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Abstract

Current formal approaches have been successfully used to
find design flaws in many security protocols. However, it
is still challenging to automatically analyze protocols due
to their large or infinite state spaces. In this paper, we pro-
pose SmartVerif, a novel and general framework that pushes
the limit of automation capability of state-of-the-art verifica-
tion approaches. The primary technical contribution is the
dynamic strategy inside SmartVerif, which can be used to
smartly search proof paths. Different from the non-trivial
and error-prone design of existing static strategies, the design
of our dynamic strategy is simple and flexible: it can auto-
matically optimize itself according to the security protocols
without any human intervention. With the optimized strat-
egy, SmartVerif can localize and prove supporting lemmata,
which leads to higher probability of success in verification.
The insight of designing the strategy is that the node repre-
senting a supporting lemma is on an incorrect proof path with
lower probability, when a random strategy is given. Hence,
we implement the strategy around the insight by introducing
a reinforcement learning algorithm. We also propose several
methods to deal with other technical problems in implement-
ing SmartVerif. Experimental results show that SmartVerif
can automatically verify all security protocols studied in this
paper. The case studies also validate the efficiency of our
dynamic strategy.

1 Introduction

Security protocols aim at providing secure communications
on insecure networks by applying cryptographic primitives.
However, the design of security protocols is particularly error-
prone. Design flaws have been discovered for instance in
the 5G [9], WiFi WPA2 [57], and TLS [23]. These findings
have made the verification of security protocols a very active
research area since the 1990s.

During the last 30 years, many research efforts [7,10,12,21—
23,28,30,41] were spent on designing techniques to model

and analyze protocols. The earliest protocol analysis tools,
e.g., the Interrogator [42] and the NRL Protocol Analyzer [40],
could be used to verify security properties specified in tem-
poral logic. Generic model checking tools have been used
to analyze protocols, e.g., FDR [39] and later Murphi [43].
More recently the focus has been on model checking tools
developed specifically for security protocol analysis, such
as Blanchet’s ProVerif [12], the AVISPA tool [7], Maude-
NPA [28] and tamarin prover [41]. There have also been
hand proofs aimed at particular protocols. Delaune et al. [26]
showed by a dedicated hand proof that for analyzing PKCS#11
one may bind the message size. Guttman [33] manually ex-
tended the space model by adding support for Wang’s fair
exchange protocol [58].

Unfortunately, although formal analysis has been success-
ful in finding design flaws in many security protocols, it is
still challenging for existing verification tools to support fully
automated analysis of security protocols, especially proto-
cols with global states [6,32,45,48, 60] or unbounded ses-
sions [15,47,49]. They may suffer non-termination during the
verification mainly caused by the problem of state explosion.
To avoid the explosion of the state space, several tools, e.g.,
ProVerif [12] and AVISPA [7], use an abstraction on proto-
cols, so that they support more protocols with unbounded ses-
sions. Due to the abstraction, however, they may report false
attacks when analyzing protocols with global states [6, 13].
StatVerif [6] and Set-m [13] extend the applied pi-calculus
with global states, but the number of sessions they support
is limited and they fail to automatically verify complicated
protocols (e.g., CANauth protocol [56]). GSVerif [17] en-
richs ProVerif’s proof strategy and supports several protocols
with unbounded sessions [32,48], but it fails to automatically
verify complicated protocols (e.g., Yubikey protocol [60]).
Tamarin prover [36,41] can verify more protocols without
limitations of states or sessions, but it comes at the price of
losing automation. It requires the user to supply insight into
the problem by proving auxiliary lemmata, which is hard even
for experts [36].

We propose and implement SmartVerif, a novel and gen-



eral framework of verifying security protocols. It pushes the
limit of automation capability of state-of-the-art verification
tools. Our work is motivated by the observation that these
tools generally use a static strategy during verification, where
design of the strategy is non-trivial. Here, the verification can
be simply regarded as the process of path searching in a tree:
each node represents a proof state which includes a lemma
as a candidate used to prove the lemma in its parent and a
path is correct if and only if each node on the path represents
a supporting lemma which is a special lemma necessarily
used for proving the specified security property. Therefore,
the supporting lemmata have to be proven, before the property
is verified.

Based on the observation, we design a dynamic strategy in
SmartVerif. In other words, SmartVerif runs round-by-round,
where in each round the strategy is either applied in searching
until the complete proof path is selected, or optimized in case
the current selected path is estimated incorrect. The initializa-
tion of the strategy does not need any human intervention, i.e.,
the initial strategy is purely random. After the strategy is suf-
ficiently optimized, it can smartly choose the next searching
nodes. Specially, it efficiently localizes the node representing
a supporting lemma among the nodes, which leads to success
in verification. Recall that tamarin prover can let users supply
supporting lemmata to reduce the complexity of automation.
In comparison, the dynamic strategy in SmartVerif can help
find the lemmata automatically and smartly, such that the
protocols can be verified without any user interaction.

Our dynamic strategy builds upon the insight that the node
representing a supporting lemma is on the incorrect path with
lower probability, when a random strategy is given (See the
proof in Appendix A). Hence, we introduce Deep Q Net-
work (DQN) [44], a reinforcement learning agent, into the
verification. The DQN updates the strategy according to his-
torical incorrect paths. It uses an experience replay mecha-
nism [38] which randomly samples previous transitions, and
smooths the training distribution over the incorrect paths. As
a result, an optimized strategy tends to select a node repre-
senting supporting lemma among the candidates, which leads
to higher probability of successful verification.

We also propose to solve other technical problems in im-
plementing SmartVerif. We present an approach of generating
incomplete verification tree for reducing the memory over-
head. We also design an algorithm of estimating correctness
of selected paths to detect loops, which is the key component
for supporting the DQN. Note that since we focus on the au-
tomation capability, we design SmartVerif based on tamarin
prover that we modify tamarin prover for preprocessing pro-
tocol models and acquiring information for the DQN.

Experimental results show that SmartVerif can automat-
ically verify all the studied protocols, without any human
intervention. These protocols include Yubikey protocol [60]
and CANauth protocol [56], which cannot be automatically
verified by state-of-the-art verification tools. The case studies

also validate the efficiency of our dynamic strategy.
The main contributions of the paper are three folds:

1. We present SmartVerif, to the best of our knowledge,
the first framework that automatically verifies security
protocols by dynamic strategies.

2. We propose several methods to deal with technical prob-
lems in implementing the framework. Specifically, we
achieve our dynamic strategy by using the DQN and de-
signing the rewards based on the insight. We design the
algorithm of estimating the correctness of selected paths
by detecting loops on the path. We propose to generate
the incomplete verification tree to reduce the memory
overhead. We implement a multi-threading process of
path selection for better efficiency.

3. SmartVerif pushes the limit of automation capability of
protocol verification, and it greatly outperforms state-of-
the-art tools. SmartVerif achieves two goals: generality
in designing heuristics and full automation in verifica-
tion.

The rest of the paper is organized as follows. We review
some related work and introduce tamarin that we use in
Section 2 and Section 3, respectively. Then, we present the
overview of SmartVerif in Section 4. In Section 5, we show
an illustrative example of a security protocol. Afterwards, we
solve the main problems in designing the Acquisition and Ver-
ification module in Section 6 and Section 7, respectively. We
report our extensive experimental results and briefly overview
the Yubikey and CANAuth protocol as case studies in Sec-
tion 8. Finally, we present our future work and conclude the
paper. We also illustrate and prove our insight in Appendix A.
We present detailed description of the DQN in Appendix B.

2 Related Work

There are several typical model checking approaches that can
deal with security protocols. ProVerif [12], one of the most
efficient and widely used protocol analysis tools, relies on
an abstraction that encodes protocols in Horn clauses. This
abstraction is well suited for the monotonic knowledge of an
attacker, which makes the tool efficient for verifying protocols
with an unbounded number of protocol sessions [11,35]. It
is capable of proving reachability properties, correspondence
assertions, and observational equivalence. Protocol analysis
is considered with respect to an unbounded number of ses-
sions and an unbounded message space. StatVerif [6] is an
extension of ProVerif with support for explicit states. Its exten-
sion is carefully engineered to avoid many false attacks. It is
used to automatically reason about protocols that manipulate
global states. GSVerif [17] extends ProVerif to global states.
It provides several sound transformations that cover private
channels, cells, counters, and tables. It is efficient to verify
protocols with global states.



Another verification approach that supports the verification
of stateful protocols is the tamarin prover [53], [41]. Instead
of abstraction techniques, it uses backward search and lem-
mata to cope with the infinite state spaces in verification. The
benefit of tamarin and related tools is a great amount of flexi-
bility in formalizing relationships between data that cannot be
captured by a particular abstraction and resolution approach.
It can handle protocols with global states [36], unbounded
sessions [41], observational equivalence properties [10] and
XOR [9] etc. However it comes at the price of losing automa-
tion, i.e., the user has to supply insight into the problem by
proving auxiliary lemmata for complex protocols. Tamarin
has already been used for analyzing the Yubikey device [37],
security APIs in PKCS#11 [26] and a protocol in TPM [25].
Using tamarin prover, researchers have discovered attacks for
protocols such as V2X [59].

