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Abstract—We propose AccountTrade, a set of accountable
protocols, for big data trading among dishonest consumers. To
secure the big data trading environment, our protocols achieve
book-keeping ability and accountability against dishonest con-
sumers who may misbehave throughout the dataset transactions.
Specifically, we study the responsibilities of the consumers in the
dataset trading and design AccountTrade to achieve accountabil-
ity against the dishonest consumers who may try to deviate from
their responsibilities. Specifically, we propose uniqueness index,
a new rigorous measurement of the data uniqueness, as well as
several accountable trading protocols to enable data brokers to
blame the dishonest consumer when misbehavior is detected. We
formally define, prove, and evaluate the accountability of our
protocols by an automatic verification tool as well as extensive
evaluation in real-world datasets. Our evaluation shows that
AccountTrade incurs negligible constant storage overhead per
file (<10KB), and it is able to handle 8-1000 concurrent data
uploading per server depending on the data types.

I. INTRODUCTION

The number of data trading platforms/services has increased

with rapidity (e.g., CitizenMe, DataExchange, Datacoup, Fac-

tual, Qlik, XOR Data Exchange, Terbine). These data trad-

ing platforms, also known as data brokers, provide B2C or

C2C datasets sales services, and they are the counterparts of

physical commodities trading brokers, e.g., Ebay and Amazon.

Such a trend has emerged primarily because the sale of digital

data became a promising business with the advent of big

data [1]. Despite a large business opportunity, the entities

possessing large-scale datasets have not readily participated in

the data trading due to many security/privacy concerns in user-

generated data [23], [24], [29], [44], and one of them is the

lack of accountability [18], [20], [21], [33], [35]. On the one

hand, dataset owners are concerned that brokers may illegally

disclose or resell their datasets, and on the other hand, they

are also concerned ordinary consumers may also illegally trade

the purchased datasets. It is possible to deal with the first issue

because the accountability of data brokers have already been

one of the main concerns of FTC [14], and FTC has managed

to detect and punish several data brokers already [2]–[4]; and

2) existing works in the literature can be used to achieve
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accountability in various systems [18], [20], which make

live monitoring on data brokers doable. However, the second

issue is non-trivial to address. In general, it is reasonable to

enforce such monitoring at the broker’s side (as seen from

the recent movement [14]), but it is not justifiable to monitor

the consumers. Firstly, it is unacceptable to lively monitor

their behavior because this will raise privacy implications.

Secondly, the history of Internet strongly suggests that a

service mandating the installation of a heavy accountability

system will be eliminated due to bad user experiences.

In this paper, we present AccountTrade, a set of accountable

protocols for big data trading via data brokers. It enables

data brokers to achieve trading-related accountability against

dishonest consumers by blaming them when misbehavior is

detected. The trading-related misbehavior detected by Ac-

countTrade includes tax evasion, denial of purchase, and

resale of others’ datasets. Note that AccountTrade does not

try to detect concept-wise or idea-wise plagiarism (e.g., novels

with similar plots, images taken with similar concepts, videos

taken with similar technique) because whether it is original is a

subjective indicator that is hardly decidable. Instead, it detects

the blatant copy (not an exact copy) in uploaded datasets

by examining whether the submitted datasets are derived

from existing ones. Notably, the copy-detection in table-type

datasets has not been studied yet to our best knowledge, and

AccountTrade is the first to propose a feasible mechanism. The

extra overhead imposed to ordinary consumers is negligible

when compared to that of uploading/downloading datasets,

and the extra overhead imposed to the data brokers is also

acceptable. We formally defined the accountability model in

the trading, and we performed automatic proof with formal

language as well as theoretic analysis to formally prove the

accountability achieved by AccountTrade.

Several challenges make it non-trivial to design Account-

Trade. Firstly, the boundary for legal/illegal sale is hard to

clearly define. This is partly because dishonest sellers may

bring various perturbation into others’ datasets before trying

to resell them, and defining to what extent data should be

perturbed to become independent from the original one is

not in the computer science domain. Secondly, data brokers

manage a large number of datasets with huge volume, but the

illegal resale monitoring inherently involves scan (in a certain

form) over all datasets that they possess. Finally, as afore-

mentioned, AccountTrade should not impose non-negligible

overhead to ordinary consumers (i.e., buyers and sellers). We



address these challenges by proposing and utilizing uniqueness
index in AccountTrade, a new rigorous measurement of the

data uniqueness which is resilient to derivative dataset resale

and efficiently computable in big data trading with large scale.

The contribution of our paper is summarized as follows.

1. We formally define the symbolic and computational

accountability models for big data trading, and design the

accountable protocols Upload, Examine, and Download that

are provably accountable (Proof in §IV).

2. To efficiently detect illegal resale, we propose and utilize

the uniqueness index which is consistent with existing state-

of-the-art in dataset similarity comparison mechanisms for

various data types. Notably, no such mechanism is available

for table-type datasets yet, and we propose a novel mechanism

to efficiently measure the similarity for table datasets.

3. AccountTrade scales very well with the scale of the data

brokers, i.e., the number and volume of the datasets they host.

Specifically, the extra overhead introduced at the users’ side

remains constant regardless of the data brokers’ scale, and the

extra overhead incurred at the brokers’ side linearly grows with

the number of the datasets only regardless of their volumes.

II. DEFINITIONS AND MODELS

A. Data Trading with Brokers

Three entities exist in our model: brokers, sellers, buyers,

and they have different trading-related responsibilities.

