)) otherwise

Fixpoint ack (n m:nat) {struct n} : nat
  := match n with
      | 0 =>S m
      | S p => let fix ackn (m:nat) {struct m} :=
                 match m with 0 => ack p 1
                         | S q => ack p (ackn q)
                 end
               in ackn m
     end.

Goal forall n, ack (S n) 0 = ack n 1.

Goal forall n m, ack (S n) (S m) = ack n (ack (S n) m).

However, it is possible to define functions with more elaborated recursive schemes using higher order functions like the Ackermann function.

We may remark the internal definition of fixpoint using the let fix construction which defines the value of ack n as a new function ackn with one argument and a 
structurally smaller recursive call. 

As an exercise, you may prove that the following equations are solved using reflexivity.
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3. Inductive Declarations 

•  How to prove algorithms on arrays?

21

Algorithms on lists 

Require Import List ZArith.
Open Scope Z_scope.
Open Scope list_scope.
Print list.

Inductive list (A : Type) : Type :=
    nil : list A
  | cons : A -> list A -> list A.

• Notations for lists include a::l for the operator cons and l1++l2 for 
the concatenation of two lists.
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3. Inductive Declarations 

22

Algorithms on lists 

• Sum and maximum
Fixpoint sum (l : list Z) : Z :=
  match l with nil => 0 | a::m => a + sum m end.

Fixpoint max (l : list Z) : Z := 
  match l with nil => 0
            | a::nil => a
            | a::m => let b:= max m in
                          if Zle_bool a b then b else a
  end.
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3. Inductive Declarations 
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Inductive Relations 

• name: the name of the relation to be defined

• arity: its type

• for instance nat->nat->Prop for a binary relation over natural 

numbers)


• as for data types,  and  are the names and types of 
constructors respectively. 


• Example:

ci Ci

22 Christine Paulin-Mohring

Correctness of max and sum. To specify the behavior of max, we could use the
predicate In of the List library and say that whenever l is non empty then max l
is in l and it is not less than all elements in l. Our function sum satisfies the two
following equations which can be considered as a valid functional specification.

sum nil = 0 sum (a::l) = a+ sum l

Termination. All functions in Coq terminate.

3.5 Inductive Relations

Inductive definitions can also be used to introduce relations specified by a set of
closure properties (like inference rules or Prolog clauses). Each clause is given a
name, seen as a constructor of the relation. The type of this constructor is the
logical formula associated to the clause. The syntax of such a definition is:

Inductive name : arity := c1 : C1 | . . . | cn : Cn

where name is the name of the relation to be defined, arity its type (for instance
nat->nat->Prop for a binary relation over natural numbers) and, as for data
types, ci and Ci are the names and types of constructors respectively.

Example. The definition of the order relation over natural numbers can be de-
fined as the smallest relation verifying:

8n : nat, 0  n 8nm : nat, n  m ) (Sn)  (Sm)

which is sometimes presented as a set of inference rules

0  n

n  m

(Sn)  (Sm)

In Coq, such a relation is defined as follows:

Coq < Inductive LE : nat -> nat -> Prop :=
Coq < | LE_O : forall n:nat , LE 0 n
Coq < | LE_S : forall n m:nat , LE n m -> LE (S n) (S m).
LE is defined
LE_ind is defined

This declaration introduces identifiers LE, LE O and LE S, each having the type
specified in the declaration. The LE ind theorem is introduced which captures
the minimality of the relation.

Coq < Check LE_ind.
LE_ind

: forall P : nat -> nat -> Prop ,
(forall n : nat , P 0 n) ->
(forall n m : nat , LE n m -> P n m -> P (S n) (S m)) ->
forall n n0 : nat , LE n n0 -> P n n0

22 Christine Paulin-Mohring
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specified in the declaration. The LE ind theorem is introduced which captures
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Coq < Check LE_ind.
LE_ind

: forall P : nat -> nat -> Prop ,
(forall n : nat , P 0 n) ->
(forall n m : nat , LE n m -> P n m -> P (S n) (S m)) ->
forall n n0 : nat , LE n n0 -> P n n0

Inductive LE : nat -> nat -> Prop :=
 | LE_O : forall n:nat, LE 0 n
 | LE_S : forall n m:nat, LE n m -> LE (S n) (S m).
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The Board Example (Recall)

Inductive color : Type := White | Black.
Inductive pos : Type := A | B | C.
Inductive triple M := Triple : M -> M -> M -> triple M.