Overall, current approaches provide efficient ways in ver-
ifying security protocols. However, they commonly adopt a
static strategy during verification, which may result in non-
termination when verifying complicated security protocols.
Encountering these cases, human experts are needed to ana-
lyze the reason of non-termination and supply hand proof.

At the same time, fast progress has been unfolding in ma-
chine learning applied to tasks that involve logical inference,
such as knowledge base completion [55] and premise selec-
tion in the context of theorem proving [34]. Reinforcement
learning in particular has proven to be a powerful tool for
embedding semantic meaning and logical relationships into
geometric spaces. These advances strongly suggest that re-
inforcement learning may have become mature to yield sig-
nificant advances in many research areas, such as automated
theorem proving. To the best of our knowledge, SmartVerif
is the first work that applies Al techniques to the automated
verification of security protocols.

3 Preliminaries of Tamarin Prover

We firstly introduce tamarin prover that we modify. The
tamarin prover [41] is a powerful tool for the symbolic mod-
eling and analysis of security protocols. It takes a protocol
model as input, specifying the actions taken by protocol’s
participants (e.g., the protocol initiator, the responder, and
the trusted key server), a specification of the adversary, and
a specification of the protocol’s desired properties. Tamarin
can then be used to automatically construct a proof that, when
many instances of the protocol’s participants are interleaved
in parallel, together with the actions of the adversary, the
protocol fulfills its specified properties.

Protocols and adversaries are specified using an expressive
language based on multiset rewriting rules. These rules define
a labeled transition system whose state consists of a symbolic
representation of the adversary’s knowledge, the messages
on the network, information about freshly generated values,
and the protocol’s state. The adversary and the protocol inter-
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Figure 1: Framework of SmartVerif.

act by updating and generating network messages. Security
properties are modeled as trace properties, checked against
the traces of the transition system.

To verify a protocol, tamarin uses a constraint solving algo-
rithm for determining whether P Fg ¢ holds for a protocol P,
a trace property ¢ and an equational theory E that formalizes
the semantics of function symbols in protocol model. The ver-
ification always starts with either a simplification step, which
looks for a counterexample to the property, or an induction
step, which generates the necessary constraints to prove the
property. On a high level, the algorithm can be regarded as the
process of path searching in a tree. Each node of the tree rep-
resents an independent constraint system. Intuitively, tamarin
applies constraint reduction rules to a constraint system to
generate a finite set of refined systems. Note that tamarin
prover uses these rules to represent lemmata in verification
process. This problem is undecidable and the algorithm does
not always terminate. Nevertheless, it often finds a counterex-
ample (an attack) or succeeds in unbounded verification.

To search the solved constraint system, tamarin prover uses
a heuristic to sort the applicable rules for a constraint system.
The design rationale underlying tamarin’s heuristic is that it
prefers rules that are either trivial to solve or likely to result
in a contradiction. Since the rules are sorted, tamarin always
chooses the first rule to refine the current system, i.e., expand
only one endpoint node in the search tree. The rest endpoint
nodes remain collapsed. Hence, the search tree is simplified
to a finite one, which reduces the complexity of verification
process.

4 Overview

Briefly, given a tamarin protocol model, i.e., a protocol de-
scription and a security property, the workflow of SmartVerif
consists of the following steps:

e Step 1: The Deep Q Network (DQN) is initialized with a
purely random strategy, which takes multiple candidates
as input, and randomly chooses a candidate with the
uniform probability as output.

e Step 2: SmartVerif conducts proof searching by using
the current strategy. It executes in parallel by multi-



threading. In each thread, a proof path is generated using
the tamarin prover as backend, where each node on the
path is chosen according to the strategy.

o Step 3: If a path generated in Step 2 is correct and com-
plete, SmartVerif terminates and outputs the path as the
result.

e Step 4: Otherwise, if all the paths generated in Step 2
are estimated incorrect, SmartVerif starts a new epoch
where the DQN is trained according to the proof paths,
and the strategy is updated. Here, we use the term epoch
to denote the time step in which the DQN is optimized
with new rewards.

e Step 5: Go to Step 2.

As shown in Figure |, SmartVerif contains Acquisition and
Verification module, which execute in multiple rounds:

Acquisition: The module generates a verification tree as
input of Verification module. A path in the tree corresponds
to a possible proof path in verification. Each node in the tree
contains information for guiding the verification. We modify
tamarin prover to collect the information. Since information
of the nodes is transformed as input of the DQN, for which
handling high-dimensional data is difficult, the information
must be carefully chosen to reduce complexity of designing
the DQN. Moreover, we face a problem of constructing the
verification tree. There are protocols with large or infinite state
spaces [48,60]. In this case, even little information stored in
nodes would still lead to memory explosion. To solve the
problem, we design the DQN to guide the tree generation.
Specifically, the tree is generated and expanded gradually that
in each round only one of the endpoint nodes in the current
tree is expanded, and the rest endpoint nodes remain collapsed
for reducing the complexity of the tree. Here, the selection of
the endpoint node is guided by the current strategy in DQN.

Verification: The module selects a path from the verifica-
tion tree as a candidate proof. The path selection is guided
by a dynamic strategy which uses the DQN. Meanwhile, the
strategy is also optimized with correctness of the selection.
Here, we additionally illustrate how the submodules in the
Verification module deal with the tree. Briefly, there are 2
submodules.

1) Correctness Determination: It estimates whether the
DQN selects the correct path. The main idea is to detect
whether there are loops along the path (See Section 7.1). In
each round, SmartVerif works according to the selected path
in different cases:

Case 1: The path is estimated incorrect. We optimize the
DQN in this epoch by passing rewards to the DQN. Mean-
while, we start a new epoch and send feedback to Acquisition
module, where the submodule of Initial Tree Construction is
informed to regenerate a new verification tree. As a result, we
can find a new proof path according to the optimized DQN
afterward.

Case 2: The path is estimated correct but incomplete. The
incompleteness of the path is caused by the incompleteness
of the verification tree. Therefore, we inform the submodule
of Subtree Construction to expand the tree in the next round,
so the path is also extended in the next round for shaping a
complete path.

Case 3: The path is correct and complete. In this case, we
achieve a successful verification of the protocol model, so we
can terminate SmartVerif.

2) Deep Q Network: We introduce the DQN to update
the dynamic strategy in SmartVerif. The key of the design
of DQN is constructing the reward. In SmartVerif, the DQN
selects a path from the verification tree in each round. Specifi-
cally, for each node that is on an estimated incorrect path, the
node is bound to a negative reward. The design of the reward
corresponds to our insight as mentioned in Section 1. This
insight enables us to leverage the detected paths to guide the
path selection.

S Example

To illustrate our method, we consider a simple security pro-
tocol. The goal of the protocol is that when a participant C
sends a symmetric key k to another participant S, the secret
symmetric key k should not be obtained by the adversary.

S1.C—=S:
$.8—>C:

{Tb k}Pks
{2, h(k)}

Figure 2: A simple security protocol.

The brief process of the protocol is shown in Figure 2.
In step S;, C generates a symmetric key k, encrypts a tu-
ple {71,k} with the public key of S, and sends the encrypted
message. Here, tag T; is used to annotate protocol step i in
protocol execution. In step S, S receives C’s message, de-
crypts it with its private key, and gets the symmetric key k.
Finally, S confirms the receipt of k by sending back its hash
h(k) to C.

The communication network is assumed to be completely
controlled by an active Dolev-Yao style adversary [27]. In
particular, the adversary may eavesdrop the public channels
or send forged messages to participants according to the chan-
nels. Moreover, the adversary can access the long-term keys
of compromised agents. Besides, the adversary is limited by
the constraints of the cryptographic methods used. For exam-
ple, it cannot infer hash input from hash output.

Here, we provide a brief explanation on modeling proto-
cols in tamarin prover. A tamarin model defines a transition
system whose state is a multiset of facts. The transitions are
specified by rules. At a very high level, tamarin rules en-
code the behavior of participants and adversaries. Tamarin
rules [/] — [a] — [r] have a left-hand side / (premises), ac-
tions a, and a right-hand side r (conclusions). The left-hand



and right-hand sides of rules respectively contain multisets of
facts. Facts can be consumed (when occurring in premises)
and produced (when occurring in conclusions). Each fact can
be either linear or persistent (marked with an exclamation
point !). While we use linear facts to model limited resources
that cannot be consumed more times than they are produced,
persistent facts are used to model resources which can be con-
sumed any number of times once they have been produced.
Actions are a special kind of facts. They do not influence the
transitions, but represent specific states in protocol. These
states form the relation between transition system and the
security property.