Broker: Brokers provide general shopping services (product

listing, description, payment, deliver, etc.). Besides, they are in

charge of book-keeping for accounting purpose (i.e., recording

trading transactions), and they also need to define the rules to

specify what type of selling is considered as re-selling.

Seller: Sellers are mandated to sell only the datasets are

collected/generated by themselves, and they should not re-sell

others’ datasets by slightly perturbing them. Also, they should

honestly file the tax report regarding the dataset sale, and they

are forbidden to disturb the brokers’ book-keeping.

Buyer: Buyers should not disturb the brokers’ book-keeping.

Some areas are important but orthogonal to ours. Properly

describing quality/utility of datasets for buyers [41] is com-

plementary, and sophisticated pricing mechanism may exists

but we simply let sellers set the prices.

B. Adversary Model & Channel Assumption

Malicious users: We assume users may try to avoid the

aforementioned responsibilities, e.g., disrupting the brokers’

data trading service enabled by AccountTrade, denying cleared

transactions (i.e., paid and sold), and illegally selling previ-

ously purchased dataset. A user is defined as a dishonest user

if he avoided any of the trading-related responsibility, and such

behavior (either selling or buying) is denoted as misbehavior.

Note that, when illegally selling previously purchased datasets,

attackers may try to perturb the dataset to bypass existing

copy-detection approaches.

Trusted brokers: We assume the brokers can be trusted,

e.g., the role is played by the organizations that are strictly

supervised with great transparency or commercial companies

with high reputation. Similar assumptions can be found in [33],

and the assumption that the brokers will strictly supervised is

also consistent with the FTC’s recent action [14].
Channel assumption: We assume both buyers and sellers

interact with the broker via secure communication channels.

The communication is encrypted and decrypted with pre-

distributed keys to guarantee that the dataset is not open to the

public. This also implies authentication is in place since the

broker needs to use the correct entity’s key for communication.

C. Accountability Model
We inherit [38] to define our own accountability model.Our

accountable protocols are characterized by the two properties:
• Fairness: honest entities are never blamed.

• Goal-centered completeness: if accountability is not pre-

served due to malicious entities’ misbehavior, at least one

of them is blamed.
General completeness, which states all misbehaving entities

should be blamed, is impossible to satisfy because “some

misbehavior cannot be observed by any honest party” [38].

AccountTrade also requires individual accountability, which

states it must be able to correctly blame one or more parties

unambiguously, rather than to blame a group among which

some entities misbehaved but do not know whom.
In the sequel, two formal definitions of accountability

with different purposes are presented. symbolic individual
accountability is defined in an ideal setting where all building

blocks are abstracted as ideal black-box ones. The symbolic

model is amenable to automatic security verification protocols

[8] who automatically verify whether there exist security

flaws. Then, computational individual accountability without

the abstraction will be defined to give a more fine-grained

measurement of individual accountability in real protocol runs.
Symbolic Individual Accountability: A verdict is a boolean

formula ψ consisting of the propositions having the form

dis(e), where dis(e) is a statement that the entity e misbehaved.

If the broker states ψ = dis(A) ∧ dis(B), it means the broker

blames A and B, and the blame is fair if A and B indeed

misbehaved. A run r is an actual run of a protocol; then we use

the expression r ⇒ ψ to denote that ψ evaluates to true in the

run r. Then, for a run r with misbehavior occurred and the ψ
describing the misbehaved entities in r, we call φ = (r ⇒ ψ)
an accountability constraint of r because the broker must state

ψ after observing the run r. We use Φ to denote the set of

all accountability constraints of all possible runs in a given

protocol P , denoted as P ’s accountability property. We say

an entity J ensures Φ after observing a run r if either no

misbehavior occurred in r or J states ψ and (r ⇒ ψ) ∈ Φ.

Definition 1 (Symbolic). Let P be a protocol, J be its entity,
and Φ be P ’s accountability property. We say P is individually
Φ-accountable w.r.t. J if

• Fairness: verdicts stated by J all evaluate to true,
• Goal-centered completeness: for every run r of P , J

ensures Φ after observing it, and
• Individual accountability: the only logical operators in
J’s verdicts are ‘∧’.



Computational Individual Accountability: The computa-

tional version is similar to the symbolic one except that we

consider that leveraged building blocks may be imperfect. For

example, there are always negligible chances for the attacker to

break (almost all) cryptographic tools (e.g., by a random guess

or with negligible advantage), and the leveraged predictive

models can hardly be perfect regarding the precision and

recall. By reusing the notations in the symbolic model, we

present the following definition.

Definition 2 (Computational). Let P be a protocol, J be its
entity, and Φ be P ’s accountability property. We say P is
individually (Φ, η, χ)-accountable w.r.t. J if

• Fairness: for any verdict ψ stated by J , Pr[ψ = F] is
bounded by η,

• Goal-centered completeness: for any run r of P ,
Pr[¬(J ensures Φ)] is bounded by χ, and

• Individual accountability: the only logical operators in
J’s verdicts are ‘∧’.

D. Defining AccountTrade

Upload, Examine, and Download comprises Account-

Trade. The expression [{entity : input}] →P [{entity :
output}] is used to define the input and output from different

entities in the protocol P , and ⊥ indicates a null argument.

Upload: This protocol is executed between a seller who wishes

to sell her dataset d and the broker. The seller generates a post

postt at time t which is posted at the public bulletin board

so that the broker can book-keep the transaction and achieve

individual accountability.

