形式语言与计算复杂性第 1 章绪论

黄文超

https：／／faculty．ustc．edu．cn／huangwenchao
\longrightarrow 教学课程 \longrightarrow 形式语言与计算复杂性

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

课前准备

- 课本：Introduction to the Theory of Computation． 2018
- 加入 $Q Q$ 群
- 到课要求（点名）
- 作业要求
- 布置一周内完成并提交，作业在网上提交
- 考试要求
- 考试形式：闭卷（但可带一张带有笔记 A4 纸）
－【送分】大部分题跟作业相关－请认真完成课后题
－【压轴】有一题会考课程中 PPT 中所
讲到的一个证明－请仔细理解每一个证明内容

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

1．Automata，Computability，and Complexity

问：What are the fundamental capabilities and limitations of computers？
－Theoretical Beginning：1930s by mathematical logicians
答：The answers vary in each of the three areas
－Automata
－Computability
－Complexity
问：What are the answers？
－见下页 we introduce these parts in reverse order

1．Automata，Computability，and Complexity

问：What are the fundamental capabilities and limitations of computers？
－Theoretical Beginning：1930s by mathematical logicians
答：The answers vary in each of the three areas
－Automata
－Computability
－Complexity
问：What are the answers？
－见下页，we introduce these parts in reverse order

1．Automata，Computability，and Complexity

问：What are the fundamental capabilities and limitations of computers？
－Theoretical Beginning：1930s by mathematical logicians
答：The answers vary in each of the three areas
－Automata
－Computability
－Complexity
问：What are the answers？
－见下页，we introduce these parts in reverse order

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？

问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
Several Options：
－By understanding which aspect of the problem is at the root of the difficulty，alter it．
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation but easy most of the time．

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？
问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
答：Several Options：
－By understanding which aspect of the problem is at the root of the difficulty，alter it．
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation but easy most of the time．

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？
问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
答：Several Options：
－By understanding which aspect of the problem is at the root of the
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation but easy most of the time．

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？
问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
答：Several Options：
－By understanding which aspect of the problem is at the root of the difficulty，alter it．
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation，but easy most of the time．

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？
问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
答：Several Options：
－By understanding which aspect of the problem is at the root of the difficulty，alter it．
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation，but easy most of the time．

1．Automata，Computability，and Complexity

1．1 Complexity

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Complexity，复杂度
－What makes some problems computationally hard and others easy？
问：Then，what is the answer？
答：Classifying problems according to their computational difficulty
问：After classifying a problem，how to confront the problem？
答：Several Options：
－By understanding which aspect of the problem is at the root of the difficulty，alter it．
－Settle for less than a perfect solution to the problem
－Some problems are hard only in the worst case situation，but easy most of the time．

1．Automata，Computability，and Complexity

1．2 Computability

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Computability，可计算性
－Are there problems that cannot be solved by computers？

> 问：Then，what is the answer？
> 答：The problem of determining whether a mathematical statement is true or false
> －discovered by Kurt Gödel，Alan Turing，and Alonzo Church
> 问：Are the theories of computability and complexity related？
> 答：Yes，and closely
> －Both are to classify the problems
> －Computability theory introduces several of the concepts used in complexity theory．

1．Automata，Computability，and Complexity

1．2 Computability

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Computability，可计算性
－Are there problems that cannot be solved by computers？
问：Then，what is the answer？
答：The problem of determining whether a mathematical statement is true or false．
－discovered by Kurt Gödel，Alan Turing，and Alonzo ChurchAre the theories of computability and complexity related？
答：Yes，and closely
－Both are to classify the problems
－Computability theory introduces several of the concepts used in complexity theory．

1．Automata，Computability，and Complexity

1．2 Computability

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Computability，可计算性
－Are there problems that cannot be solved by computers？
问：Then，what is the answer？
答：The problem of determining whether a mathematical statement is true or false．
－discovered by Kurt Gödel，Alan Turing，and Alonzo Church
问：Are the theories of computability and complexity related？
答：Yes，and closely
－Both are to classify the problems
－Computability theory introduces several of the concepts used in complexity theory．

1．Automata，Computability，and Complexity

1．3 Automata

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Automata，自动机
－Definitions and Properties of mathematical models of computation？
问：Then，what is the answer？
答：Automata theory
－finite automaton
－context－free grammar

问：Relations to Computability and Complexity？
答：an excellent place to begin the study of the theory of computation
So．．．，we firstly study Automata theory

1．Automata，Computability，and Complexity

1．3 Automata

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Automata，自动机
－Definitions and Properties of mathematical models of computation？
问：Then，what is the answer？
答：Automata theory
－finite automaton
－context－free grammar
－．．．Relations to Computability and Complexity？
an excellent place to begin the study of the theory of computation
So．．．，we firstly study Automata theory

1．Automata，Computability，and Complexity

1．3 Automata

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Automata，自动机
－Definitions and Properties of mathematical models of computation？
问：Then，what is the answer？
答：Automata theory
－finite automaton
－context－free grammar
－．．．
问：Relations to Computability and Complexity？
答：an excellent place to begin the study of the theory of computation．
So．．．，we firstly study Automata theory