Security properties are specified in a fragment of first-order
logic. Tamarin offers the usual connectives (where & and |
denote “and” and “or”, respectively), quantifiers All and Ex,
and timepoint ordering <. Note that the negation connective
does not exist in the modeling language. Besides, while &
and | have the similar meanings as in C-family programming
languages, ! does not. In formulas, the prefix # denotes that
the following variable is of type timepoint. Besides, tamarin
offers two connectives @ and >, for stating the relations
between facts and timepoints. For example, the expression
Action(args) @#t denotes that Action(args) is executed at
timepoint #t. The expression Action(args) >, #t denotes that
Action(args) is executed before timepoint #¢.

For instance, to model the above protocol, we first define
several functions and predicates. 1) In(m) and Out(m): mes-
sage m is sent and received, respectively; 2) aenc{a}k and
adec{a}k: asymmetric encryption and decryption of a vari-
able a using key k; 3) Pk(A, pk,) and Ltk(A, Itk,): partic-
ipant A is bound to a public key pk, and a private key Itkg4,
respectively; 4) fst{a, b} and snd{a, b}: the first and second
element from a tuple {a, b}, respectively; 5) Eq(a, b): a is
equal to b; 6) h(a): the result of hashing a.

Then, the compromise of private keys is modeled using the
following rule.

rule Reveal Itk :
[ 'Ltk(A, Itks) | — [ LtkReveal(A) | — [ Out(ltky4) |

It has a premise !Ltk(A, Irks) which binds the private
key ltks to a participant A. The corresponding conclu-
sion Out(/tky) states that the private key ltk4 is sent to the
adversary. Note that, this rule has an action LtkReveal(A)
stating that the key of A was compromised. This action is
used to model the security property.

Then, the protocol is modeled using the rules in Figure 3.
Rule C_1 captures a participant generating a fresh key and
sending the encrypted message. The rule has two facts for
premises. The first fact Fr(k) states that a fresh variable k is
generated. The second fact !Pk(S, pky) states that the public
key pkg is bound to a participant S. In this case, the second
fact is a persistent fact since the public key can be used in
many times (i.e., by protocol participants or adversaries). If
the facts in premises are matched with the facts in the current

ruleC_1:
[Fr(k), 'PK(S, pks) ]—[]— [Send(S, k), Out(aenc{T;, k}pks) ]

rule S_1:
[ 'LtK(S, ltks), In(request) | — [ Eq(fst(adec(request, ltks)), T1) |
— [ Out(T», h(snd(adec(request, ltks)))) |

rule C_2:
[Send(S, k), In(h(k)) ] — [ SessKeyC(S, k) | =[]

Figure 3: The model of the protocol process.

state, two conclusions are produced. The first is an action
Send(S, k) which states that k is sent to a participant S. The
second conclusion is Out(aenc{7}, k}pky). This fact states
that the participant uses a public key pkg to encrypt the mes-
sage {T1, k} and send the message. Rule S_1I captures a par-
ticipant receiving the message sent by C and sending the hash
value of k back. Rule C_2 captures a participant receiving the
hash value and completing a run of the protocol.

Finally, we define a security property, which states that
when a participant C sends a symmetric key k to another
participant S, the secret symmetric key k should not be ob-
tained by the adversary. The security property is modeled as
a lemma Key_secrecy in Figure 4. The lemma indicates that,
there must not exist a state, where action SessKeyC(S, k)
happens and the adversary obtains k, without the happening
of the compromise action LtkReveal(S).

lemma Key_secrecy :
"not( Ex S k #i #j. SessKeyC(S, k) @ #i & K(k) @ #j
& not(Ex #r. LtkReveal(S) @ r) )"

Figure 4: The security property.

Note that the above security property of protocol can be
successfully verified by tamarin prover. To better understand
the following sections, we use this protocol as an example.
We describe how we generate the verification tree of the pro-
tocol in Section 6. Then we explain how SmartVerif verifies
protocols in Section 7.

6 Acquisition module

6.1 Choosing Information

The information in nodes of the verification tree is used in 2
ways. 1) We transform the information to input of the DQN.
In the Verification module, we use the DQN to select a proof
path in verification tree. The DQN in Verification module
requires an input state, which represents current proof state.
We use the information to represent proof state in verification
process. Since it is difficult for the network to handle high-
dimensional data, the input of the network should not be large
in dimensions. Hence, we do not choose all the intermediate
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Figure 5: Construction of a Verification Tree.

data in the verification process as the information. 2) We
use the information to distinguish different proof states. Note
that SmartVerif runs round-by-round, where in each round
verification trees are constructed and merged. In the merging
process, we compare the information in nodes in different
trees to find a same proof state in each round. Therefore, the
information in the node should not only be simple enough, but
also represent independent state in the verification process.

For each node in the verification tree, we choose the con-
straint reduction rule and and step number, i.e., distance from
the node to the root, as the stored information. Recall that at
each proof step tamarin prover applies a constraint reduction
rule to refine a constraint system. Hence, rules and their step
numbers can represent independent states in the verification
process. As illustrated in Figure 5, each node in the tree con-
tains three pieces of information as follows: 1) ID: the hash
value of the constraint reduction rule; 2) Step: the current
proof step number; 3) Rule: the string of the constraint reduc-
tion rule. Here, the hash value is shown with the first eight
characters for abbreviation.

Considering the protocol in Section 5, we show the infor-
mation collected from modified tamarin prover in Figure 5 (a).
Due to the limitation of paper size, we only demonstrate
the information collected in the first two steps. Specifically,
the root node eb49d854 represents the lemma Key_secrecy.
In the first proof step, tamarin prover constructs the proof
starting with either an induction rule, which generates the
necessary constraints to prove the lemma, or a simplify
rule, which generates initial constraint system to look for
a counterexample to the lemma. In this case, tamarin prover
chooses rule simplify at proof step #1, which corresponds
to node 743cbe8a. In detail, it looks for a protocol execu-
tion that contains a SessKeyC(S, k) and a K(k) action, but
does not use an LtkReveal(S). As shown in Figure 3, ac-
tion SessKeyC(S, k) is in the protocol execution only if the
protocol step that rule C_2 captures has happened. Since rule
C_2 has two premises Send(S, k) and In(h(k)), these two
facts are in the protocol execution. Based on this observa-
tion, tamarin prover has two constraint reduction rules to
select: Send(S, k) >, #i and KU (h(k))@#vk. The first rule
Send(S, k), #i states that action Send(S, k) is executed
before timepoint #i. The second rule KU (h(k)) @#vk states
that the adversary knows k’s hash value at timepoint #vk.

Therefore, in the tree, node 743cbe8a has two children which
represent these two rules respectively.

6.2 Tree Construction

We construct a verification tree to store the information we
collect. The tree is used in Verification module to generate
a candidate proof by guidance of the DQN. As illustrated
in Section 4, to avoid memory explosion, we design a simple
and effective approach. We firstly initialize a tree with a root
starting from the security property. Each node in the tree
contains information specified in Section 6.1. Then, in each
new round, when the tree is expanded, an endpoint node in the
current tree is chosen according to the DQN, and a depth-two
subtree is generated. The root of the subtree is the chosen
endpoint node and the nodes of the second depth represent the
possible constraint reduction rules that can be used to prove
the lemma of the root. Therefore, the new tree is formed by
merging the subtree into the current tree.

In Figure 5, we exemplify the construction of the verifica-
tion tree for the protocol in Section 5. In the initial round, the
Acquisition module generates a tree, whose root node repre-
sents the lemma Key_secrecy, as shown in Figure 5(a). In the
next round, if the DQN in the Verification module selects the
endpoint node ¢3 f00ae8 as the estimated supporting lemma,
the Acquisition module uses the modified tamarin prover to
go one step further, gathers the information, and constructs a
subtree shown in Figure 5(b). Then, the acquisition merges
the subtree into the current tree as shown in Figure 5(c).

Besides, we implement a multi-threading process of path
selection for better efficiency. Recall that the DQN optimizes
itself with its selection and the corresponding rewards. Since
it selects only one path given a verification tree at each round,
the quantity of training data is limited, which decreases the
training efficiency and lowers the performance. To solve this
problem, we execute multiple threads of the Acquisition mod-
ule in parallel to generate various verification trees for the
DQN. Therefore, the DQN selects multiple paths in these
trees at a time and generate more training data for optimizing.
Using this approach, we are able to achieve greater data effi-
ciency and increase the convergence rate. We further validate
and evaluate the multi-threading process in the experiments
in Section 8.1.



case I_2
solve( !KU( aenc(<'2', ~ni.1, nr.1, $R.1>,
pk(~1tkA.1))
) @ #vk.1)
case I_2
solve( !KU( aenc(<'2', ~ni.2, nr.2, $R.2>,
pk (~1tkA.4))
) @ #vk.3 )
case 1.2
solve( !KU( aenc(<'2', ~ni.3, nr.3, $R.3>,
pk(~1tkA.7))
) @ #vk.5 )
case I_2
solve( !KU( aenc(<'2', ~ni.4, nr.4, $R.4>,
pk(~1tkA.10))
) @ #vk.7 )
case I_2
solve( !KU( aenc(<'2', ~ni.5,
pk(~1tkA.13))
) @ #vk.9 )

nr.5, $R.5>,

Figure 6: An example of verification loop.

