
形式语言与计算复杂性
第 1 章 绪论

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式语言与计算复杂性

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 2 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 3 / 49

https://faculty.ustc.edu.cn/huangwenchao

课前准备

课本: Introduction to the Theory of Computation. 2018

加入 QQ 群
到课要求（点名）
作业要求

布置一周内完成并提交, 作业在网上
提交

考试要求
考试形式：闭卷（但可带一张带有笔
记 A4 纸）

【送分】大部分题跟作业相关–请认真
完成课后题

【压轴】有一题会考课程中 PPT 中所
讲到的一个证明–请仔细理解每一个
证明内容

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 49

http://staff.ustc.edu.cn/~huangwc/book/Sipser_Introduction.to.the.Theory.of.Computation.3E.pdf
https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 5 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity

问: What are the fundamental capabilities and limitations of computers?
Theoretical Beginning: 1930s by mathematical logicians

答: The answers vary in each of the three areas
Automata
Computability
Complexity

问: What are the answers?
见下页, we introduce these parts in reverse order

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 7 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity

问: What are the fundamental capabilities and limitations of computers?
Theoretical Beginning: 1930s by mathematical logicians

答: The answers vary in each of the three areas
Automata
Computability
Complexity

问: What are the answers?
见下页, we introduce these parts in reverse order

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 7 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity

问: What are the fundamental capabilities and limitations of computers?
Theoretical Beginning: 1930s by mathematical logicians

答: The answers vary in each of the three areas
Automata
Computability
Complexity

问: What are the answers?
见下页, we introduce these parts in reverse order

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 7 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.1 Complexity

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Complexity, 复杂度

What makes some problems computationally hard and others easy?

问: Then, what is the answer?
答: Classifying problems according to their computational difficulty

问: After classifying a problem, how to confront the problem?
答: Several Options:

By understanding which aspect of the problem is at the root of the
difficulty, alter it.
Settle for less than a perfect solution to the problem

Some problems are hard only in the worst case situation, but easy most
of the time.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.2 Computability

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Computability, 可计算性

Are there problems that cannot be solved by computers?

问: Then, what is the answer?
答: The problem of determining whether a mathematical statement is true
or false.

discovered by Kurt Gödel, Alan Turing, and Alonzo Church

问: Are the theories of computability and complexity related?
答: Yes, and closely

Both are to classify the problems
Computability theory introduces several of the concepts used in
complexity theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.2 Computability

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Computability, 可计算性

Are there problems that cannot be solved by computers?

问: Then, what is the answer?
答: The problem of determining whether a mathematical statement is true
or false.

discovered by Kurt Gödel, Alan Turing, and Alonzo Church

问: Are the theories of computability and complexity related?
答: Yes, and closely

Both are to classify the problems
Computability theory introduces several of the concepts used in
complexity theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.2 Computability

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Computability, 可计算性

Are there problems that cannot be solved by computers?

问: Then, what is the answer?
答: The problem of determining whether a mathematical statement is true
or false.

discovered by Kurt Gödel, Alan Turing, and Alonzo Church

问: Are the theories of computability and complexity related?
答: Yes, and closely

Both are to classify the problems
Computability theory introduces several of the concepts used in
complexity theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.3 Automata

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Automata, 自动机

Definitions and Properties of mathematical models of computation?

问: Then, what is the answer?
答: Automata theory

finite automaton
context-free grammar
...

问: Relations to Computability and Complexity?
答: an excellent place to begin the study of the theory of computation.

So..., we firstly study Automata theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.3 Automata

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Automata, 自动机

Definitions and Properties of mathematical models of computation?

问: Then, what is the answer?
答: Automata theory

finite automaton
context-free grammar
...

问: Relations to Computability and Complexity?
答: an excellent place to begin the study of the theory of computation.

So..., we firstly study Automata theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.3 Automata

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Automata, 自动机

Definitions and Properties of mathematical models of computation?

问: Then, what is the answer?
答: Automata theory

finite automaton
context-free grammar
...

问: Relations to Computability and Complexity?
答: an excellent place to begin the study of the theory of computation.

So..., we firstly study Automata theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.3 Automata

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Automata, 自动机

Definitions and Properties of mathematical models of computation?

问: Then, what is the answer?
答: Automata theory

finite automaton
context-free grammar
...

问: Relations to Computability and Complexity?
答: an excellent place to begin the study of the theory of computation.