1．Automata，Computability，and Complexity

1．3 Automata

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Automata，自动机
－Definitions and Properties of mathematical models of computation？
问：Then，what is the answer？
答：Automata theory
－finite automaton
－context－free grammar
－．．．
问：Relations to Computability and Complexity？
答：an excellent place to begin the study of the theory of computation．
So．．．we firstly study Automata theon

1．Automata，Computability，and Complexity

1．3 Automata

问：What are the fundamental capabilities and limitations of computers？
答：Let＇s study another problem：Automata，自动机
－Definitions and Properties of mathematical models of computation？
问：Then，what is the answer？
答：Automata theory
－finite automaton
－context－free grammar
－．．．
问：Relations to Computability and Complexity？
答：an excellent place to begin the study of the theory of computation．
So．．．，we firstly study Automata theory．

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

Outline

（1）课前准备
（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
4 Definitions，Theorems，and Proofs

2．Notions and Terminology

定义：Set，\in, \notin, \subseteq

A set is a group of objects represented as a unit．
－The objects in a set are called its elements or members．
－The symbols \in and \notin denote set membership and nonmembership．
－A is a subset of B ，written $A \subseteq B$ ，if every member of A also is a member of B ．

The set S contains the elements 7,21 ，and 57 ：

2．Notions and Terminology

2．1 Set

定义：Set，\in, \notin, \subseteq

A set is a group of objects represented as a unit．
－The objects in a set are called its elements or members．
－The symbols \in and \notin denote set membership and nonmembership．
－A is a subset of B ，written $A \subseteq B$ ，if every member of A also is a member of B ．

例：Set

The set S contains the elements 7,21 ，and 57 ：

$$
S=\{7,21,57\}
$$

$$
7 \in\{7,21,57\}, \quad 8 \notin\{7,21,57\}, \quad\{7,21\} \subseteq\{7,21,57\}
$$

2．Notions and Terminology

2．1 Set

问：Given $S=\{7,21,57\}$ ，is $S^{\prime}=\{57,7,7,7,21\}$ the same set with S ？
答：Yes
问：How to differentiate between S and S^{\prime} ？
答：Define multiset，i．e．，S and S^{\prime} are different as multisets．

定义：Infinite set， $\mathcal{N}, \mathcal{Z}, \emptyset$

An infinite set contains infinitely many elements，e．g．
－natural numbers： $\mathcal{N}=\{1,2,3, \ldots\}$
－integers： $\mathcal{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
The set with zero members is called the empty set and is written \emptyset ．

2．Notions and Terminology

2．1 Set

问：Given $S=\{7,21,57\}$ ，is $S^{\prime}=\{57,7,7,7,21\}$ the same set with S ？
答：Yes
问：How to differentiate between S and S^{\prime} ？
答：Define multiset，i．e．，S and S^{\prime} are different as multisets．

2．Notions and Terminology

2．1 Set

问：Given $S=\{7,21,57\}$ ，is $S^{\prime}=\{57,7,7,7,21\}$ the same set with S ？
答：Yes
问：How to differentiate between S and S^{\prime} ？
答：Define multiset，i．e．，S and S^{\prime} are different as multisets．

定义：Infinite set， $\mathcal{N}, \mathcal{Z}, \emptyset$

An infinite set contains infinitely many elements，e．g．，
－natural numbers： $\mathcal{N}=\{1,2,3, \ldots\}$
－integers： $\mathcal{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
The set with zero members is called the empty set and is written \emptyset ．

2．Notions and Terminology

2．1 Set

定义：$\{n \mid$ rule about $n\}$

A set containing elements according to some rule，e．g．，
－$\left\{n \mid n=m^{2}\right.$ for some $\left.m \in N\right\}$ means the set of perfect squares

定

 union U ，intersection \cap ，complement－$A \cup B$ ：the set we get by combining all the elements in A and B into a single set
－$A \cap B$ ：the set of elements that are in both A and B
－complement of A ，written \bar{A} ：the set of all elements under consideration that are not in A

2．Notions and Terminology

2．1 Set

定义：$\{n \mid$ rule about $n\}$

A set containing elements according to some rule，e．g．，
－$\left\{n \mid n=m^{2}\right.$ for some $\left.m \in N\right\}$ means the set of perfect squares

定义：union \cup ，intersection \cap ，complement

－$A \cup B$ ：the set we get by combining all the elements in A and B into a single set
－$A \cap B$ ：the set of elements that are in both A and B
－complement of A ，written \bar{A} ：the set of all elements under consideration that are not in A

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

2．Notions and Terminology
 2．2 Sequences and Tuples

定义：Sequence

A sequence of objects is a list of these objects in some order．
－For example，the sequence $7,21,57$ would be written：$(7,21,57)$
－$(7,21,57)$ is not the same as $(57,7,21)$