7 Verification module

Briefly, the Verification module selects a proof path from
the verification tree. The selection is guided by our dynamic
strategy and an algorithm of correctness determination of
the selection. In Section 7.1, we describe our method of cor-
rectness determination. We describe the design of DQN in
Section 7.2. We then analyze the DQN in Section 7.3.

7.1 Correctness Determination

We illustrate how we determine the correctness of a proof
path. The main idea is to detect whether there are loops along
the path. For example, Figure 6 shows the information of
the last 5 consecutive nodes on a path, when using tamarin
and encountering the loop on the path. Here, words in blue
indicate constraint reduction rules selected by tamarin prover,
and words in black indicate tags marked by tamarin prover
in verification. We find that the rules of the nodes are similar,
which has the following form:

KU (aenc(<’ 2’ ni.1,nr.1,$R.1 >, pk( ItkA.1))) @ #vk.1)

Therefore, we consider the path incorrect since the loop on it
results in a non-termination in searching. Besides, there are
several other kinds of loops. For example, the sequence of the
nodes may have the form [...,a,b,a,b] or |...,a,b,c,a,b,c],
where a, b, c are constraint reduction rules. The loops on these
sequences may also lead to a failed verification. Hence, the
loop detection algorithm should be carefully designed to de-
termine the correctness of the path.

Based on the observation, we design the algorithm of loop
detection as shown in Algorithm 1. The algorithm takes a
string sequence [s1,s2, ..., 5] as input. The sequence is trans-
formed from the selected path. Each element, e.g., s;, is the
constraint reduction rule of the corresponding node, i.e., the
ith node, on the path. The algorithm runs iteratively by gener-
ating a sequence S (line 4), and counting the number of pairs
of similar elements that are both in S. If the number is not
less than 8, a loop is detected. For example, given the afore-
mentioned sequence |...,a,b,c,a,b,c], S = (c,c,...), when
Jj = 3. Note that the length of S is restricted to the limit of p
for efficiency. For the same reason, the algorithm is activated
only when the length of the selected path reaches o (line 1).

Algorithm 1 Loop Detection Algorithm

Require: (sq,s2,...,5%)

1: if kK > o then

2 for j=1tok—1do

3 count =0

4: S:(sk,xk,j,xk,gj,...) //|S| <p

S: for each element x in S do

6: for each element y in S do

7 if x # y then

8: n = length of x, m = length of y

9: fora=1tondo
10: for b =1tomdo
11: if yla] == x[b] then cost = 0 else cost = 1
12: v[b] = min (v[b—1]+1,b,b—2+ cost)
13: if v[m|/m < P then count = count + 1
14: if count > & then return TRUE

15: return FALSE
16: else return FALSE

We use Levenshtein distance to measure the similarity
between two rules (line 8 to 13). The distance between two
strings x and y is the minimum number of single-character
edits (insertions, deletions or substitutions) required to change
x into y. If the distance between x and y is less than [ of the
length of x, we assume these two strings are similar. For
example in Figure 6, the difference points among the similar
rules are often the numbers at corresponding positions, e.g.,
ni.1,ni.2,ni.3. Informally, the number of difference points are
counted as the distance.

Note that there is not necessarily a loop on every incorrect
path. In other words, if a loop is found given a selected path,
there may be multiple incorrect nodes, i.e., the nodes that do
not represent supporting lemmata, on the path. Therefore, it
is not sufficient to use naive search algorithms, e.g., DFS, to
locate proof paths. We make further studies on analyzing the
effectiveness of the algorithms in Section 8. Finally, in our
implementation, we set o to 20, 3 to 0.1, p to 20 and d to 3.

7.2 Deep Q Network

To apply our insight to SmartVerif, we introduce Deep Q
Network (DQN) into the verification. Briefly, the DQN in
SmartVerif maintains an action-selection policy which takes
a state s; as input, and outputs an action number a,. Here,
s; represents the proof state, i.e., a node in the verification
tree, and a; is the number of a chosen child of the node. The
state s; is a vector transformed from information in nodes,
e.g., the constraint reduction rule. In each epoch, the DQN
uses a dynamic strategy to select paths in the verification tree.
When the paths are estimated incorrect, the DQN optimizes
its current strategy by training.

Specifically, given a group of estimated incorrect paths, the
training process works as follows. First, for each node that
is on a path of the group, the node is bound to a negative
reward. The reward is related to the probability that the node
represents a supporting lemma, according to our insight. In



the implementation, a tuple, which includes the node and the
reward, is added into a global dataset. Then, a subset is sam-
pled from the dataset. Finally, the parameters of the DQN
is optimized by minimizing a loss function. Here, the loss
function is the sum of sub-functions. Each sub-function takes
an individual tuple in the subset as input, and outputs the
difference between results calculated according to two pre-
defined functions. One of the functions is calculated by using
the parameters of current DQN, and the other is calculated
by using the training parameters of the optimized DQN. In-
formally, the training process optimizes the network in order
that the reward of each node can be estimated. In other words,
the node with the highest reward among its siblings can be
regarded as the one with supporting lemma, if the DQN is
sufficiently optimized. We demonstrate the technical details
of our implementation of DQN in Appendix B.

7.3 Analysis of our DQN

The advantage of applying DQN is that DQN can update
our dynamic strategy efficiently if the rewards in DQN are
designed effectively. In other words, sufficient tuples are re-
quired to be updated in the dataset in each epoch, and the
reward in each tuple should be correct. A naive algorithm is
that only the reward corresponding to the last node on the
incorrect path is set negative. However, the number of up-
dated tuples is limited. Instead, we significantly improve the
efficiency by storing multiple tuples as illustrated, and the
correctness of the insight is analyzed as follows.

Recall that the reward in our DQN is related to the proba-
bility that the node represents a supporting lemma. Formally,
we use [ny,, 7y, , "~v”tk,] to denote a proof path ¢, where n;, is
the ith node in the path and k; is the number of nodes in the
path. Therefore, the lemmata in {n,, } are the candidate lem-
mata. For a node n;;, we use x;, and y;, to denote its degree
and the number of its children which represents supporting
lemmata respectively. Suppose there are at least one child
of n;, that does not represent supporting lemma, i.e., x;, > y;,.
The random strategy here means that whenever choosing a
child for searching, the probability of choosing is uniform. In
other words, the probability of choosing any child of #;, is %
Hence, if the random strategy is applied in choosing a child of
ny,, the probability of choosing the node representing support-
ing lemma is :—I’ Suppose there are R correct and complete
proof paths in a given tree.

Theorem. Given the above assumptions, if n;, has been cho-
sen, the node representing a supporting lemma, who is the
child of ny;, is on an incorrect path with the probability less
than % when the random strategy is given.

Proof. See Appendix A. O

To illustrate the theorem, we briefly study a naive and
seemly good algorithm, which traverses the verification tree

— First traversed path
-—--» Path selected by DFS

~-3 Path selected by our strategy
P(A1)<1/2 P(B1)>1/2

D Node with supporting lemma
D Node with unsupporting lemma

Backtracking Point

(DFs) n .
J .
— .
- Detected
Detected Incorrect Node —> G * Incorrect — 7|

(a) : ®)
Figure 7: Verification trees: (a) A non-zero distance between
the first incorrect node and the detected incorrect node. (b)
The probability of nodes representing supporting lemmata
after the first traversing.

by DFS, selects nodes using existing static strategy when
traversing, and backtracks according to our algorithm of cor-
rectness determination.

1) Insufficiency of only applying correctness determi-
nation: The naive algorithm may have to explore a large
amount of nodes. For example in Figure 7 (a), since the algo-
rithm of correctness determination cannot detect all incorrect
nodes, there is a non-zero distance between the first incorrect
node B and the first detected incorrect node D. Hence, the
naive algorithm has to traverse all paths that pass through B,
before it traverses the correct path. As a result, the number of
explored nodes grows exponentially with the distance.

2) Advantages of our DQN: Our DQN greatly outper-
forms the naive algorithm according to the theorem. By opti-
mizing itself in each epoch, our DQN adjusts the Q value of
each node in the tree. In this case, it tends to select the nodes
with higher Q values as "good nodes", which have higher
probability of representing supporting lemmata. For example
in Figure 7 (b), assume that our DQN and the naive algorithm
traverses along the same path [A¢,A1,...,A,], until the algo-
rithm of correctness determination detects the incorrect node
for the first time. Then, the naive algorithm backtracks from
A, and continues traversing along [Ag,Aq,...,B,]. Assume
that Ag has two children. According to our theorem, the proba-
bility of A; being a supporting lemma become less than % ie.,
P(A)) < %, which was % before the A, is identified as an in-
correct node. Similarly, the probability of all Aj,A,...,A,—1
being supporting lemmata decreases exponentially. Hence,
B,, should not be the next traversed node due to the low prob-
ability. In comparison, our DQN sets the rewards of nodes
A1,Az,...,A, as negative values, such that the updated strat-
egy in DQN tends to select B; instead of A;. The analysis is
also validated in our experiments (See Section 8.1).