[Seller : d;Broker :⊥] →Upload [Seller :⊥;Broker : d, postt]

Examine: The broker examines whether the dataset is derived

from existing ones with this protocol. He generates a set of

MinHash values mhπ(d) (defined in §III-B) for the dataset

d, and they are used to calculate the uniqueness index of

d, UD(d), over the entire database D containing all already-

uploaded datasets.

[Broker : d] →Examine [Broker : {mhπ(d)}π, UD(d)]

Download: This protocol is executed between a buyer and the

broker. The buyer generates and posts postt at the bulletin

board similar to Upload protocol.

[Buyer :⊥;Broker : d] →Upload [Buyer : d;Broker : postt]

E. Design Goal

Let Φ be {r ⇒ dis(e)|r ∈ Γ} where Γ is a set of runs

containing misbehavior. This paper’s goal is to design the

protocols such that Upload, Examine, and Download have

both symbolic individual Φ-accountability and computational

individual Φ, η, χ-accountability w.r.t. the broker.

III. SPECIFICATIONS OF ACCOUNTTRADE

We leveraged several cryptographic building blocks.

Cryptographic hash: Suppose Σ is a set of characters. We

leverage a cryptographic hash function H : {0, 1}∗ → Σk

where k is a pre-defined system-wide parameter. The hash

function maps any bitstring to a string of length k.

Digital signature: A secure digital signature scheme is lever-

aged to let an entity E sign on a message m ∈ Σ∗. Produced

signature is denoted by sigE(m), and it is used to verify the

integrity of m. We also let every signature secret key be bound

to a specific user so that the signature can be used to prove E’s

ownership for accountability purpose. For the simplicity, we

omit the signature verification in the protocol specifications.

Append-only bulletin board: A bulletin board with ‘append’

and ‘read’ privileges only [22] has been employed as the

source of trust in systems requiring accountability or verifi-

ability [6], [8]. It is a public broadcast channel with memory

where any party can post messages by appending them to her

own area, and she can see anyone’s posts as well. A posted

message is denoted as a ‘post’ hereafter.

A. Upload for Sale

When a seller A wants to upload dataset d to broker to

sell it, she follows the Upload protocol (Fig. 1) and posts her

declaration postt at the bulletin board at time t, where ‘||’
denotes string concatenation. Then, she initiates the upload

request with H(d), where the hash is applied on d’s bitstream.

The broker finds the corresponding post from the bulletin

board and blames A if none is found, because it is evident that

she has tried to avoid being book-kept. If the broker sees the

post, he accepts A’s request and retrieves the dataset. Then, the

broker checks whether the hash of received dataset is identical

to the one posted at the bulletin board and blames A if not.

Finally, the broker generates the description of the dataset d
(e.g., by [41]) and make it public at his trading platform.

B. Dataset Examination

If the upload is successful, the broker further checks whether

similar dataset has been uploaded before. To do so, we propose

uniqueness index, which is indicative of how much of overlaps

a given set S has over a set of sets S = {S1, · · · , Sn}.

Definition 3 (Uniqueness index). Given a set of S =
{S1, S2, · · · , Sn}, the uniqueness index of Sx over the set S is
defined as US(Sx) = 1−maxS∈S{Δ(S, Sx)}, where Δ(S, Sx)
is a normalized similarity function describing how unique Sx

is when compared to S, defined as:

Δ(S, Sx) = J(S, Sx) · max(|S|, |Sx|)
min(|S|, |Sx|)

J(S1, S2) refers to the Jaccard Index, which is statistical

measurement of the similarity and diversity of two given sets,

defined as J(S1, S2) =
|S1∩S2|
|S1∪S2| . Then, we define selling of a

dataset d as re-selling if UD(d) > θhigh and as valid selling

if UD(d) < θlow, where D is the database of datasets the

broker possesses and θhigh, θlow refer to two threshold values

for decision making. If the uniqueness index is between the

two threshold values, the broker can manually inspect the

dataset with human labor.

The reason we are going to use this uniqueness index in

dataset re-selling detection is manifold. Firstly, it intuitively

measures how many of the elements in Sx are similar to the

elements in the entire set S, and the the multiplier after the



Seller A Bulletin board Broker

Compute H := H(d)

postt:=
〈

‘upload’,H,IDA,

sigA

(
H||IDA

)〉

−−−−−−−−−−−−−−−→ Post postt

Request upload
H−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Find A’s post with H←−−−−−−−−−−−−→ If none, blame A
ACK←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Else, accept request
d−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Compute H′ := H(d)

If H′ �= H , blame A

Figure 1. Upload protocol between a seller A with ID IDA and the broker for uploading dataset d.

Jaccard Index guarantees the index is equal to 1 when Sx is

a subset/superset of any set in S. Secondly, in many existing

similarity comparison approaches in information retrieval, the

datasets are considered as sets of elements (k-grams for texts,

feature descriptors for images, and key frames for videos),

and therefore the proposed uniqueness index is consistent

with them (reviewed in §VI). As for the tables, there is

no known similarity comparison mechanism available yet,

but we designed a novel similarity mechanism based on the

uniqueness index. Thirdly, our extensive experiments on the

real-world datasets (§V-B) shows that the uniqueness index of

dx is extremely low (≤ 0.05) when dx is derived by applying

simple perturbation to existing data, and that the index is as

high as 0.8 ∼ 1.0 when dx is unique. This prunes many illegal

re-selling cases automatically with high confidence when the

threshold values are selected conservatively. We will elaborate

how to choose the thresholds in §V-B. Finally, because of the

clearly separable uniqueness indices, it becomes possible to

make threshold-based decisions at the broker’s side, and it

enables the broker to scale well with the number of users as

well as the number of datasets owing to the simplicity of the

threshold-based decision making.