定X：Tuple，k－tuple

Finite sequences often are called tuples．
－A sequence with k elements is a k－tuple
－A 2－tuple is also called an ordered pair，e．g．，$(2,3)$

츤：Power Set

The power set of A is the set of all subsets of A ．If A is the set $\{0,1\}$
－the power set of A is the set $\{\emptyset,\{0\},\{1\},\{0,1\}\}$

2．Notions and Terminology

2．2 Sequences and Tuples

定义：Sequence

A sequence of objects is a list of these objects in some order．
－For example，the sequence $7,21,57$ would be written：$(7,21,57)$
－$(7,21,57)$ is not the same as $(57,7,21)$

定义：Tuple，k－tuple

Finite sequences often are called tuples．
－A sequence with k elements is a k－tuple．
－A 2－tuple is also called an ordered pair，e．g．，$(2,3)$

完义：Power Set

The power set of A is the set of all subsets of A ．If A is the set $\{0,1\}$ ，
－the power set of A is the set $\{\emptyset,\{0\},\{1\},\{0,1\}\}$

2．Notions and Terminology

2．2 Sequences and Tuples

定义：Sequence

A sequence of objects is a list of these objects in some order．
－For example，the sequence $7,21,57$ would be written：$(7,21,57)$
－$(7,21,57)$ is not the same as $(57,7,21)$

定义：Tuple，k－tuple

Finite sequences often are called tuples．
－A sequence with k elements is a k－tuple．
－A 2－tuple is also called an ordered pair，e．g．，$(2,3)$

定义：Power Set

The power set of A is the set of all subsets of A ．If A is the set $\{0,1\}$ ，
－the power set of A is the set $\{\emptyset,\{0\},\{1\},\{0,1\}\}$ ．

2．Notions and Terminology

2．2 Sequences and Tuples

定义：Cartesian product，or Cross product，

If A and B are two sets，the cartesian product or cross product of A and B ，written $A \times B$ ，is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B

例：

If $A=\{1,2\}$ and $B=\{x, y, z\}$ ，

$$
A \times B=\{(1, x),(1, y),(1, z),(2, x),(2, y),(2, z)\}
$$

$$
\begin{aligned}
A \times B \times A= & \{(1, x, 1),(1, x, 2),(1, y, 1),(1, y, 2),(1, z, 1),(1, z, 2), \\
& (2, x, 1),(2, x, 2),(2, y, 1),(2, y, 2),(2, z, 1),(2, z, 2)\}
\end{aligned}
$$

2．Notions and Terminology
 2．2 Sequences and Tuples

定义：Cartesian product，or Cross product，\times

If A and B are two sets，the cartesian product or cross product of A and B ，written $A \times B$ ，is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B

If $A=\{1,2\}$ and $B=\{x, y, z\}$ ， $A \times B \times A=\{(1, x, 1),(1, x, 2),(1, y, 1),(1, y, 2),(1, z, 1),(1, z, 2)$, $(2, x, 1),(2, x, 2),(2, y, 1),(2, y, 2),(2, z, 1),(2, z, 2)\}$

2．Notions and Terminology

2．2 Sequences and Tuples

定义：Cartesian product，or Cross product，\times

If A and B are two sets，the cartesian product or cross product of A and B ，written $A \times B$ ，is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B

例：

$$
\begin{aligned}
& \text { If } A=\{1,2\} \text { and } B=\{x, y, z\}, \\
& \qquad \begin{aligned}
A \times & B=\{(1, x),(1, y),(1, z),(2, x),(2, y),(2, z)\} \\
A \times B \times A= & \{(1, x, 1),(1, x, 2),(1, y, 1),(1, y, 2),(1, z, 1),(1, z, 2), \\
& (2, x, 1),(2, x, 2),(2, y, 1),(2, y, 2),(2, z, 1),(2, z, 2)\}
\end{aligned}
\end{aligned}
$$

2．Notions and Terminology
 2．2 Sequences and Tuples

定义：A^{k}

$$
\underbrace{A \times A \times \cdots \times A}_{k}=A^{k}
$$

The set \mathcal{N}^{2} equals $\mathcal{N} \times \mathcal{N}$ ．It consists of all ordered pairs of natural numbers

```
- We also may write it as {(i,j)|i,j\geq1}
```


2．Notions and Terminology
 2．2 Sequences and Tuples

定义：A^{k}

$$
\underbrace{A \times A \times \cdots \times A}_{k}=A^{k}
$$

例：

The set \mathcal{N}^{2} equals $\mathcal{N} \times \mathcal{N}$ ．It consists of all ordered pairs of natural numbers．
－We also may write it as $\{(i, j) \mid i, j \geq 1\}$ ．

Outline

（1）课前准备
（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

2．Notions and Terminology

2．3 Functions and Relations

定义：Function，mapping

A function is an object that sets up an input－output relationship．
－If f is a function whose output value is b when the input value is a ：

$$
f(a)=b
$$

－A function also is called a mapping，and，if $f(a)=b$ ，we say that f maps a to b ．