8 Experiments & Evaluation

We perform experiments on several security protocols. The
experiment results are described in Section 8.1. In Section 8.2,



we briefly overview Yubikey and CANAuth protocol to val-
idate the efficiency of SmartVerif. All files of our prototype
implementation and protocol models used in benchmark are
available here [3].

8.1 Main Experiments

We compare SmartVerif with other verification tools in ver-
ifying security protocols. We evaluate the efficiency of
SmartVerif.

Experimental Setup: Experiments are carried out on a
server with Intel Broadwell E5-2660V4 2.0GHz CPU, 128GB
memory and four GTX 1080 Ti graphic cards running Ubuntu
16.04 LTS. We use and modify tamarin prover v1.4.0 in
SmartVerif.

We use the same network architecture, learning algorithm
and parameter settings across all chosen protocols. Since the
security property varies greatly in protocols, we set all the
negative rewards to -10 for generality. In these experiments,
we use the DQN with 0.01 learning rate and memory batch of
size 7000. Moreover, we execute eight threads of Acquisition
module in parallel. The behavior policy during training was
e-greedy with € annealed linearly from 0.99 to 0.1 over the
first hundred epochs, and fixed at 0.1 thereafter.

Chosen Tools: For each protocol with unbounded ses-
sions, we inspect whether it can be automatically verified
by SmartVerif and other verification tools. These verification
tools include StatVerif [6], Set-7t [13], tamarin prover [36,41]
and GSVerif [17]. The tools are typical verification tools
which support verification of security protocols with global
states. Moreover, all these tools provide automated verifica-
tion modes to verify security protocols. Note that we attempt
to verify protocols in several versions of tamarin prover. We
first attempt to use the ‘s’ heuristic of tamarin prover. The
heuristic is the default heuristic of tamarin. We then attempt to
use the consecutive heuristic (-‘c’) heuristic of tamarin prover.
This heuristic adopts a simplest method to verify protocols: it
solves goals in the order they occur in the constraint system.
Unlike other default static strategies, this method does not con-
tain any human-designed heuristics or expertise. We compare
SmartVerif with this mode of tamarin prover to demonstrate
the generality of our framework. Then, we try to verify proto-
cols using the dedicated heuristic (-‘p’), which is designed by
the SAPIC authors [36] to efficiently solve SAPIC generated
Tamarin models. Since we use tamarin protocol models as
well as SAPIC generated models in our experiment, we addi-
tionally compare SmartVerif with this heuristic to validate the
efficiency of our framework. Moreover, we implement two
naive algorithms (DFS and BFS) with random strategy and
our loop detection method. We further compare these two with
our algorithm to show the efficiency of SmartVerif. Besides,
we combine the DFS with the heuristics of tamarin prover
to further validate the efficiency. Note that we do not choose
classical verification tools, i.e., ProVerif and AVISPA, since

their support for protocols with global states and unbounded
sessions is limited.

Chosen Protocols: We carefully choose security protocols
to be testified in our evaluation.

1) We choose all the protocols that have been evaluated
in papers of the compared tools, i.e., StatVerif [6], Set-1t
[13], GSVerif [17], tamarin prover [41], SAPIC [36]. The
chosen protocols include a simple security API similar to
PKCS#11 [48], the Yubikey security token [60], the opti-
mistic contract signing protocol by Garay, Jakobsson and
MacKenzie (GIM) [32], etc. These protocols are typical pro-
tocols with global states, unbounded sessions. Many research
efforts [6, 13,36,41] were spent on verification of these proto-
cols. Besides, GS Verif paper evaluated the performance of 18
protocols, which are all chosen in our paper. In these proto-
cols, Yubikey is the most important case for evaluation for it
is most widely studied, but still have not been automatically
verified, according to the current literature [13,17,37].

2) Since the security property of observation equivalence
[16,24,29,31,52] cannot be verified by StatVerif, Set-xt, or
GSVerif while only tamarin provers supports verifying the
property, we choose 5 protocols with the properties from the
official repository [4] of tamarin. Specifically, these proto-
cols include Chaum’s Online e-Cash [16], FOO Voting [31],
Denning-Sacco [24], Okamoto [52], and Feldhofer’s RFID
protocol [29].

3) For fairness we do not choose other protocols. Practi-
cally there are many other practical protocols that cannot be
automatically verified by state-of-the-art tools, e.g., TLS [23],
5G AKA [9], smart contract and blockchain protocols [1,2].
Note that supporting lemmata have to be the manually speci-
fied to help prove TLS [22] in tamarin prover. In comparison,
SmartVerif successfully verifies these protocols, e.g., TLS
1.3 [5] (totally 7 hours for all the properties, without using
any human-written lemma). However, we do not compare
SmartVerif with existing tools by using the protocols, since
it becomes questionable whether the protocols are cherry-
picked and whether some of the protocols can be verified by
customized heuristics, e.g., three protocols verified by opti-
mized heuristics of GSVerif in Table [17]. Instead, since the
protocols evaluated in the papers [6, 13,17,36,41] are thor-
oughly studied, the experimental results on the protocols are
more convincing.

Note that, for each chosen protocol, we only analyze the
verified security properties in our experiments. There exists
security properties which are falsified in the chosen protocols
(e.g., Denning-Sacco protocol [24]). Since the quantity of the
proof steps of a falsified property is smaller than the quantity
of the proof steps of the property after the protocol model is
corrected, we did not analyze the falsified properties in our
experiments.

Comparative Results: The experimental results are sum-
marized in Table 1. Compared with these verification tools,
SmartVerif is sufficient for generality and automation capabil-



Table 1: Experimental results on security protocols with unbounded sessions in verification tools.

SAPIC/Tamarin Prover SmartVerit

Protocols StatVerif | Sevm | GSVerif (—5——* o s o BES — omated | Trining | IR Verification | Total

o w/DFS OIS wyprs [ S wDrs | QN | fime | ON | e | Verfication? | Epochs Acquisiion | YooK T Overa | Time | Time

Yubikey [60] X X X N/A X X N/A X X N/A X X N/A X N/A X v 79 9357 19m 40m 59m 2m 61lm

’s Example [45] X Ts 6s N/A B3 B3 N/A X 1h 11 Is 5s 4593 1h 31414 2h v 19 3345 6m 8m 14m 1m 29m

Security API'in PKCS#11 [48] x X 15s 398 Tls 83s 473 197s 225s 419 67s 79s N/A X N/A X v 175 12461 3lm 50m 8lm 2m 83m
GIM Contract-Signing [32] 10s X Ts 27 19s 28s 33 64s 79s 37 27s 38s 6134 1h 33319 2h v 16 2579 3m 9m 12m Im 13m
one-dec [17] X X 9 |NA| x | 7h | NA| x | 1oh |[NA| x | 1on | 128013 6h | WA | x 7 3T 3651 om Tom | 22m Tm | 2m
One-dec, table variant [17] X X § | 470 | 105 | 25 | 470 | 215 | 36s | 172 | 5 | T3 | 55591 | 4h | 155891 | 3h 7 3| A 7m Bm | 20m Tm | 2Im
private channel [17] X X 7s |10 [ 2 | 4 [ 10 [ 7 | 19 [ 10 | 2 | 9 | 3149 | Th | 3390 | 2h 7 3| 2931 Sm 0m | 15m Tm T6m
counter [17] x X 95 | 39 [ 11s | 155 | 85 | 265 | d0s | 39 | 13 | 235 | 4301 | 1Th | 32314 | h 7 29| 3045 m DBm [ 18m Tm Om

Voting [17] x X 7 |5 [ 5 | 3 [ 30 [ 7 | 16 [ 55 | 15 | 8 [ 156931 h | WA | x 7 3| 5 om T6m | 25m im | 26m
TPM-envelope [25] X X [m] N/A B3 5h N/A X h N/A B3 8h 36501 6h 206903 7h v 33 4583 Tm 15m 22m 1m 23m
TPM-bitlocker [25] 5s 6s O N/A x Th N/A X Th N/A x 1h 4392 2h 33391 Th v 36 3249 Sm 9m 14m Im 15m
TPM-toy [25] X X [m] N/A X Ih N/A X Th N/A x 1h 4831 Th 23901 1h v 21 2592 4m 9m 13m Im 14m