MinHash: MinHash [10] is a special hash for quick estimation

of Jaccard Index of two sets. It is assumed that the universe set

of elements that may appear in sets is finite and ordered, and a

finite bit vector �S is used to represent a set S. That is, �S[i] = 1
if S has the i-th element in the universe and 0 otherwise.

Firstly, a permutation π over {1, 2, · · · , |�S|} is randomly

selected, and the MinHash value of �S for this π (denoted as

mhπ(�S) hereafter) is the position of the first bit whose value

is 1 when all bits in �S are visited with the order given by the

permutation π. For example, suppose the size of the universe

set is 10 and we are given the membership vector of a set
�S = {0, 1, 0, 0, 0, 0, 0, 1, 1, 1}. Then, mhπ(�S) corresponding

to the permutation π = (5, 7, 3, 2, 9, 10, 1, 4, 8, 6) is equal

to 8 because if one probes the 7th bit (π[7] = 1), 4th bit

(π[4] = 2), 3rd bit (π[3] = 3), 8th bit (π[8] = 4) by

following the permutation π, the 8th bit is the first 1 he has.

The following property from [11] explains why we propose

to apply MinHashing: Pr[mhπ(�S1) = mhπ(�S2)] =
||�S1∧�S2||
||�S1∨�S2||

for any S1, S2. Then, M MinHash values achieved from �S1

and �S2, each set of M values extracted from the same set

of M unique permutations {π1, π2, · · · , πM}, can be used

to estimate J( �d1, �d2) with # of same mh
M because the Chernoff-

Hoeffding bound tells the expected error is O( 1√
M
).

If datasets can be converted to sets by finding out how to

extract elements from the datasets, and if enough permutations

are defined to achieve enough MinHash values (i.e., large M in

the error O( 1√
M
)), one can easily approximate the uniqueness

index of a dataset d given a database of datasets D with a linear

search on it. Any similarity comparison mechanism which

treats a dataset as a set of elements is accepted in Account-

Trade. To present the feasibility, we present one example for

each type of dataset. Notably, because such a mechanism for

table and graph types is not available in the literature yet, we

present our novel mechanism. For other types, we present fast

variants of current state-of-the-art works in the literature.

Text: The text document is shingled to k-shingles (also known

as k-grams) [11]. A k-shingle is a contiguous sequence of k
characters including spaces (may or may not include others)

in a text. For example, a text string “bad boy” turns into

{“bad ”, “ad b”, “d bo”, “ boy”} when shingled to 4-shingles.

Then, a text dataset is treated a set of k-grams, and its

bit vector can be created when k is fixed (a vector of 27k

dimensions). A good rule of thumb is that k = 5 ∼ 9 for

large documents similarity comparison [34]. To avoid being

biased by stop words, they are removed first, and to achieve

robustness against trivial perturbation, synonyms are replaced

with a pre-defined representative in the family of synonyms

(using the synsets in WordNet [32]). Finally, the MinHash

values can be extracted from the vectors.

Image: Feature descriptors (e.g., SIFT [42], [43]) are useful in

object recognition [26]. They are automatically extracted from

the images, which are high-dimensional vectors describing

points, edges, or regions in the images. Each image may have

hundreds of feature descriptors, and they may be binary, i.e.,
{0, 1}d, or real, i.e., [0, 1]d. Since d is as large as 128, it is

impossible to directly turn the list of features to a membership

vector in either case. Therefore, we form a finite feature
universe by extracting features from a set of images whose

features are diversely distributed in the feature space (e.g.,
Flickr1M set [5]), and the bit vector of an image is generated

by finding the nearest neighbors in the feature universe.

Video: Keyframes extraction [25] summarizes a video with

several keyframes which are essentially images. Then, the

uniqueness of the keyframes can be evaluated as aforemen-

tioned, and the uniqueness indices of keyframes can be aggre-

gated to evaluate the uniqueness index of the video (e.g., the

minimum index defined as the uniqueness index of the video).

Table: Retrieval or similarity comparison on large-scale table

datasets have not been researched yet. We propose a novel

mechanism by leveraging the MinHash and the bloom filter
[9]. A bloom filter is a vector of m bits representing a set

of items. The filter has k uniformly distributed hash functions

which map an item to a position in the vector. When an item is



inserted to the set, k hash values (i.e., positions) are calculated,

and all corresponding bits are set to 1. Then, to query whether

an item ix exists in a set S = {i1, i2, · · · }, all ix’s hashed

positions are probed to see if all bits are 1. If any of the bits

is 0, ix /∈ S with zero false negative ratio; if all of these bits

are 1, ix ∈ S with a bounded false positive ratio. It is known

that the false positive ratio is the lowest when k = m
n ln 2

when m,n are given, and the filter size with this optimal k is

m = − n ln p
(ln 2)2 ≈ 9.58n for a given false positive ratio p = 0.01

and the number of items n to be inserted [17]. For the sake

of simplicity, we use Bk
m(d) to denote d’s bloom filter with

size m and k hash functions hereafter.