So..., we firstly study Automata theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 49

https://faculty.ustc.edu.cn/huangwenchao

1. Automata, Computability, and Complexity
1.3 Automata

问: What are the fundamental capabilities and limitations of computers?
答: Let’s study another problem: Automata, 自动机

Definitions and Properties of mathematical models of computation?

问: Then, what is the answer?
答: Automata theory

finite automaton
context-free grammar
...

问: Relations to Computability and Complexity?
答: an excellent place to begin the study of the theory of computation.

So..., we firstly study Automata theory.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 11 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

定义: Set, ∈, ̸∈, ⊆
A set is a group of objects represented as a unit.

The objects in a set are called its elements or members.
The symbols ∈ and ̸∈ denote set membership and nonmembership.
A is a subset of B, written A ⊆ B, if every member of A also is a
member of B.

例: Set
The set S contains the elements 7, 21, and 57:

S = {7, 21, 57}

7 ∈ {7, 21, 57}, 8 ̸∈ {7, 21, 57}, {7, 21} ⊆ {7, 21, 57}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

定义: Set, ∈, ̸∈, ⊆
A set is a group of objects represented as a unit.

The objects in a set are called its elements or members.
The symbols ∈ and ̸∈ denote set membership and nonmembership.
A is a subset of B, written A ⊆ B, if every member of A also is a
member of B.

例: Set
The set S contains the elements 7, 21, and 57:

S = {7, 21, 57}

7 ∈ {7, 21, 57}, 8 ̸∈ {7, 21, 57}, {7, 21} ⊆ {7, 21, 57}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

问: Given S = {7, 21, 57}, is S′ = {57, 7, 7, 7, 21} the same set with S?
答: Yes

问: How to differentiate between S and S′?
答: Define multiset, i.e., S and S′ are different as multisets.

定义: Infinite set, N , Z, ∅
An infinite set contains infinitely many elements, e.g.,

natural numbers: N = {1, 2, 3, . . . }
integers: Z = {. . . , −2, −1, 0, 1, 2, . . . }

The set with zero members is called the empty set and is written ∅.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

问: Given S = {7, 21, 57}, is S′ = {57, 7, 7, 7, 21} the same set with S?
答: Yes

问: How to differentiate between S and S′?
答: Define multiset, i.e., S and S′ are different as multisets.

定义: Infinite set, N , Z, ∅
An infinite set contains infinitely many elements, e.g.,

natural numbers: N = {1, 2, 3, . . . }
integers: Z = {. . . , −2, −1, 0, 1, 2, . . . }

The set with zero members is called the empty set and is written ∅.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

问: Given S = {7, 21, 57}, is S′ = {57, 7, 7, 7, 21} the same set with S?
答: Yes

问: How to differentiate between S and S′?
答: Define multiset, i.e., S and S′ are different as multisets.

定义: Infinite set, N , Z, ∅
An infinite set contains infinitely many elements, e.g.,

natural numbers: N = {1, 2, 3, . . . }
integers: Z = {. . . , −2, −1, 0, 1, 2, . . . }

The set with zero members is called the empty set and is written ∅.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

定义: {n | rule about n}
A set containing elements according to some rule, e.g.,

{n | n = m2 for some m ∈ N} means the set of perfect squares

定义: union ∪, intersection ∩, complement
A ∪ B: the set we get by combining all the elements in A and B into
a single set
A ∩ B: the set of elements that are in both A and B

complement of A, written Ā: the set of all elements under
consideration that are not in A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.1 Set

定义: {n | rule about n}
A set containing elements according to some rule, e.g.,

{n | n = m2 for some m ∈ N} means the set of perfect squares

定义: union ∪, intersection ∩, complement
A ∪ B: the set we get by combining all the elements in A and B into
a single set
A ∩ B: the set of elements that are in both A and B

complement of A, written Ā: the set of all elements under
consideration that are not in A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Sequence
A sequence of objects is a list of these objects in some order.

For example, the sequence 7, 21, 57 would be written: (7, 21, 57)
(7, 21, 57) is not the same as (57, 7, 21)

定义: Tuple, k-tuple
Finite sequences often are called tuples.

A sequence with k elements is a k-tuple.
A 2-tuple is also called an ordered pair, e.g., (2,3)

定义: Power Set
The power set of A is the set of all subsets of A. If A is the set {0, 1},

the power set of A is the set {∅, {0}, {1}, {0, 1}}.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Sequence
A sequence of objects is a list of these objects in some order.

For example, the sequence 7, 21, 57 would be written: (7, 21, 57)
(7, 21, 57) is not the same as (57, 7, 21)

定义: Tuple, k-tuple
Finite sequences often are called tuples.