Key i ion [13] 4s 65 Ts 108 9s 14s 176 18s 3ls 108 10s 23s 4190 1h 43903 Th v 14 3143 3m Tm 10m Im 11m
Secure device [6] X & | 7 | NA| x X [NA| x X [ 94 [ 16 | 35 | 8683l | oh | NA | x 7 | 4036 om Tm | _T7m m TSm
MaCAN [14] X Tis | 145 | 121 [ T3 | 25 | 175 | 295 | 4ls | 142 | T8 | 365 | 4813 | Th | 3731 | 2h 7 B[ 3640 m T7m | 24m Tm | 25m
CANauth [36] x X X VA x Th | NA|[ x | 3h [ NA| x | 2h | 635 | 3h | NA | x 7 N 50 m Tim | _14m m Tom
CANauth simplified [56] x X < VA x ih [NA| x | o [NA| x Th | 4341 | ih | NA | x 7 3| 3057 Im Tim | 15m m Tom
Mobile EMV [19] X B3 68 N/A B3 B3 N/A X X N/A B3 14h 239783 7h N/A X v 40 6156 12m 22m 34m 2m 36m
Scytl Voting System [20] x X Ss 8 36s 53s 9 445 63s 8 34s 47s 277313 9h N/A X v 43 7142 16m 33m 49m Im 50m
Chaum’s Online e-Cash [16] X X X 18 12s 25s 32 20s 34s 18 14s 255 3931 Th 30183 2h v 19 3097 Tm 13m 20m Im 2Im
FOO Voting [31] X X X 64 Ts 19s 308 19s 32s 78 3s 8s 4984 1h 40139 2h v 26 4176 8m 17m 25m Im 26m
Feldhofer's RFID [20] X X X |96 | 8 | 205 | 192 | 155 | 275 [ 96 | 95 | T3 | 464 | Th | 39390 | 2h 7 % | 5753 T0m Pm | 2m Tm | 3m
Denning Sacco [24] X X X 2 5 | 6 | 12 6 | 1 | 12 I | 7 | 541 | 1h | 3900 | 2n 7 7|5 Sm 8m | 26m Tm | 27m
Okamoto [52] x X X 3 [ 5 | 5 |2 [ s | 25 [ 3 | 5 | 5 | NA | x | WA | x 7 T4 10931 | 20m Bm | 6m Tm | 66m

X: no automatic verification (computation time >48h, memory used >128GB)

v': automatic verification

0: requiring optimizing heuristics to achieve automatic verification

ity: it is able to verify all the given protocols with unbounded
sessions, without any human intervention.

1) Generality. SmartVerif achieves a 100 percent success
rate in verifying the studied protocols, which outperforms all
the other verification tools. For example, StatVerif does not
terminate and the verification fails encountering complicated
protocols like security API in PKCS #11 and mobile EMV
protocol [19]. Set-7 fails in verifying TPM-envelope proto-
col [25] and some others with unbounded sessions. Tamarin
prover is effective in automatically verifying simple proto-
cols with unbounded sessions, e.g., GIM Contract-Signing
protocol and Security API in PKCS#11. Nevertheless, it does
not achieve automated verification of Yubikey protocol, TPM-
bitlocker, efc., in any of the studied versions. GSVerif out-
performs the previous tools in generality but it still can not
automatically verify complicated protocols such as Yubikey
protocol. Note that its heuristics in 3 cases are rewritten to
achieve automation [17], i.e., 11 cases cannot be automati-
cally verified without the optimization. In comparison, our
heuristic is designed without any human intervention. More-
over, among the tools, only tamarin prover and SmartVerif can
handle protocols with observational equivalence properties.
They achieve successful verification of the five protocol cases.

2) Automation capability. Currently, only SmartVerif can
fully automatically verify Yubikey and CANauth proto-
col [56]. For protocols which existing tools cannot automati-
cally verify, GS Verif and tamarin prover provide an interactive
mode for users to manually guide the verification. In our ex-
periments, we find that Yubikey and CANauth protocol can
be verified by manually designing proof formulas using these
tools. In contrast, SmartVerif fully automatically verifies these
protocols, without any human intervention. In Section 8.2,
we briefly overview Yubikey protocol to demonstrate the suf-
ficiency of SmartVerif in automation capability. We further
overview CANAuth protocol in Section 8.2.2.

Efficiency and Overhead: To evaluate the efficiency and

overhead of SmartVerif, we collect statistics of the running
time and training epochs in verification. The running time
contains two parts: 1) Training time: the time spent in in-
formation acquisition and network training; 2) Verification
time: the time spent in verification after network convergence.
As presented in this paper, SmartVerif is a novel and gen-
eral framework to verify protocols. For each protocol to be
verified, it takes time to acquire information and train the net-
work. Once the DQN is sufficiently optimized according to
the current protocol model, it can be directly used to verify the
corresponding protocol, like the static strategies in existing
tools. Hence, we use the verification time to demonstrate the
performance of SmartVerif. Besides, since SmartVerif uses
the DQN to select proof paths, the efficiency of the DQN
directly affects the performance and overhead of SmartVerif.
Recall that the number of epochs denotes the times that the
DOQN is optimized with a new reward, which is related to the
number of generated incorrect paths, if the protocol has not
been successfully verified. Therefore, we use the quantities
of training epochs and time of DQN to evaluate the efficiency
of our framework.

As demonstrated in Table 1, the experimental results show
that SmartVerif verifies the studied protocols in a very effi-
cient way. For most protocols, it succeeds in verification only
after about 25 times of one-way forward traversing (i.e., 25
epochs). As the challenge is time explosion when traversing
infinite state spaces, our dynamic strategy solves the problem
in a general and adequate way. For instance, existing verifica-
tion tools can not automatically verify Yubikey protocol with
unbounded sessions due to memory explosion or infinite veri-
fication loops. In contrast, SmartVerif only takes 79 epochs
to find the correct proof path using the dynamic strategy.

Moreover, the statistics of the running time also validate the
efficiency of SmartVerif. Comparing to existing verification
tools, SmartVerif does not require any extra time and effort in
training human for interactive proving or designing heuristics.
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Figure 8: Experimental results. (a): Quantity of nodes nec-
essarily to be traversed. (b): Total time compared with naive
algorithms.

Instead, it spends the training time on optimizing the dynamic
strategy for protocols, which is sufficient. Specifically, if a
protocol’s model is complicated, i.e., the searching space is
large, the running time increases. The space’s size depends on
whether the model covers global states or unbounded sessions
[48,56,60], or whether the model is simplified [22,36]. For
most protocols, it only takes less than half an hour to find
the correct proof path. In the worst case, it costs 83 minutes
to verify the security API in PKCS #11. After the DQN is
sufficiently optimized, the verification time is only 2 minutes.

Performance Analysis: Besides proving our insight theo-
retically, we also perform empirical analysis by comparing
SmartVerif with two naive algorithms: 1) DFS. The algorithm
searches along a path as long as possible before backtrack-
ing. The backtracking occurs only when a loop is detected.
2) BFS. The algorithm searches all the paths at the present
depth prior to searching at the next depth level. It also uses
the loop detection algorithm to shrink the size of searching
space. The BFS is optimized by multi-threading that each
threads searches in parallel. Note that DFS has to run in a
single thread since the ordering and parallel tends to conflict
in searching. Both DFS and BFS are implemented based on
tamarin prover and use the random strategy as the strategy of
selecting nodes.

The experimental results for all the chosen protocols are
shown in Table | and Figure 8. We use two metrics: 1) the to-
tal time in searching; 2) the quantity of nodes necessarily to be
traversed (QN) when the searching succeeds, given the proof
steps of verifying a security protocol. Here, for SmartVerif,
the nodes includes which have been traversed during the Ac-
quisition and Verification phases. Before comparison, an im-
portant observation is that it takes several seconds for a single
step of new node traversing by using tamarin prover. It may
take less time if using other tools, e.g., the ProVerif-based
tools. We also find that it takes more time when a) traversing
a new node at the deeper level of tree, and b) initializing or
reconfiguring the searching environment. For example, on
verifying YubiKey protocol, the averaging time on traversing
anode at level 10 and 100 is 0.2s and 0.4s, respectively, and
the time on initialization is 1s. Therefore, the verification
time of DFS and BFS tends to be affected by reason a) and

b), respectively. Since the verification time may be affected
by multiple factors, we also use QN as a complement metric
in comparison.

A significant result is that the QN by DFS grows much
faster than that of SmartVerif, when the proof steps increase
starting from 65. Afterwards, the verification time of DFS
reaches 48-hour limit when the proof steps are around 360. We
further find that for most protocols with proof steps less than
60, DFS only needs to backtrack for less than 10 steps. For
instance, for the TPM-toy protocol, DFS begins backtracking
when it reaches the node at the depth 57, for the corresponding
path is estimated incorrect. When succeeding in searching,
the top 49 nodes in the incorrect path are the correct nodes
representing supporting lemmata. Hence, when the depth for
which DFS has to backtrack merely grows to more than 10,
the performance of DFS starts to decrease drastically.

Therefore, SmartVerif greatly outperforms DFS when ver-
ifying complicated protocols. The QN of SmartVerif grows
much more slowly when the proof steps increase. The phe-
nomenon can be explained by our insight as illustrated in
Section 7.3. Observe that the performance of BFS is even
worse than the performance of DFS, though BFS runs in par-
allel. We omit the explanation due limitation of paper size.