Set Implicit Arguments.

Notation "[ x | y | z ]" := (Triple _ x y z).

Definition triple_x M (m:M) : triple M := [m | m | m].

Definition turn_color (c: color) : color :=
  match c with | White => Black | Black => White end.

Definition triple_map M f (t: triple M) : triple M:= 
  match t with (Triple _ a b c) => [(f a)|(f b)|(f c)] end.

Definition triple_map_select M f p t : triple M := 
  match t with (Triple _ a b c) =>
    match p with | A => [ (f a) | b | c ] 
                 | B => [ a | (f b) | c ] 
                 | C => [ a | b | (f c) ]
    end 
  end.

https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm


https://faculty.ustc.edu.cn/huangwenchao/zh_CN/zdylm/680196/list/index.htm

25

The Board Example

Definition board := triple (triple color).

Definition start : board
  := [ [White | White | Black] |
       [Black | White | White] | 
       [Black | Black | Black] ].

Definition target : board
  := [ [Black | Black | White] |
       [White | Black | Black] |
       [Black | Black | Black] ].

Definition turn_row (p: pos) : board -> board := 
  triple_map_select (triple_map turn_color) p.

Definition turn_col (p: pos) : board -> board := 
  triple_map (triple_map_select turn_color p).
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The Board Example

Definition move1 (b1 b2: board) : Prop :=
   (exists p : pos, b2=turn_row p b1)
\/ (exists p : pos, b2=turn_col p b1).

Inductive move (b1:board) : board -> Prop :=
  move_row : forall (p:pos), move b1 (turn_row p b1) 
| move_col : forall (p:pos), move b1 (turn_col p b1).

Inductive moves (b1:board): board -> Prop := 
  moves_init : moves b1 b1
| moves_step : forall b2 b3,
                 moves b1 b2 -> move b2 b3 -> moves b1 b3.

• Define the relation

• An alternative direct inductive definition

•  Definition of reflexive-transitive closure 
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The Board Example

Lemma move_moves : forall b1 b2, move b1 b2 -> moves b1 b2.
intros. 
apply moves_step with b1.
apply moves_init.
assumption.
Qed.

Lemma reachable : moves start target.
apply moves_step with (turn_row A start).
apply move_moves.
apply move_row.
replace target with (turn_row B (turn_row A start)).
apply move_row.
auto.
Qed.

• Prove simple properties

• Prove reachability
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3. Inductive Declarations 
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Example: Needham-Schroeder Public Key protocol 

Inductive agent : Set := A | B | I .
Inductive message : Set :=
  Name : agent -> message
      | Nonce : agent*agent -> message
      | SK : agent -> message
      | Enc : message -> agent -> message
      | P : message -> message -> message.

Section Protocol.
Variable X:agent.
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Inductive send : agent -> message -> Prop :=
   init : send A (Enc (P (Nonce (A,X)) (Name A)) X)
 | trans1 : forall d Y,
    receive B (Enc (P (Nonce d) (Name Y)) B)
     -> send B (Enc (P (Nonce d) (Nonce (B,Y))) Y)
 | trans2 : forall d,
    receive A (Enc (P (Nonce (A,X)) (Nonce d)) A) 
     -> send A (Enc (Nonce d) X)
 | cheat : forall m, known m -> send I m
with receive : agent -> message -> Prop :=
    link : forall m Y Z, send Y m -> receive Z m
with known : message -> Prop :=
    spy : forall m, receive I m -> known m
 | name : forall a, known (Name a)
 | secret_KI : known (SK I)
 | decomp_l : forall m m1, known (P m m1) -> known m
 | decomp_r : forall m m1, known (P m m1) -> known m1
 | compose : forall m m1, known m -> known m1 -> known (P m m1)
 | crypt : forall m a, known m -> known (Enc m a)
 | decrypt : forall m a, known (Enc m a) -> known (SK a) -> known m.
End Protocol.

Lemma flaw : receive I B (Enc (Nonce (B,A)) B).

Lemma flawB : known I (Nonce (B,A)).
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