A sequence with k elements is a k-tuple.
A 2-tuple is also called an ordered pair, e.g., (2,3)

定义: Power Set
The power set of A is the set of all subsets of A. If A is the set {0, 1},

the power set of A is the set {∅, {0}, {1}, {0, 1}}.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Sequence
A sequence of objects is a list of these objects in some order.

For example, the sequence 7, 21, 57 would be written: (7, 21, 57)
(7, 21, 57) is not the same as (57, 7, 21)

定义: Tuple, k-tuple
Finite sequences often are called tuples.

A sequence with k elements is a k-tuple.
A 2-tuple is also called an ordered pair, e.g., (2,3)

定义: Power Set
The power set of A is the set of all subsets of A. If A is the set {0, 1},

the power set of A is the set {∅, {0}, {1}, {0, 1}}.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Cartesian product, or Cross product, ×
If A and B are two sets, the cartesian product or cross product of A and
B, written A × B, is the set of all ordered pairs wherein the first element
is a member of A and the second element is a member of B

例:
If A = {1, 2} and B = {x, y, z},

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}

A × B × A ={(1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2),
(2, x, 1), (2, x, 2), (2, y, 1), (2, y, 2), (2, z, 1), (2, z, 2)}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Cartesian product, or Cross product, ×
If A and B are two sets, the cartesian product or cross product of A and
B, written A × B, is the set of all ordered pairs wherein the first element
is a member of A and the second element is a member of B

例:
If A = {1, 2} and B = {x, y, z},

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}

A × B × A ={(1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2),
(2, x, 1), (2, x, 2), (2, y, 1), (2, y, 2), (2, z, 1), (2, z, 2)}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Cartesian product, or Cross product, ×
If A and B are two sets, the cartesian product or cross product of A and
B, written A × B, is the set of all ordered pairs wherein the first element
is a member of A and the second element is a member of B

例:
If A = {1, 2} and B = {x, y, z},

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}

A × B × A ={(1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2),
(2, x, 1), (2, x, 2), (2, y, 1), (2, y, 2), (2, z, 1), (2, z, 2)}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Ak

A × A × · · · × A︸ ︷︷ ︸
k

= Ak

例:
The set N 2 equals N × N . It consists of all ordered pairs of natural
numbers.

We also may write it as {(i, j) | i, j ≥ 1}.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.2 Sequences and Tuples

定义: Ak

A × A × · · · × A︸ ︷︷ ︸
k

= Ak

例:
The set N 2 equals N × N . It consists of all ordered pairs of natural
numbers.

We also may write it as {(i, j) | i, j ≥ 1}.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Function, mapping
A function is an object that sets up an input–output relationship.

If f is a function whose output value is b when the input value is a:
f(a) = b

A function also is called a mapping, and, if f(a) = b, we say that f
maps a to b.

定义: Domain, Range, f : D → R

The set of possible inputs to the function is called its domain.
The outputs of a function come from a set called its range.
Notation: f is a function with domain D and range R is

f : D → R

e.g., addition function for integers: add : Z × Z → Z
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Function, mapping
A function is an object that sets up an input–output relationship.

If f is a function whose output value is b when the input value is a:
f(a) = b

A function also is called a mapping, and, if f(a) = b, we say that f
maps a to b.

定义: Domain, Range, f : D → R

The set of possible inputs to the function is called its domain.
The outputs of a function come from a set called its range.
Notation: f is a function with domain D and range R is

f : D → R

e.g., addition function for integers: add : Z × Z → Z
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: k-ary function
When the domain of a function f is A1 × · · · × Ak for some sets
A1, . . . , Ak, the input to f is a k-tuple (a1, a2, . . . , ak)

We call the ai the arguments to f .
A function with k arguments is called a k-ary function
k is called the arity of the function. f is called a

unary function: if k is 1
binary function: if k is 2

For binary function, e.g., add(a, b), there are two notations:
infix (中缀) notation: a add b
prefix (前缀) notation: add(a, b)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 22 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Predicate, or Property
A predicate or property is a function whose range is {TRUE, FALSE}.

e.g., let even be a property that is TRUE if its input is an even
number and FALSE if its input is an odd number.