Moreover, we implemented three naive algorithms as illus-
trated in Section 7.3, which use the built-in heuristics (‘s’, ‘¢’
and ‘p’) of tamarin prover as the static strategy of selecting
nodes respectively, DFS for tree traversing, and our module
of correctness determination for back-traversing. As shown
in Table 1, the comparative results are summarized as follows.
1) For protocols like Yubikey, the naive algorithms still can-
not succeed in automated verification. 2) For protocols that
cannot be verified by the original tamarin prover, SmartVerif
achieves much better efficiency compared with the naive al-
gorithms. 3) For protocols that can be verified by the original
tamarin prover, the naive algorithm only achieves similar
performance with the original tamarin prover with the cor-
responding heuristics. Discussion: The results validates our
analysis in Section 7.3. Here, an important observation is that
for protocols of results 2), it is uncertain whether the naive
algorithms with the built-in heuristics outperform the DFS
without heuristics. An example is that Mobile-EMV protocol
must be verified for at least 14 hours with the former algo-
rithms, but it requires 7 hours for the latter algorithm. It can
be inferred that the design of static strategies is non-trivial:
an algorithm with a static strategy cannot be easily improved
by leveraging other naive approaches, e.g., DFS.

Note that we also measure the QN for all the chosen proto-
cols using the heuristics (‘s’, ‘c’ and ‘p’) of tamarin prover.
Since tamarin prover constructs proof paths based on static
heuristics, for the protocols which can be verified by the
heuristics of tamarin prover, the QN of tamarin with these
heuristics is equal to the number of the proof steps of the cor-
rect proof path which is much less than the QN of SmartVerif.
However, the static heuristics of tamarin prover cannot be
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Figure 9: Experimental results. (a): Overall training time
using different number of GPUs. (b): Overall training time
using different multithreading parameters.

used to verify all the protocols (e.g., Yubikey and CANAuth)
in our experiments.

In addition, we study the performance of training when
using different number of GPUs. We try four sets of parame-
ters. Here, y1 represents running SmartVerif without GPUs.
o represents O graphic cards, which means that SmartVerif
only use the integrated GPU in the CPU to compute in the
training process. u3, ua represents 2, 4 GTX 1080 Ti graphic
cards respectively. As shown in Figure 9 (a), we can see an
improvement to the overall training times when using more
graphic cards in our experiment. For example, it only takes
59 minutes to verify the Yubikey protocol using four graphic
cards. Using no GPUs, it takes 216 minutes to achieve a
successful verification.

Furthermore, we evaluate the overall training times in veri-
fying four protocols with different multithreading parameters.
We try three sets of parameters. 61,06, 03 represents 2, 4, 8
threads of Acquisition module executed in parallel respec-
tively. As shown in Figure 9 (b), the running time is decreas-
ing with the increasing quantity of threads executed in parallel
for the parameters sets 61, 62 and 63. As shown in the above
experimental results, SmartVerif achieve a solid performance
on a high-performance server as well as a modest machine
with less graphic cards.

8.2 Case Study
8.2.1 Yubikey Protocol

In the following, we briefly overview the Yubikey protocol
SmartVerif verified. We provide some details in key steps of
the verification. For the limitation of paper size, we do not
detail all the formal models of the protocols and properties
that we studied.

Kremer et al. [36] modeled and verified Yubikey protocol
with unbounded sessions in tamarin prover. Specifically they
define three security properties. All properties follow more
or less directly from a stronger invariant. By default, tamarin
prover cannot automatically prove this invariant, which is
caused by a non-termination problem. To successfully verify

Step #7

Step #8

Step #9

Figure 10: Part of the verification tree in Yubikey protocol

the protocol, tamarin needs additional human guidance, which
is provided by experts in the interactive mode.

In the following, we analyze the choice made by tamarin
prover, experts and SmartVerif. Specifically, in proof step #8,
tamarin prover needs to select one rule, i.e., lemma, from the
rules as follows:

A (#vr13 <#2.1) || (#vr.13 = #2.1) || (#vr.6 < #vr.13))

B: State_011111111111(lock11.1,n,n.1,nonce.1,npr.1,otc.1,
secretid,tc2,tuple) >, #12)

C: Insert(<' Server' ,n >, < n.2,n.1,o0tc >)@#2.1)

D 1IKU (n) @#vk.2)

E :\KU (senc(< n.2,(otc +z),npr >,n.1)) @#vk.5)

Here, rule A is a restriction rule to the time-
points #vr.13 #t2.1 and #vr.6. Rule B states an action
State_011111111111 must have been in the protocol exe-
cution in timepoint #:2. Rule C states an action Insert(<’
Server’,n >,< n.2,n.1,0tc >) must have been in the pro-
tocol execution at timepoint #¢2.1. Rule D states the ad-
versary has known the nonce n at timepoint #vk.2. Rule E
states the adversary has known the encrypted message senc(<
n.2,(otc+z),npr >,n.1) at timepoint #vk.5.

Tamarin prover considers that rule A is a time-
point constraint rule, which is more likely to achieve
a successful verification. It chooses the rule in the
automated mode. Then, there are four rules to be
chosen. By default, tamarin chooses the rule B. How-
ever, the rule leads to a loop in verification as follows:

State_011111111111(lock11.1,n,n.1,nonce.1,npr.1,0tc.1,secretid, tc2,tuple) >, #2

Insert(<' Server',n >, < n.2,n.1,0tc >)@#2.1)
State_0111111111111(lock11.2,n,n.1,nonce.2,npr.2,0tc.2, n.2,otc,tuple) >, #2.1

Insert(<' Server',n >, < n.2,n.1,0tc.1 >)@#t2.2)
State_0111111111111(lock11.3,n,n.1,nonce.3,npr.3,0tc.2, n.2,otc.1,tuple) >, #12.2

In this loop, tamarin prover keeps solving
Insert(<' Server',n >,< n.2,n.l,otc >)@#t2.1) and
State_O111111111111(lock11.2,n,n.1,n0nce.2,npr.2,
otc.2,n.2,otc,tuple) by #2.1 rules alternately. It leads to
non-termination in verification.

In interactive mode, experts make 23 manual rule selections
to verify the protocol, and 11 of them are different from the
one made by tamarin prover. Specifically, experts choose rule
B as the supporting lemma at proof step #8, which leads to a
successful verification.

In SmartVerif, we achieve a fully automated verification



Table 2: Q value of each rule in proof step #8.

rule A | ruleB | ruleC | ruleD | rule E
initial epoch 0 0 0 0 0
epoch 20 0.3 0.4 0.2 0.2 0.3
epoch 40 0.4 1.1 0.6 0.5 0.6
epoch 79 1.2 1.7 1.1 1.3 1.1
epoch 120 1.3 2.0 1.4 1.3 1.2

of Yubikey protocol without any user interaction. Figure 10
shows the corresponding part of the verification tree. The Q
value of each rule in proof step #8 is shown in Table 2. In
the initial epoch, the Q value of each rule is the same. In
epoch 20, the network learns from its experience that candi-
date rules A,C, D, E may lead to non-termination cases with
higher probability. Hence, the Q values of these rules have
a slighter difference compared with Q value of rule B. Then,
the difference between Q value of rule B and the Q value
of other rules is getting larger in further epochs, which also
validate our insight and the effectiveness of our designed strat-
egy. In epoch 79, SmartVerif finds a correct proof path when
choosing rule B. In further epochs, the difference among Q
value of each rule is getting larger. Based on the Q values,
SmartVerif finds the supporting lemma B automatically, such
that the protocol can be verified without any user interaction.

8.2.2 CANAuth Protocol

We also investigate the case study presented by CANAuth
protocol. Cheval et al. [17] encoded a model for the protocol.

In the following, we analyze the choice made by tamarin
prover, human experts and SmartVerif. In proof step #10,
tamarin prover needs to select one rule from the following
rules:

Az solve((#vr.29 < #2.1)|(#vr.29 = #2.1))
B : solve(Insert(n.5,i) @#t2.1)

Rule A states that timepoint #v7.29 is earlier than or equals
to #:2.1. Rule B states action Insert(n.5,i) is executed at
timepoint #¢2.1.

Since the strategy of tamarin prover decides that
the second rule is unlikely to result in a contradic-
tion, it chooses rule A in the automated mode. How-
ever, the rule leads tamarin prover to a loop as follows:

solve(State_0111111111211111(lock7,n.5,cellB,i,msg.1,sk) >, #12.1)
solve(State_0111111111211111(lock8,n.6,cellB,i,msg.2,sk) >, #12.2)
solve(State_0111111111211111(lock9,n.7,cellB,i,msg.3, sk) >, #2.3)

In interactive mode, experts make 4 manual rule selections
to verify the protocol, and one of them is different from the
selection made by tamarin prover. Specifically, experts choose
rule B in proof step #10, which leads to success of the verifi-
cation.

In SmartVerif, the result is similar to the previous case.
Figure 11 shows the corresponding part of the verification

tree. The Q value of each rule at proof step #10 as shown in
Table 3. In the initial state, the Q value of each rule is the
same. In epoch 10, the DQN discovers that candidate rule A
may lead to incorrect paths. Hence, the Q value of rule A has
a slighter difference compared with rule B. Then, in epoch 19,
SmartVerif finds a correct proof path when choosing rule B.
In epoch 100, the difference continues increasing.