We treat each row as an element to be inserted, and we con-

struct a bloom filter for each table dataset d as Bk
m(d). Then,

due to the bloom filters’ properties, Bk
m(d1∪d2) = Bk

m(d1)∨
Bk

m(d2) and Bk
m(d1 ∩ d2) = Bk

m(d1) ∧ Bk
m(d2), where the

intersection and union are performed on the rows. Owing to

the fact that the approximate number of items that have been

inserted in Bk
m(d) is f(|Bk

m(d)|) = −m ln(1−|Bk
m(d)|/m)

k where

|Bk
m(d)| denotes the number of 1’s in Bk

m(d) [37], the Jaccard

Index of d1, d2 is approximated by

J(d1, d2) =
|d1 ∩ d2|
|d1 ∪ d2| ≈

f(|Bk
m(d1) ∧Bk

m(d2)|,m, k)

f(|Bk
m(d1) ∨Bk

m(d2)|,m, k)

One drawback is that the above method only addresses

horizontal partitioning. Therefore, we insert all subsets of

every row so that the vertical partitioning is also covered by

the bloom filter. That is, for a table having c columns, we

insert 2c − 1 different sub-tuples for each row to the table’s

bloom filter, which leads to (2c − 1)r items inserted into the

bloom filter when there are r rows in the table. Because of the

performance concern in the relational database management

(i.e., join operations, dynamic rows), the number of columns

is usually small (e.g., less than 10). Therefore, AccountTrade

can apply this approach for the majority of the tables. If the

table’s column c is so large that (2c − 1)r is too large, we

compress the number of elements in the bloom filter from

O(2cr) to O(cgr) at the cost of accuracy loss, where g is a

constant. Namely, instead of inserting all sub-tuples, we insert

the tuples of size 1, 2, 3, · · · , g only. This translates to the

insertion of
(
c
1

)
,
(
c
2

)
,
(
c
3

)
, · · · , (cg

)
tuples only, which is O(cg).

With this approximation, if every attribute in the table (both

row-wise and column-wise) is unique, the false positive ratio

of a row-query when c > g is 1− (1− p)�c/g where p is the

false positive ratio of the bloom filter.

The second drawback is that, even though the bloom filter

is compressed from O(2cr) to O(cgr), the filter size m can

be very large since a large m will lead to a lower false

positive ratio (9.58 bits per item is required to achieve 1% false

positive rate). Then, overhead of the bit-wise OR and AND

operations incurred in the approximation of J(d1, d2) may be

significant. We cannot directly use MinHash to approximate

the uniqueness index because the Jaccard Index of two bloom

filters is different from the Jaccard Index of the original

tables. However, we can indirectly approximate the uniqueness

index in a constant time irrelevant to m with the following

trick. Recall that we can estimate J12 =
|Bk

m(d1)∧Bk
m(d2)|

|Bk
m(d1)∨Bk

m(d2)|
with MinHash values of Bk

m(d1) and Bk
m(d2). Therefore if

we can calculate |Bk
m(d1) ∧ Bk

m(d2)| or |Bk
m(d1) ∨ Bk

m(d2)|
from the estimated J12, we are able to estimate J(d1, d2)
based on the bloom filters regardless of m. Normally it is

not possible to calculate X,Y from X
Y only, but we can

derive them as follows by using the inclusion-exclusion prin-

ciple: |Bk
m(d1) ∨ Bk

m(d2)| =
|Bk

m(d1)|+|Bk
m(d2)|

1+J12
, |Bk

m(d1) ∧
Bk

m(d2)| = J12 · |Bk
m(d1)|+|Bk

m(d2)|
1+J12

. To calculate them in

a constant time, we augment the bloom filter and use an

extra field to store |Bk
m(d)| for each filter so that this field

can be accessed in a constant time. Then, if we use all

same augmented bloom filters Bk
m,aug(·) for all table datasets,

AccountTrade can approximately calculate the Jaccard Index

J(d1, d2) in a constant time.
Graph: If graphs are unlabeled, i.e., nodes and edges do not

have any attribute, the similarity comparison between two

graphs involves the sub-graph isomorphism problem, which

is NP-complete [15]. Many mechanisms have been proposed

to solve this problem with graph indexing, but most of them

cannot be applied in our scenario managing big graphs of mil-

lions of nodes. The most efficient mechanism in the literature

from Sun et al. [36] generates 6 GBytes index and 33s index

time for a graph of 1 billion nodes, but even in their work, the

query time is several seconds for a query graph with only tens

of nodes and edges. This is due to the inherent hardness of the

sub-graph isomorphism problem. Therefore, we only consider

the labeled graphs where nodes or edges have attributes, and

focus on evaluating the attribute-wise similarities/uniqueness.

Graphs are stored as tables, therefore we treat the tables as

tables and use the same method as aforementioned.

After the uploaded dataset’s uniqueness index is calculated

with a linear scan on D, the broker can automatically decide

whether he will accept it (if the index is very high), reject

it (if the index is very low), or leave it to manual inspection

(otherwise). How to set up the thresholds will be explained

in §V-B. Although the complexity of the uniqueness index

calculation is O(|D|), the cost of the linear scan is negligible

(2.5ms per million datasets in D in our setting, §V-A2).

C. Download after Purchase
When a buyer B wishes to get access to certain dataset

d (after reading the description provided by the broker), she

pays for it to the broker first and then follows the Download
protocol (Fig. 2). She first posts a declaration postt at the

bulletin board at time t, and she initiates the download request

by sending H(d) to the broker, where H(d) is available in

the description of the dataset provided by the broker. The

broker finds the corresponding post from the bulletin board

and blames B if none is found, because it is evident that she

has tried to avoid being book-kept. If the broker sees the post,

he accepts B’s download request and sends the dataset to B.