Thus, even(4) = TRUE and even(5) = FALSE

定义: relation, k-ary relation
A property whose domain is a set of k-tuples A × · · · × A is called a
relation, a k-ary relation, or a k-ary relation on A.

binary relation: 2-ary relation
If R is a binary relation, the statement aRb means that aRb = TRUE
If R is a k-ary relation, the statement R(a1, . . . , ak) means that
R(a1, . . . , ak) = TRUE.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Predicate, or Property
A predicate or property is a function whose range is {TRUE, FALSE}.

e.g., let even be a property that is TRUE if its input is an even
number and FALSE if its input is an odd number.

Thus, even(4) = TRUE and even(5) = FALSE

定义: relation, k-ary relation
A property whose domain is a set of k-tuples A × · · · × A is called a
relation, a k-ary relation, or a k-ary relation on A.

binary relation: 2-ary relation
If R is a binary relation, the statement aRb means that aRb = TRUE
If R is a k-ary relation, the statement R(a1, . . . , ak) means that
R(a1, . . . , ak) = TRUE.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Equivalence relation
A binary relation R is an equivalence relation if R satisfies three
conditions:

1 R is reflexive if for every x, xRx;
2 R is symmetric if for every x and y, xRy implies yRx; and
3 R is transitive if for every x, y, and z, xRy and yRz implies xRz.

例: ≡7

Define an equivalence relation on the natural numbers, written ≡7. For
i, j ∈ N , say that i ≡7 j, if i − j is a multiple of 7.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.3 Functions and Relations

定义: Equivalence relation
A binary relation R is an equivalence relation if R satisfies three
conditions:

1 R is reflexive if for every x, xRx;
2 R is symmetric if for every x and y, xRy implies yRx; and
3 R is transitive if for every x, y, and z, xRy and yRz implies xRz.

例: ≡7

Define an equivalence relation on the natural numbers, written ≡7. For
i, j ∈ N , say that i ≡7 j, if i − j is a multiple of 7.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Graph, Nodes, Edges
An undirected graph, or simply a graph, is a set of points with lines
connecting some of the points.

The points are called nodes or vertices
The lines are called edges

10 CHAPTER 0 / INTRODUCTION

EXAMPLE 0.11

Define an equivalence relation on the natural numbers, written≡7. For i, j ∈ N ,
say that i ≡7 j, if i−j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as i− i = 0, which is a multiple
of 7. Second, it is symmetric, as i− j is a multiple of 7 if j − i is a multiple of 7.
Third, it is transitive, as whenever i− j is a multiple of 7 and j − k is a multiple
of 7, then i − k = (i − j) + (j − k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called nodes or vertices, and the lines are
called edges, as shown in the following figure.

FIGURE 0.12

Examples of graphs

The number of edges at a particular node is the degree of that node. In
Figure 0.12(a), all the nodes have degree 2. In Figure 0.12(b), all the nodes have
degree 3. No more than one edge is allowed between any two nodes. We may
allow an edge from a node to itself, called a self-loop, depending on the situation.

In a graphG that contains nodes i and j, the pair (i, j) represents the edge that
connects i and j. The order of i and j doesn’t matter in an undirected graph,
so the pairs (i, j) and (j, i) represent the same edge. Sometimes we describe
undirected edges with unordered pairs using set notation as in {i, j}. If V is the
set of nodes of G and E is the set of edges, we say G = (V,E). We can describe
a graph with a diagram or more formally by specifying V and E. For example, a
formal description of the graph in Figure 0.12(a) is

(
{1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

)
,

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Degree
The number of edges at a particular node is the degree of that node.

In (a), all the nodes have degree 2
In (b), all the nodes have degree 3
No more than one edge is allowed between any two nodes.
We may allow an edge from a node to itself, called a self-loop

10 CHAPTER 0 / INTRODUCTION

EXAMPLE 0.11

Define an equivalence relation on the natural numbers, written≡7. For i, j ∈ N ,
say that i ≡7 j, if i−j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as i− i = 0, which is a multiple
of 7. Second, it is symmetric, as i− j is a multiple of 7 if j − i is a multiple of 7.
Third, it is transitive, as whenever i− j is a multiple of 7 and j − k is a multiple
of 7, then i − k = (i − j) + (j − k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called nodes or vertices, and the lines are
called edges, as shown in the following figure.

FIGURE 0.12

Examples of graphs

The number of edges at a particular node is the degree of that node. In
Figure 0.12(a), all the nodes have degree 2. In Figure 0.12(b), all the nodes have
degree 3. No more than one edge is allowed between any two nodes. We may
allow an edge from a node to itself, called a self-loop, depending on the situation.