2．Notions and Terminology

2．3 Functions and Relations

定义：Function，mapping

A function is an object that sets up an input－output relationship．
－If f is a function whose output value is b when the input value is a ：

$$
f(a)=b
$$

－A function also is called a mapping，and，if $f(a)=b$ ，we say that f maps a to b ．

定义：Domain，Range，$f: D \rightarrow R$
－The set of possible inputs to the function is called its domain．
－The outputs of a function come from a set called its range．
－Notation：f is a function with domain D and range R is

$$
f: D \rightarrow R
$$

e．g．，addition function for integers：add： $\mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$

2．Notions and Terminology

2．3 Functions and Relations

定义：k－ary function

When the domain of a function f is $A_{1} \times \cdots \times A_{k}$ for some sets A_{1}, \ldots, A_{k} ，the input to f is a k－tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$
－We call the a_{i} the arguments to f ．
－A function with k arguments is called a k－ary function
－k is called the arity of the function．f is called a
－unary function：if k is 1
－binary function：if k is 2
－For binary function，e．g．，$a d d(a, b)$ ，there are two notations：

- infix（中缀）notation：a add b
- prefix（前缀）notation：add (a, b)

2．Notions and Terminology

2．3 Functions and Relations

定义：Predicate，or Property

A predicate or property is a function whose range is $\{T R U E, F A L S E\}$ ．
－e．g．，let even be a property that is TRUE if its input is an even number and FALSE if its input is an odd number．
－Thus， $\operatorname{even}(4)=$ TRUE and $\operatorname{even}(5)=$ FALSE

초르：relation，k－ary relation

A property whose domain is a set of k－tuples $A \times \cdots \times A$ is called a relation，a k－ary relation，or a k－ary relation on A
－binary relation：2－ary relation
－If R is a binary relation，the statement $a R b$ means that $a R b=$ TRUE
－If R is a k－ary relation，the statement $R\left(a_{1}, \ldots, a_{k}\right)$ means that $R\left(a_{1}, \ldots, a_{k}\right)=$ TRUE．

2．Notions and Terminology

2．3 Functions and Relations

定义：Predicate，or Property

A predicate or property is a function whose range is \｛TRUE，FALSE $\}$ ．
－e．g．，let even be a property that is TRUE if its input is an even number and FALSE if its input is an odd number．
－Thus，even $(4)=$ TRUE and $\operatorname{even}(5)=$ FALSE

定义：relation，k－ary relation

A property whose domain is a set of k－tuples $A \times \cdots \times A$ is called a relation，a k－ary relation，or a k－ary relation on A ．
－binary relation：2－ary relation
－If R is a binary relation，the statement $a R b$ means that $a R b=$ TRUE
－If R is a k－ary relation，the statement $R\left(a_{1}, \ldots, a_{k}\right)$ means that $R\left(a_{1}, \ldots, a_{k}\right)=$ TRUE．

2．Notions and Terminology

2．3 Functions and Relations

定义：Equivalence relation

A binary relation R is an equivalence relation if R satisfies three conditions：
（1）R is reflexive if for every $x, x R x$ ；
（2）R is symmetric if for every x and $y, x R y$ implies $y R x$ ；and
（3）R is transitive if for every x, y ，and $z, x R y$ and $y R z$ implies $x R z$ ．

2．Notions and Terminology

2．3 Functions and Relations

定义：Equivalence relation

A binary relation R is an equivalence relation if R satisfies three conditions：
（1）R is reflexive if for every $x, x R x$ ；
（2）R is symmetric if for every x and $y, x R y$ implies $y R x$ ；and
（3）R is transitive if for every x, y ，and $z, x R y$ and $y R z$ implies $x R z$ ．

例：\equiv_{7}

Define an equivalence relation on the natural numbers，written \equiv_{7} ．For $i, j \in N$ ，say that $i \equiv_{7} j$ ，if $i-j$ is a multiple of 7 ．

Outline

（1）课前准备
（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

2．Notions and Terminology

2．4 Graphs

定义：Graph，Nodes，Edges

An undirected graph，or simply a graph，is a set of points with lines connecting some of the points．
－The points are called nodes or vertices
－The lines are called edges

（a）

（b）

2．Notions and Terminology

2．4 Graphs

定义：Degree

The number of edges at a particular node is the degree of that node．
－In（a），all the nodes have degree 2
－In（b），all the nodes have degree 3
－No more than one edge is allowed between any two nodes．
－We may allow an edge from a node to itself，called a self－loop

$4 \square$
形式语言与计算复杂性

2．Notions and Terminology

2．4 Graphs

定义：$G=(V, E)$

In a graph G ，if V is the set of nodes of G and E is the set of edges，we say $G=(V, E)$
－In（a）：$G=(\{1,2,3,4,5\},\{(1,2),(2,3),(3,4),(4,5),(5,1)\})$
－In（b）：$G=(\{1,2,3,4\},\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\})$

（a）

（b）

2．Notions and Terminology

2．4 Graphs

定义：Subgraph

We say that graph G is a subgraph of graph H if
－the nodes of G are a subset of the nodes of H
－the edges of G are the edges of H on the corresponding nodes