D. Parallelization
The most intensive overhead comes from the 1) data file

I/O; 2) conversion to membership vector; and 3) generating M



Buyer B Bulletin board Broker

Find∗ H := H(d)

postt:=
〈

‘download’,H,IDB,

sigB

(
H||IDB

)〉

−−−−−−−−−−−−−−−−→ Post postt

Request download
H−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Find B’s post with H←−−−−−−−−−−−−−−→ If none, blame B
d←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Else, send dataset

*H(d) is available in the description of the dataset provided by the broker.
Figure 2. Download protocol between a buyer B with ID IDB and the broker for downloading dataset d.

MinHash values. Therefore, we consider reducing the overall

execution time by introducing parallelization. Data is logically

partitioned into chunks so that each processor only reads

the designated chunk. We carefully design the partitioning

among processors so that the membership vector will not be

incomplete due to the partitioning. Finally, we compute M
MinHash values in parallel since each value is independent of

another. Note that processors can read one file simultaneously

in ‘Read Only’ mode, and that both Windows and Linux file

systems support random access.

Text: The document is divided into several chunks such that

two consecutive chunks have k overlapped letters. Then, each

processor individually and independently loads the k-shingles

into the shared membership vector simultaneously.

Image: The image is divided into chunks of same resolution

(each chunk is a cropped image) where adjacent chunks share

as many pixels as the range of the feature descriptor, and

each processor extracts features in each chunk. Then, each

processor finds the nearest neighbor in the visual word space

and fill it into the shared membership vector simultaneously.

Video: In most works, the keyframes are extracted based

on the temporal differences in a time window of t frames,

therefore the video is divided into chunks where t frames

are overlapped between consecutive chunks. Then, the same

procedure as in image-type data can be followed.

Table & Graph: The table is horizontally partitioned into

several chunks of the same number of columns. Each processor

can independently load each item (i.e., sub-tuples) to the

shared bloom filter simultaneously.

E. Accountability Properties of AccountTrade

Upload
J1: If the post postt matching H does not exist, the broker

states dis(A) where A is the one who sent the upload request.

J2: If the posted hash H in postt is different from the

calculated hash H ′, the broker states dis(A).
Examine
J3: If the calculated uniqueness index is very low or the man-

ual inspection indicates the dataset is derived from already-

uploaded ones, the broker states dis(A) where A is the one

who uploaded the dataset.

Download
J4: Same as J1 except that dis(B) is stated instead, where B
is the one who sent the request.

J1 detects a dishonest seller who tries to deny a sale

transaction, and J2 further prevents a dishonest seller from

declaring a wrong dataset. J3 detects reselling, and J4 detects

a dishonest buyer who tries to deny a purchase transaction.

Due to the aforementioned judge processes, sellers are not

able to avoid being taxed for their dataset sale, and buyers

cannot resell the purchased datasets or deny the purchase.

Therefore, AccountTrade successfully achieves the pre-defined

accountability.

IV. PROOF OF ACCOUNTABILITY

A. Automatic Proof for Symbolic Model

We formally verify the fairness and completeness in Upload
and Download protocol by using ProVerif [8], an automatic

symbolic protocol verifier. Proverif models a protocol by a

group of parallel processes. Each step in a process is a

statement of the form in(c,m) or out(c,m), meaning that

a message m is received from or sent to the channel c. After

modelling the processes, ProVerif automatically verifies the

soundness of the protocol by validating predicates that should

be satisfied (various accountability properties in our case). We

additionally model and enumerate all possible misbehavior

from seller A and buyer B, and we also modelled two

types of processes for each of two entities: honest/dishonest

sellers and honest/dishonest buyers. Honest processes strictly

follow the protocols and dishonest processes enumerates all

misbehavior. Then, we add events for the broker to blame

dishonest participants when it detects one. For the seller

A, the honest/dishonest process runs in parallel, and we

add an event event(NFol(A)) before the dishonest process

executes. Then, in the case the broker finds A has performed

misbehavior, the event event(JNFol(A)) is executed. Hence,

to ensure that the broker has made correct decisions, we

validate the predicate by using the automatic verification func-

tion in ProVerif: ∀x.event(JNFol(x)) ⇒ event(NFol(x)).
Specifically, the soundness in case J1, J2, J4 are verified by

using the predicate. The model of AccountTrade is available

at “goo.gl/OWai5W”, and it passed the automatic verification

by ProVerif. This indicates AccountTrade’s design is flawless.

B. Theoretic Proof for Computational Model

Recall that a uniqueness index is approximated with M
MinHash values. Let κ be the security parameter, εconv be

the upper bound of the error introduced in dataset-to-set

conversion, and Pr[εconv] = 1 − δconv be the probability that

this worst case occurs. Then, we have Theorem 1.

Theorem 1. Given an accountability property Φ, the broker
in AccountTrade computationally and individually ensures(
Φ, δmh+δconv−δmhδconv,max( 1

2κ , δmh+δconv−δmhδconv)
)
-

accountability, where δmh = 2 exp(−M(θhigh−θlow−εconv)
2

2 ).

Proof. η in Fairness: In J1, it is impossible that an honest

entity will be blamed as the hash values are always calculated

correctly. Therefore, ηJ1 = Pr[dis(A) = F ] = 0 in J1.