In a graphG that contains nodes i and j, the pair (i, j) represents the edge that
connects i and j. The order of i and j doesn’t matter in an undirected graph,
so the pairs (i, j) and (j, i) represent the same edge. Sometimes we describe
undirected edges with unordered pairs using set notation as in {i, j}. If V is the
set of nodes of G and E is the set of edges, we say G = (V,E). We can describe
a graph with a diagram or more formally by specifying V and E. For example, a
formal description of the graph in Figure 0.12(a) is

(
{1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

)
,

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: G = (V, E)
In a graph G, if V is the set of nodes of G and E is the set of edges, we
say G = (V, E)

In (a): G = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)})
In (b): G = ({1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)})

10 CHAPTER 0 / INTRODUCTION

EXAMPLE 0.11

Define an equivalence relation on the natural numbers, written≡7. For i, j ∈ N ,
say that i ≡7 j, if i−j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as i− i = 0, which is a multiple
of 7. Second, it is symmetric, as i− j is a multiple of 7 if j − i is a multiple of 7.
Third, it is transitive, as whenever i− j is a multiple of 7 and j − k is a multiple
of 7, then i − k = (i − j) + (j − k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called nodes or vertices, and the lines are
called edges, as shown in the following figure.

FIGURE 0.12

Examples of graphs

The number of edges at a particular node is the degree of that node. In
Figure 0.12(a), all the nodes have degree 2. In Figure 0.12(b), all the nodes have
degree 3. No more than one edge is allowed between any two nodes. We may
allow an edge from a node to itself, called a self-loop, depending on the situation.

In a graphG that contains nodes i and j, the pair (i, j) represents the edge that
connects i and j. The order of i and j doesn’t matter in an undirected graph,
so the pairs (i, j) and (j, i) represent the same edge. Sometimes we describe
undirected edges with unordered pairs using set notation as in {i, j}. If V is the
set of nodes of G and E is the set of edges, we say G = (V,E). We can describe
a graph with a diagram or more formally by specifying V and E. For example, a
formal description of the graph in Figure 0.12(a) is

(
{1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

)
,

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Subgraph
We say that graph G is a subgraph of graph H if

the nodes of G are a subset of the nodes of H

the edges of G are the edges of H on the corresponding nodes

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 11

and a formal description of the graph in Figure 0.12(b) is
(
{1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

)
.

Graphs frequently are used to represent data. Nodes might be cities and edges
the connecting highways, or nodes might be people and edges the friendships
between them. Sometimes, for convenience, we label the nodes and/or edges of
a graph, which then is called a labeled graph. Figure 0.13 depicts a graph whose
nodes are cities and whose edges are labeled with the dollar cost of the cheapest
nonstop airfare for travel between those cities if flying nonstop between them is
possible.

FIGURE 0.13

Cheapest nonstop airfares between various cities

We say that graph G is a subgraph of graph H if the nodes of G are a subset
of the nodes of H , and the edges of G are the edges of H on the corresponding
nodes. The following figure shows a graph H and a subgraph G.

FIGURE 0.14

Graph G (shown darker) is a subgraph of H

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义:Path, Simple Path, Connected
A path in a graph is a sequence of nodes connected by edges.
A simple path is a path that doesn’t repeat any nodes.
A graph is connected if every two nodes have a path between them.

12 CHAPTER 0 / INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

FIGURE 0.15

(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16

A directed graph

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Cycle, Simple Cycle
A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats
only the first and last nodes.

12 CHAPTER 0 / INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

FIGURE 0.15

(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16

A directed graph

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 31 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Tree, Root, Leaf
A graph is a tree if it is connected and has no simple cycles
A tree may contain a specially designated node called the root
The nodes of degree 1 in a tree, other than the root, are called the
leaves of the tree

12 CHAPTER 0 / INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

FIGURE 0.15

(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16

A directed graph

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Directed Graph
A directed graph has arrows instead of lines

The number of arrows pointing from a particular node is the
outdegree of that node
The number of arrows pointing to a particular node is the indegree.