Step #9

Figure 11: Part of the verification tree in CANAuth protocol.

Table 3: Q value of each rule in proof step #10.
rule A | rule B

initial epoch 0 0
epoch 10 0.3 0.6
epoch 19 1.1 1.4

epoch 100 2.8 5.3

9 Limitation and Future Work

We currently train a standalone DQN for each studied protocol
to keep a high level of generality. Another possible approach
is to use pre-trained and optimized networks to verify pro-
tocols. However, it brings several challenges. Firstly, it is
challenging to achieve a high level of accuracy on node selec-
tion in generating pre-trained network. Existing approaches
generating pre-trained networks [51,54] in a similar research
field, i.e., theorem proving, do not achieve a high level of
accuracy on node selection. Compared with theorem proving,
it is much challenging to generate pre-trained network with
much higher accuracy, given much less samples of models of
security protocols. Secondly, it is challenging to achieve high
efficiency if using a generated pre-trained network. If using
a pre-trained network, the verification time for some proto-
cols may increase. For example, one could take the standard
heuristic of tamarin prover as the basic strategy in our DQN
to verify security protocols. However, in this case, the DQN
does not optimize itself in an efficient way when verifying
complicated protocols like Yubikey protocol. Therefore, we
train a standalone DQN for each studied protocol. Similarly
we currently retrain the DQN when verifying a new secu-
rity property of a protocol. Therefore, it requires to retrain
the DQN after modifying the protocol or the property spec-
ification during practical usage. We will try to optimize the
network design and use other learning techniques in future
work.

Our work opens several directions for future work. 1) Hy-
brid strategy. Since the initial strategy in SmartVerif is purely
random, the strategy may be optimized with less epochs if it is
implemented with some static strategy. However, the problem
is still challenging that there is a potential risk that the epochs
may become larger for some special protocols that the static



strategy does not support. 2) Scalability. It is possible that our
dynamic strategy can be used to cope with more complicated
problems, such as automated formal verification of software
or systems [18,46] that are based on first-order logics [50]
or higher-order logics [8]. They are quite similar that they
can be translated into a path searching problem. We will also
explore and verify more complicated security protocols using
SmartVerif. 3) Efficiency. Currently, we train a standalone
DQN for each studied protocol to keep a high level of gener-
ality. Designing a universal network which can verify all the
protocols may increase the efficiency and improve the perfor-
mance of SmartVerif. Therefore, we will try to optimize the
network design and use other Al techniques in future work.

10 Conclusion

In this paper we have studied automated verification of se-
curity protocols. We propose a general and dynamic strat-
egy to verify protocols. Moreover, we implement our strat-
egy in SmartVerif, by introducing a reinforcement learn-
ing algorithm. As demonstrated through experiment results,
SmartVerif automatically verifies security protocols that is
beyond the limit of existing approaches. The case studies also
validate the efficiency of our dynamic strategy.
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A Proof of Our Insight

We prove our insight of the paper that the node represent-
ing a supporting lemma is on the incorrect path with lower
probability, when a random strategy is given. To illustrate our
insight more comprehensively, we translate the complicated
verification process into a path searching problem. Here, the
verification can be simply regarded as the process of path
searching in a tree: each node represents a proof state which
includes a lemma as a candidate used to prove the lemma in its
father. The supporting lemma is a special lemma necessarily
used for proving the specified security property.

Formally, we use [n,,ny,, ..., ”tk,] to denote a proof path z,
where n;, is the ith node in the path and &; is the number of
nodes in the path. Therefore, the lemmata in {n,,} are the
candidate lemmata. For a node n;,, we use x;; and y;, to denote
its degree and the number of its children which represents
supporting lemmata respectively. Suppose there are at least
one child of n,, that does not represent supporting lemma,
i.e., X;, > y;. The random strategy here means that whenever
choosing a child for searching, the probability of choosing
is uniform. In other words, the probability of choosing any
child of ny, is f Hence, if the random strategy is applied in

choosing a child of ny;, the probability of choosing the node
representing supporting lemma is i—;’ Suppose there are R
correct and complete proof paths in a given tree.

Theorem 1. Given the above assumptions, if n;, has been
chosen, the node representing a supporting lemma, who is the
child of ny;, is on an incorrect path with the probability less
than i—:’, when the random strategy is given.

1

Proof. For the rth correct and complete path, define o, as

follows:
k—1 1
=
(X’r:{ J= er

0 otherwise

itvje[l,i.n,; =n,

Denote p; as the probability that a selected path is incorrect
if n;; has been chosen.

R
plzlfz(xr
r=1

Denote m,my, ... ,m, as the nodes representing supporting
lemmata among the children of n;,. For the rth correct and
complete path, define 3., as follows:

k=1 1
Br.s _ {Hji+1 Xr;
0

It can be inferred that

i 1
o = Z —Br;
j=1 %t

if ny,, =msAVj€[1iln,; =ny,

otherwise



Denote p, as the probability that a selected path is incorrect
and the child of n;, representing supporting lemma is on the
path if »n;, has been chosen.

i 1 R
IZED) ;(1 ~ Y B)
j=1" r=1

Therefore, denote p as the probability that a child of n;, rep-
resenting supporting lemma is on an incorrect path if n;, has
been chosen.
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As a result, given the random strategy, the probability that
n; is on an incorrect path is less than the probability that
n; is on a given path. In other words, if an incorrect path is
found, the probability that n; is on the path, which equals
H;;ll % on a given path, decreases. On the other hand, the
DQN requires a reward for guiding the optimization, where a
reward corresponds to a determined occurrence of an event,
e.g., a dead-or-alive signal upon an action in a game [44].
However, there is no such determined event in verifications.
Instead, in SmartVerif, we leverage probability of occurrence
that the node representing a supporting lemma is on incorrect
paths for constructing the reward according to Theorem 1.
This insight enables us to leverage the detected incorrect
paths to guide the path selection, which is implemented by
using the DQN.

B Technical Details - Deep Q Network

Algorithm 2 demonstrates the technical details of our imple-
mentation of DQN. The DQN runs iteratively with multi-
ple epochs. In each epoch, recalling that we adopt a multi-
threading approach for increasing the efficiency, the DQN
launches ¢ threads in which the paths are selected accord-
ing to the policy (line 5). If a path is estimated correct and
complete, SmartVerif terminates with the proof path (line 6).
If all the selected paths are estimated incorrect, the policy is
optimized (line 7).

In path selection, we use two strategies in the pol-
icy (line 12): 1) an exploration strategy to choose random
actions, which is to explore the values of unchosen ac-
tions; 2) a greedy strategy to choose a which may have the
largest Q value currently. Here, Q(s;,a;9,) is a pre-defined

function [44] that outputs comparable value, given the node
s; and its ath child. The Q function also takes 0, as input,
where 0, is the set of the DQN’s parameters at epoch e, and 0,
is updated into 6,41 in policy optimization. Combining the
two strategies, we use a €-greedy strategy to select actions.
Here, € is a probability value for selecting random actions.
We change the value of € to get different exploration ratios.
Note that we choose random actions in the exploration strat-
egy. Another possible approach is to take standard heuristic
of tamarin prover as the basic strategy. However, for example,
when verifying Yubikey protocol, the standard heuristic does
not rank the supporting lemma at the first place in several
proof steps. In this case, the DQN does not optimize itself in
an efficient way and the efficiency is worse than SmartVerif.

Algorithm 2 Implementation of DQN

1: Initialize a replay memory D to capacity N

2: Initialize an action-value function Q

3: success =0

4: for e =1to EPOCH do

5: Call o threads that execute path_selection
6

7

8

if success = 1 then Program ends
Execute policy_optimization

9: function path_selection:
10: Initialize a proof state s;
11: for ¢t =1to ROUND do

12: With probability € select a random action a;
otherwise select a; = max,Q(s;,a;0,)

13: Generate next state sy according to a,

14: Store a transition (s;,a;,®,s;41) in D

15: if the path is estimated incorrect then break

16: if the path is estimated correct and complete then

17: success = 1

18: return

19:

20: function policy_optimization:

21: Sample n random transitions (s;,a;,r;,s;+1) from D

22: Sety; =rj+ymaxy Q(sjt1,d’;6.)

23: Perform a gradient descent step on (y; — Q(s},a;0+1))?

To apply our insight, we set the reward to the same neg-
ative number for all the edges on each estimated incor-
rect proof path. Specifically, in line 14, a transition, i.e., tu-
ple (s7,ar,®,58:4+1),1s generated and added to D, where w is the
negative reward for the action a; at the state s;. D is a replay
memory [38] with capacity N, i.e., in practice, our network
only stores the last N tuples in the replay memory.

In policy optimization, 6, in Q function is updated as men-
tioned (line 20). Here, n tuples are randomly selected from D.
For each selected tuple (s;,a;,r;,s+1), we compute y; accord-
ing to 6,. Then 0, is estimated by using the loss function

(yi - Q(Saaa e€+l ))2
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