2．Notions and Terminology

2．4 Graphs

定义：Path，Simple Path，Connected

－A path in a graph is a sequence of nodes connected by edges．
－A simple path is a path that doesn＇t repeat any nodes．
－A graph is connected if every two nodes have a path between them．

2．Notions and Terminology

2．4 Graphs

定义：Cycle，Simple Cycle

－A path is a cycle if it starts and ends in the same node．
－A simple cycle is one that contains at least three nodes and repeats only the first and last nodes．

2．Notions and Terminology

2．4 Graphs

定义：Tree，Root，Leaf

－A graph is a tree if it is connected and has no simple cycles
－A tree may contain a specially designated node called the root
－The nodes of degree 1 in a tree，other than the root，are called the leaves of the tree

2．Notions and Terminology

2．4 Graphs

定义：Directed Graph

A directed graph has arrows instead of lines
－The number of arrows pointing from a particular node is the outdegree of that node
－The number of arrows pointing to a particular node is the indegree．

The formal description of the graph is：

$$
(\{1,2,3,4,5,6\},\{(1,2),(1,5),(2,1),(2,4),(5,4),(5,6),(6,1),(6,3)\})
$$

2．Notions and Terminology

2．4 Graphs

定义：Directed path，Strongly connected

－A path in which all the arrows point in the same direction as its steps is called a directed path
－A directed graph is strongly connected if a directed path connects every two nodes

Outline

（1）课前准备
（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

2．Notions and Terminology

2．5 Strings and Languages

定义：Alphabet，Symbols，Σ, Γ

－Alphabet：any nonempty finite set
－Symbols：The members of the alphabet are the symbols of the alphabet
－Σ, Γ ：alphabets and a typewriter font for symbols from an alphabet

2．Notions and Terminology

2．5 Strings and Languages

定义：Alphabet，Symbols，Σ, Γ

－Alphabet：any nonempty finite set
－Symbols：The members of the alphabet are the symbols of the alphabet
－Σ, Γ ：alphabets and a typewriter font for symbols from an alphabet

例：Σ, Γ

－$\Sigma_{1}=\{0,1\}$
－$\Sigma_{2}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$
－$\Gamma=\{0,1, x, y, z\}$

2．Notions and Terminology

2．5 Strings and Languages

定义：String，Length w ，Empty String ε ，Reverse w_{R} ，Substring

－A string over an alphabet is a finite sequence of symbols from that alphabet，usually written next to one another and not separated by commas，e．g．，
－If $\Gamma_{1}=\{0,1\}$ ，then 01001 is a string over Γ_{1}
－If $\Gamma_{2}=\{a, b, c, \ldots, z\}$ ，then abracadabra is a string over Γ_{2}
－If w is a string over Σ ，the length of w ，written $|w|$ ，is the number of symbols that it contains．
－The string of length zero is called the empty string and is written ε
－If w has length n ，we can write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$ ． The reverse of w ，written w_{R} ，is the string obtained by writing w in the opposite order（i．e．，$w_{n} w_{n-1} \cdots w_{1}$ ）．
－String z is a substring of w if z appears consecutively within w ．
－For example，cad is a substring of abracadabra．

2．Notions and Terminology

2．5 Strings and Languages

定义：String，Length w ，Empty String ε ，Reverse w_{R} ，Substring

－A string over an alphabet is a finite sequence of symbols from that alphabet，usually written next to one another and not separated by commas，e．g．，
－If $\Gamma_{1}=\{0,1\}$ ，then 01001 is a string over Γ_{1}
－If $\Gamma_{2}=\{a, b, c, \ldots, z\}$ ，then abracadabra is a string over Γ_{2}
－If w is a string over Σ ，the length of w ，written $|w|$ ，is the number of symbols that it contains．
－The string of length zero is called the empty string and is written
－If w has length n ，we can write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$ ． The reverse of w ，written w_{R} ，is the string obtained by writing w in the opposite order（i．e．，$w_{n} w_{n-1} \cdots w_{1}$ ）．
－String z is a substring of w if z appears consecutively within w ．
－For example，cad is a substring of abracadabra．

2．Notions and Terminology

2．5 Strings and Languages

定义：String，Length w ，Empty String ε ，Reverse w_{R} ，Substring

－A string over an alphabet is a finite sequence of symbols from that alphabet，usually written next to one another and not separated by commas，e．g．，
－If $\Gamma_{1}=\{0,1\}$ ，then 01001 is a string over Γ_{1}
－If $\Gamma_{2}=\{a, b, c, \ldots, z\}$ ，then abracadabra is a string over Γ_{2}
－If w is a string over Σ ，the length of w ，written $|w|$ ，is the number of symbols that it contains．
－The string of length zero is called the empty string and is written ε ．
－If w has length n ，we can write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$ ． The reverse of w ，written w_{R} ，is the string obtained by writing w in the opposite order（i．e．，$w_{n} w_{n-1} \cdots w_{1}$ ）．
－String z is a substring of w if z appears consecutively within w ． －For example，cad is a substring of abracadabra．