Similarly, ηJ2 = ηJ4 = 0. ηJ3 in J3 is related to the re-

selling detection in Examine protocol. AccountTrade defines a

dataset d as valid if UD(d) > θhigh and illegal otherwise. Then,

an honest seller is blamed when the calculated uniqueness

index is below θlow but the true index should have been above

θhigh. Let ÛD(d) be the uniqueness index approximated by

M MinHash values and UD(d) be the true uniqueness index.

The Chernoff-Hoeffding bound tells Pr[|ÛD(d) − UD(d)| <
εmh] > 1 − δmh, when M = 2

ε2mh
ln 2

δmh
for any constant

εmh, δmh. Then, an honest seller is blamed when sum of two

errors exceed θhigh−θlow, i.e., εmh > θhigh−θlow−εconv, whose

probability is bounded by ηJ3 = 1− (1− δmh)(1− δconv). In

order not to have false blaming, εmh should be no greater

than that, in which case δmh = 2 exp(−M(θhigh−θlow−εconv)
2

2 ).
In conclusion, η = max(ηJ1, · · · , ηJ4) = ηJ3.

χ in Completeness: In J1, if hash collision occurs for

d′ �= d (i.e., H(d) = H(d′)), a dishonest seller becomes

able to request uploading a new dataset d without being

book-kept. However, the probability of this is as small as
1
2κ where κ is the security parameter, therefore χJ1 = 1

2κ

where χJ1 = Pr[¬(Broker ensures Φ)] for a run with dis-

honest seller in J1. Similarly, χJ4 = χJ2 = 1
2κ . Analysis

similar to that in the fairness above also holds for χJ3, and

χJ3 = ηJ3 = δmh + δconv − δmhδconv. Therefore, χ =
max( 1

2κ , δmh + δconv − δmhδconv).

V. VALIDATION ON PROTOTYPE TESTBED

We acquired texts, images, tables, and graphs datasets from

publicly available sources. Text datasets are from [28], [30];

image datasets are from [5], [39]; video datasets are from

[7], [19]; and table & graph datasets are from [28], [30].

Also, AccountTrade’s programs are deployed in a server with

Intel(R) Xeon E5-2620 and 32GB DDR4 1866.

A. Microbenchmark with Real Data

Note that we implemented parallelized algorithms (§III-D).

1) Extra overhead of Upload and Download: The extra

information AccountTrade requires brokers to store only in-

cludes the MinHash values. Per each published file, brokers

only need to store M MinHash values (1024 long integers

in our simulation, translating to 8 KB). Sizes of IDs, hash

values, and the signature in the post are fixed and negligible.

Therefore, the overall extra communication overhead among

the consumers, the bulletin board, and the broker is negligible.

2) Run time of Examine: Examine consists mainly of

uniqueness index calculation, whose different benchmarking

results are shown in Fig. 3. Fig. 3(a)-(e) present the time con-

sumption in calculating 1024 MinHash values from different

types of data. All the run time presented in Fig. 3 include the

I/O overhead. The last step of uniqueness index calculation

is finding the maximum of Δ(S, Sx) (Def. 3) over the entire

database. This step is not type-dependent, and it is no more

than linear search across the database which incurs 2.5ms per

million datasets at the broker’s side.

It is noticeable that MinHashing time does not change much

when the size of the data increases in all types except Video

(whose MinHashing is not individually shown in the figure).

This is natural since MinHashing requires AccountTrade to

permute on the membership vector until it finds the first bit

that is 1, and in theory the run time of it should be inversely

proportional to the number of items in the membership vector,

which implies the MinHashing time is inversely proportional

to the data size as well. The uniqueness index calculation in

the video type data (Fig. 3(c)) involves MinHashing, but the

number of times MinHashing is performed is proportional to

the number of frames, and this is why its green bars grow

with the frames. In our implementation, we set the threshold

for sub-tuple approximation in the table data as 7 columns,

and this is why run time grows exponentially until 7 columns

and then polynomially after it in Fig. 3(e).

Examine is executed when sellers upload their dataset, and

it does not have to be performed in a real time since it is usual

that a hold is placed on an uploaded dataset in real dataset

trading platforms. Therefore, the presented benchmark results

are promising in that most of the data can be examined in a

time that is negligible to the uploading time.

B. Large-scale Simulation with Real Data

We analyzed the distribution of uniqueness indices in real-

world datasets to explore whether the uniqueness index space

[0, 1] can be clearly divided into two areas: those for legal

sale and those for illegal re-sale. We created a database of

data files containing MinHash values of 5,000 data files for

each type except video type which contains MinHash values of

500 files. Then, we acquired a ground truth datasets of unique
data and derivative data as follows. We considered data A
from a different source from B as unique from B and vice

versa, and we considered data A as derivative if it is achieved

by applying the following perturbation on B.

• Text: Replace words with synonyms; switch ac-

tive/passive tense; delete sentences; merge documents.

• Image & video: Crop the image/video; rotate the im-

age/video; merge existing images/video.

• Table & graph: Delete rows; delete columns.

The consequent distributions are shown in Fig. 4.

Uniqueness indices of text datasets and video datasets are

lower than others for ‘unique test data’ group in general. This

is because even after removing the stop words, text documents

may have certain small amount of overlaps (i.e., words are not

listed in stop words list but are common) even if data is from

different datasets. The results of text types and table types have

several intervals because uniqueness index of text data slightly

depends on the contents of datasets, and we chose test data

from three datasets of different categories for text and table.