2．Notions and Terminology

2．5 Strings and Languages

定义：String，Length w ，Empty String ε ，Reverse w_{R} ，Substring

－A string over an alphabet is a finite sequence of symbols from that alphabet，usually written next to one another and not separated by commas，e．g．，
－If $\Gamma_{1}=\{0,1\}$ ，then 01001 is a string over Γ_{1}
－If $\Gamma_{2}=\{a, b, c, \ldots, z\}$ ，then abracadabra is a string over Γ_{2}
－If w is a string over Σ ，the length of w ，written $|w|$ ，is the number of symbols that it contains．
－The string of length zero is called the empty string and is written ε ．
－If w has length n ，we can write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$ ． The reverse of w ，written w_{R} ，is the string obtained by writing w in the opposite order（i．e．，$w_{n} w_{n-1} \cdots w_{1}$ ）．
－String z is a substring of w if z appears consecutively within w ．
－For example，cad is a substring of abracadabra．

2．Notions and Terminology

2．5 Strings and Languages

定义：String，Length w ，Empty String ε ，Reverse w_{R} ，Substring

－A string over an alphabet is a finite sequence of symbols from that alphabet，usually written next to one another and not separated by commas，e．g．，
－If $\Gamma_{1}=\{0,1\}$ ，then 01001 is a string over Γ_{1}
－If $\Gamma_{2}=\{a, b, c, \ldots, z\}$ ，then abracadabra is a string over Γ_{2}
－If w is a string over Σ ，the length of w ，written $|w|$ ，is the number of symbols that it contains．
－The string of length zero is called the empty string and is written ε ．
－If w has length n ，we can write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$ ． The reverse of w ，written w_{R} ，is the string obtained by writing w in the opposite order（i．e．，$w_{n} w_{n-1} \cdots w_{1}$ ）．
－String z is a substring of w if z appears consecutively within w ．
－For example，cad is a substring of abracadabra．

2．Notions and Terminology

2．5 Strings and Languages

定义：Concatenation $x y, x^{k}$

If we have string x of length m and string y of length n ，the concatenation of x and y ，written $x y$ ，is the string obtained by appending y to the end of x ，as in $x_{1} \cdots x_{m} y_{1} \cdots y_{n}$
－To concatenate a string with itself many times，we use the superscript notation x^{k} to mean

2．Notions and Terminology

2．5 Strings and Languages

定义：Lexicographic order，String order

－The lexicographic order of strings is the same as the familiar dictionary order．
－Shortlex order or string order：identical to lexicographic order，except that shorter strings precede longer strings．
－Thus the string ordering of all strings over the alphabet $\{0,1\}$ is

$$
(\varepsilon, 0,1,00,01,10,11,000, \ldots)
$$

2．Notions and Terminology

2．5 Strings and Languages

定义：Lexicographic order，String order

－The lexicographic order of strings is the same as the familiar dictionary order．
－Shortlex order or string order：identical to lexicographic order，except that shorter strings precede longer strings．
－Thus the string ordering of all strings over the alphabet $\{0,1\}$ is

$$
(\varepsilon, 0,1,00,01,10,11,000, \ldots)
$$

定义：Language，Prefix－Free

－A language is a set of strings．
－String x is a prefix of string y if a string z exists where $x z=y$
－ x is a proper prefix of y if in addition $x \neq y$ ．
－A language is prefix－free if no member is a proper prefix of another member

Outline

（1）课前准备
（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
（4）Definitions，Theorems，and Proofs

2．Notions and Terminology

2．6 Boolean Logic

定义：Boolean logic，Boolean value，Boolean operations，Operands
－Boolean logic：a mathematical system built around the two values
－TRUE and FALSE：The values TRUE and FALSE are called the Boolean values and are often represented by the values 1 and 0 ．
－Boolean operations：which manipulate Boolean values，i．e．，
－negation \neg ：$\neg 0=1$ and $\neg 1=0$
－conjunction or $A N D \wedge$ ：The conjunction of two Boolean values is 1 if both of those values are 1 ．
－disjunction or $O R \vee$ ：The disjunction of two Boolean values is 1 if either of those values is 1
－Operands：Inputs of the operations

$\neg 0=1$

2．Notions and Terminology

2．6 Boolean Logic

定义：Boolean logic，Boolean value，Boolean operations，Operands
－Boolean logic：a mathematical system built around the two values
－TRUE and FALSE：The values TRUE and FALSE are called the Boolean values and are often represented by the values 1 and 0 ．
－Boolean operations：which manipulate Boolean values，i．e．，
－negation $\neg: ~ \neg 0=1$ and $\neg 1=0$
－conjunction or $A N D \wedge$ ：The conjunction of two Boolean values is 1 if both of those values are 1.
－disjunction or $O R \vee$ ：The disjunction of two Boolean values is 1 if either of those values is 1 ．
－Operands：Inputs of the operations
$\neg 0=1$

$1 \wedge 0=0$
$1 \wedge 0=0$
$1 \wedge 1=1$
$1 \wedge 1=1$

2．Notions and Terminology

2．6 Boolean Logic

定义：Boolean logic，Boolean value，Boolean operations，Operands
－Boolean logic：a mathematical system built around the two values
－TRUE and FALSE：The values TRUE and FALSE are called the Boolean values and are often represented by the values 1 and 0 ．
－Boolean operations：which manipulate Boolean values，i．e．，
－negation \neg ：$\neg 0=1$ and $\neg 1=0$
－conjunction or $\operatorname{AND} \wedge$ ：The conjunction of two Boolean values is 1 if both of those values are 1 ．
－disjunction or $O R \vee$ ：The disjunction of two Boolean values is 1 if either of those values is 1 ．
－Operands：Inputs of the operations

$\neg 0=1$

$\neg 1=0$

2．Notions and Terminology

2．6 Boolean Logic

定义：Boolean logic，Boolean value，Boolean operations，Operands
－Boolean logic：a mathematical system built around the two values
－TRUE and FALSE：The values TRUE and FALSE are called the Boolean values and are often represented by the values 1 and 0 ．
－Boolean operations：which manipulate Boolean values，i．e．，
－negation \neg ：$\neg 0=1$ and $\neg 1=0$
－conjunction or AND \wedge ：The conjunction of two Boolean values is 1 if both of those values are 1 ．
－disjunction or $O R \vee$ ：The disjunction of two Boolean values is 1 if either of those values is 1 ．
－Operands：Inputs of the operations

$$
\begin{array}{lll}
0 \wedge 0=0 & 0 \vee 0=0 & \neg 0=1 \\
0 \wedge 1=0 & 0 \vee 1=1 & \neg 1=0 \\
1 \wedge 0=0 & 1 \vee 0=1 & \\
1 \wedge 1=1 & 1 \vee 1=1 &
\end{array}
$$

2．Notions and Terminology

2．6 Boolean Logic

定义：Exclusive，XOR，Equality，Implication
－Exclusive，or $X O R \oplus: 1$ ，if either but not both of its two operands is 1
－Equality $\leftrightarrow: 1$ ，if both of its operands have the same value
－implication \rightarrow ：
－ 0 ，if its first operand is 1 and its second operand is 0
－1，otherwise

2．Notions and Terminology

2．6 Boolean Logic

定义：Exclusive，XOR，Equality，Implication
－Exclusive，or $X O R \oplus: 1$ ，if either but not both of its two operands is 1
－Equality $\leftrightarrow: 1$ ，if both of its operands have the same value
－implication \rightarrow ：
－ 0 ，if its first operand is 1 and its second operand is 0
－1，otherwise

$$
\begin{array}{ll}
P \vee Q & \neg(\neg P \wedge \neg Q) \\
P \rightarrow Q & \neg P \vee Q \\
P \leftrightarrow Q & (P \rightarrow Q) \wedge(Q \rightarrow P) \\
P \oplus Q & \neg(P \leftrightarrow Q)
\end{array}
$$

2．Notions and Terminology

2．6 Boolean Logic

定义：Exclusive，XOR，Equality，Implication
－Exclusive，or $X O R \oplus: 1$ ，if either but not both of its two operands is 1
－Equality $\leftrightarrow: 1$ ，if both of its operands have the same value
－implication \rightarrow ：
－ 0 ，if its first operand is 1 and its second operand is 0
－1，otherwise

$$
\begin{array}{ll}
P \vee Q & \neg(\neg P \wedge \neg Q) \\
P \rightarrow Q & \neg P \vee Q \\
P \leftrightarrow Q & (P \rightarrow Q) \wedge(Q \rightarrow P) \\
P \oplus Q & \neg(P \leftrightarrow Q)
\end{array}
$$

定理：Distributive Law（分配律）（a Boolean Version）
－$P \wedge(Q \vee R)$ equals $(P \wedge Q) \vee(P \wedge R)$
－$P \vee(Q \wedge R)$ equals $(P \vee Q) \wedge(P \vee R)$

Outline

（1）课前准备

（2）Automata，Computability，and Complexity
（3）Notions and Terminology
－Set
－Sequences and Tuples
－Functions and Relations
－Graphs
－Strings and Languages
－Boolean Logic
4）Definitions，Theorems，and Proofs

3．Definitions，Theorems，and Proofs

These three entities are central to every mathematical subject
－Definitions（定义）：describe the objects and notions that we use．
－A mathematical statement about the definitions：expresses that some object has a certain property．
－The statement may or may not be true
－No ambiguity for both definitions and statements
－A proof（证明）：is a convincing logical argument that a statement is true

- A theorem（定理）is a mathematical statement proved true．
- lemmas（引理）：we prove statements，called lemmas，that are interesting only because they assist in the proof of another，more significant statement
－corollaries（推论）of a theorem：the theorem or its proof may allow us to conclude easily that other，related statements，called corollaries are true