It is clear that the uniqueness indices can be clustered into

two clusters with simple horizontal separators y = θsimilar and

y = θunique where all unique data is above y = θunique and

the rest is below y = θsimilar. Throughout the simulation and

emulation, we did not see any data that has low uniqueness

index while it is in the ground truth set of unique data and vice

versa. However, the actual values of the separators are dataset-

dependent, and AccountTrade needs to find θunique, θsimilar
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0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Test Data ID

U
ni

qu
en

es
s I

nd
ex

Unique Data
Derivative Data

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Test Data ID

U
ni

qu
en

es
s I

nd
ex

Unique Data
Derivative Data

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Test Data ID

U
ni

qu
en

es
s I

nd
ex

Unique Data
Derivative Data

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Test Data ID

U
ni

qu
en

es
s I

nd
ex

Unique Data
Derivative Data

(a) Text (b) Image (c) Video (d) Table

Figure 4. Uniqueness index distribution of perturbed existing data v.s. new data

adaptively. We let AccountTrade first sets initial values for

the thresholds (e.g., θunique = 0.8, θsimilar = 0.2), and updates

the thresholds when he pushed the examined data to manual

inspection because the index is in [θsimilar, θunique]. If the

manual inspection determines that it is derivative, the index

value is assigned to θsimilar and vice versa. In case even

the manual inspection does not know whether this data is

unique, thresholds remain same. The distance between these

two separators will strictly decrease every time gray-area data

is determined as derivative or unique. Although we were not

able to observe the dataset which makes two separators meet

in the middle, we cannot conclude the distance will be large

for all text, image, video, table datasets since the variety of

our datasets is limited. Further exploring more datasets with

variety is our future work. However, we conjecture that the

distance of two separators will converge with a high probabil-

ity for a given dataset that has similar characteristics. Then,

brokers can adaptively explore and use different separators

for different types of datasets (e.g., different thresholds for SF

novels, drama novels, history novel, etc.).

C. QoS from Emulation

We used our 10 COTS computers to concurrently generate

data publication requests to AccountTrade deployed at our

server computer. Our deployed program of AccountTrade

responds to concurrent requests with multiple threads, and

each request is processed with parallel algorithms. For each

type, we measured the influence of concurrent requests per

second to the latencies increased from the benchmark, which is

indicative of QoS at the entities’ side. The results are presented

in Fig. 5, which present the minimum, average, and maximum

increased latencies for each type. We plotted the results until

all concurrent results are answered and terminated without

exceptions. The server starts to reject table-type requests at

8 because of the large memory consumption (bloom filter’s

memory size is 2GB in our implementation). Texts’ and

images’ requests are concurrently handled without noticeable

QoS degradation for a while, and the degradation becomes

prominent when the memory consumption rose up to 32GB

and garbage collection occurs frequently. The video types’

extra latencies are different from the previous two because

the video loading is expensive, and the degradation is caused

by the concurrent reading at the disk. Note that this QoS is

bounded to our implementation in our hardware environment

only. It will be improved if our server is equipped with more

memory or more cores.

VI. RELATED WORKS

A. Accountability Systems
Accountability system has been studied in many other areas.

Logging mechanisms are used to achieve accountability in

Wireless Sensor Networks [40]; trusted IP manager is em-

ployed for accountability in internet protocol [33]; byzantine

fault detection [21] is studied to account for faults in dis-

tributed systems; memory attestation protocol is proposed to

achieve accountability against energy theft attackers in smart

grids [35]; and finally, accountability in virtual machines [20]

is studied to secure the cloud environment.

B. Copy-detection
Besides the fast variants we presented in §III-B, alternatives

existing in the literature except for tables or graphs.

Text: Shingling along with MinHashing has long been used in

the text copy detection [10] to discover similar text documents.

W-shingling [11], shingling by words instead of letters, is also

proposed to capture the word-based similarity. Charikar et al.
proposed SimHash in [12] in order to detect near-duplicate

text documents, and they also convert documents to high-

dimensional vectors and small-size hash values. Approaches

not based on shingling are also available.

Image: [13] introduces two approaches to perform copy

detection: Locality Sensitive Hash on color histograms and

MinHash on feature descriptors. In both approaches, the image

is treated as a set of elements. In [27], feature descriptors are

extracted from each image, and MinHash is applied to them,

after which the Jaccard Index is approximated by the MinHash

values.



0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

Requests/s

Ex
tra

 L
at

en
cy

(s
)

Average
Min
Max

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Requests/s

Ex
tra

 L
at

en
cy

(s
)

Average
Min
Max

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

Requests/s

Ex
tra

 L
at

en
cy

(s
)

Average
Min
Max

1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

Requests/s

Ex
tra

 L
at

en
cy

(s
)

Average
Min
Max

(a) Text (b) Image (c) Video (d) Table

Figure 5. Emulated increased latency per requests/s

Video: Video copy-detection is deeply related to that of image

datasets. The major approach is to select keyframes and

compare the similarities of the keyframes [16], [31].

VII. CONCLUSION

We proposed AccountTrade for big data trading among

dishonest consumers. It guarantees correct book-keeping and

achieves accountability by blaming dishonest consumers if

they did not fulfill responsibilities in the transactions. Notably,

to achieve the accountability against dishonest sellers who

may re-sell others’ datasets, we presented a novel rigorous

measurement of the dataset uniqueness – uniqueness index –

which can be efficiently computable. We formally defined the

accountability model and proved it with ProVerif and rigorous

analysis, and we also evaluated the performance and QoS

using real-world datasets in our implemented testbed.
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