3．Definitions，Theorems，and Proofs

These three entities are central to every mathematical subject
－Definitions（定义）：describe the objects and notions that we use．
－A mathematical statement about the definitions：expresses that some object has a certain property．
－The statement may or may not be true
－No ambiguity for both definitions and statements
－A proof（证明）：is a convincing logical argument that a statement is true．

- A theorem（定理）is a mathematical statement proved true．
- lemmas（引理）：we prove statements，called lemmas，that are
interesting only because they assist in the proof of another，more
significant statement
－corollaries（推论）of a theorem：the theorem or its proof may allow us
to conclude easily that other，related statements，called corollaries are
true

3．Definitions，Theorems，and Proofs

These three entities are central to every mathematical subject
－Definitions（定义）：describe the objects and notions that we use．
－A mathematical statement about the definitions：expresses that some object has a certain property．
－The statement may or may not be true
－No ambiguity for both definitions and statements
－A proof（证明）：is a convincing logical argument that a statement is true．

- A theorem（定理）is a mathematical statement proved true．
- lemmas（引理）：we prove statements，called lemmas，that are interesting only because they assist in the proof of another，more significant statement
－corollaries（推论）of a theorem：the theorem or its proof may allow us to conclude easily that other，related statements，called corollaries are true

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．

Advices：

－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．

Advices：

－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．

Advices：

－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．

Advices：

－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．

Advices：

－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

How to find proofs？
－Step 0：finding proofs isn＇t always easy
－Step 1：carefully read the statement you want to prove
－Step 2：when you want to prove a statement or part thereof，try to get an intuitive，＂gut＂feeling of why it should be true．
－Step 3：when you believe that you have found the proof，you must write it up properly．
Advices：
－Be patient
－Come back to it
－think about it a bit，leave it，and then return a few minutes or hours later
－Be neat
－Be concise

3．Definitions，Theorems，and Proofs

Types of proofs：

－Proof by Construction
－by demonstrating how to construct the object
－e．g．，given $A, A \rightarrow B, B \rightarrow C$ ，prove：C
－Proof by Contradiction
－We assume that the theorem is false and then show that this assumntion leads to an ohviously false consequence，called a contradiction
－e．g．，given $\neg A, B \rightarrow A$ ，prove $\neg B$
－Proof by Induction
－Every proof by induction consists of two parts，the basis and the induction step
－basis sten：prove $P(1)$ is true
－induction step：prove $P(n) \rightarrow P(n+1)$
－$P(i)$ is called induction hypothesis
－e．g．，prove

3．Definitions，Theorems，and Proofs

Types of proofs：
－Proof by Construction
－by demonstrating how to construct the object
－e．g．，given $A, A \rightarrow B, B \rightarrow C$ ，prove：C
－Proof by Contradiction
－We assume that the theorem is false and then show that this assumption leads to an obviously false consequence，called a contradiction．
－e．g．，given $\neg A, B \rightarrow A$ ，prove $\neg B$
－Proof by Induction
－Every proof by induction consists of two parts，the basis and the induction step
－basis step：prove $P(1)$ is true
－induction step：prove $P(n) \rightarrow P(n+1)$
－$P(i)$ is called induction hypothesis
－e．g．，prove

3．Definitions，Theorems，and Proofs

Types of proofs：
－Proof by Construction
－by demonstrating how to construct the object
－e．g．，given $A, A \rightarrow B, B \rightarrow C$ ，prove：C
－Proof by Contradiction
－We assume that the theorem is false and then show that this assumption leads to an obviously false consequence，called a contradiction．
－e．g．，given $\neg A, B \rightarrow A$ ，prove $\neg B$
－Proof by Induction
－Every proof by induction consists of two parts，the basis and the induction step．
－basis step：prove $P(1)$ is true
－induction step：prove $P(n) \rightarrow P(n+1)$
－$P(i)$ is called induction hypothesis
－e．g．，prove $1+2+\cdots+n=\frac{n(n+1)}{2}$

作业

0．2 Write formal descriptions of the following sets．
a．The set containing the numbers 1,10 ，and 100
b．The set containing all integers that are greater than 5
c．The set containing all natural numbers that are less than 5
d．The set containing the string aba
e．The set containing the empty string
f．The set containing nothing at all

作业

0．3 Let A be the set $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and B be the set $\{\mathrm{x}, \mathrm{y}\}$ ．
a．Is A a subset of B ？
b．Is B a subset of A ？
c．What is $A \cup B$ ？
d．What is $A \cap B$ ？
e．What is $A \times B$ ？
f．What is the power set of B ？

作业

0．7 For each part，give a relation that satisfies the condition．
a．Reflexive and symmetric but not transitive
b．Reflexive and transitive but not symmetric
c．Symmetric and transitive but not reflexive

0．8 Consider the undirected graph $G=(V, E)$ where V ，the set of nodes，is $\{1,2,3,4\}$ and E ，the set of edges，is $\{\{1,2\},\{2,3\},\{1,3\},\{2,4\},\{1,4\}\}$ ．Draw the graph G ．What are the degrees of each node？Indicate a path from node 3 to node 4 on your drawing of G ．