12 CHAPTER 0 / INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

FIGURE 0.15

(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16

A directed graph

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

The formal description of the graph is:
({1, 2, 3, 4, 5, 6}, {(1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)})

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 33 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.4 Graphs

定义: Directed path, Strongly connected
A path in which all the arrows point in the same direction as its steps
is called a directed path
A directed graph is strongly connected if a directed path connects
every two nodes

12 CHAPTER 0 / INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

FIGURE 0.15

(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16

A directed graph

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 35 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: Alphabet, Symbols, Σ, Γ
Alphabet: any nonempty finite set
Symbols: The members of the alphabet are the symbols of the
alphabet
Σ, Γ: alphabets and a typewriter font for symbols from an alphabet

例: Σ, Γ
Σ1 = {0, 1}
Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
Γ = {0, 1, x, y, z}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 36 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: Alphabet, Symbols, Σ, Γ
Alphabet: any nonempty finite set
Symbols: The members of the alphabet are the symbols of the
alphabet
Σ, Γ: alphabets and a typewriter font for symbols from an alphabet

例: Σ, Γ
Σ1 = {0, 1}
Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
Γ = {0, 1, x, y, z}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 36 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: String, Length w, Empty String ε, Reverse wR, Substring
A string over an alphabet is a finite sequence of symbols from that
alphabet, usually written next to one another and not separated by
commas, e.g.,

If Γ1 = {0, 1}, then 01001 is a string over Γ1
If Γ2 = {a, b, c, . . . , z}, then abracadabra is a string over Γ2

If w is a string over Σ, the length of w, written |w|, is the number of
symbols that it contains.
The string of length zero is called the empty string and is written ε.
If w has length n, we can write w = w1w2 · · · wn where each wi ∈ Σ.
The reverse of w, written wR, is the string obtained by writing w in
the opposite order (i.e., wnwn−1 · · · w1).
String z is a substring of w if z appears consecutively within w.

For example, cad is a substring of abracadabra.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: String, Length w, Empty String ε, Reverse wR, Substring
A string over an alphabet is a finite sequence of symbols from that
alphabet, usually written next to one another and not separated by
commas, e.g.,

If Γ1 = {0, 1}, then 01001 is a string over Γ1
If Γ2 = {a, b, c, . . . , z}, then abracadabra is a string over Γ2

If w is a string over Σ, the length of w, written |w|, is the number of
symbols that it contains.
The string of length zero is called the empty string and is written ε.
If w has length n, we can write w = w1w2 · · · wn where each wi ∈ Σ.
The reverse of w, written wR, is the string obtained by writing w in
the opposite order (i.e., wnwn−1 · · · w1).
String z is a substring of w if z appears consecutively within w.

For example, cad is a substring of abracadabra.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: String, Length w, Empty String ε, Reverse wR, Substring
A string over an alphabet is a finite sequence of symbols from that
alphabet, usually written next to one another and not separated by
commas, e.g.,

If Γ1 = {0, 1}, then 01001 is a string over Γ1
If Γ2 = {a, b, c, . . . , z}, then abracadabra is a string over Γ2

If w is a string over Σ, the length of w, written |w|, is the number of
symbols that it contains.
The string of length zero is called the empty string and is written ε.
If w has length n, we can write w = w1w2 · · · wn where each wi ∈ Σ.
The reverse of w, written wR, is the string obtained by writing w in
the opposite order (i.e., wnwn−1 · · · w1).
String z is a substring of w if z appears consecutively within w.

For example, cad is a substring of abracadabra.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: String, Length w, Empty String ε, Reverse wR, Substring
A string over an alphabet is a finite sequence of symbols from that
alphabet, usually written next to one another and not separated by
commas, e.g.,

If Γ1 = {0, 1}, then 01001 is a string over Γ1
If Γ2 = {a, b, c, . . . , z}, then abracadabra is a string over Γ2

If w is a string over Σ, the length of w, written |w|, is the number of
symbols that it contains.
The string of length zero is called the empty string and is written ε.
If w has length n, we can write w = w1w2 · · · wn where each wi ∈ Σ.
The reverse of w, written wR, is the string obtained by writing w in
the opposite order (i.e., wnwn−1 · · · w1).
String z is a substring of w if z appears consecutively within w.

For example, cad is a substring of abracadabra.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: String, Length w, Empty String ε, Reverse wR, Substring
A string over an alphabet is a finite sequence of symbols from that
alphabet, usually written next to one another and not separated by
commas, e.g.,

If Γ1 = {0, 1}, then 01001 is a string over Γ1
If Γ2 = {a, b, c, . . . , z}, then abracadabra is a string over Γ2

If w is a string over Σ, the length of w, written |w|, is the number of
symbols that it contains.
The string of length zero is called the empty string and is written ε.
If w has length n, we can write w = w1w2 · · · wn where each wi ∈ Σ.
The reverse of w, written wR, is the string obtained by writing w in
the opposite order (i.e., wnwn−1 · · · w1).
String z is a substring of w if z appears consecutively within w.

For example, cad is a substring of abracadabra.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: Concatenation xy, xk

If we have string x of length m and string y of length n, the concatenation
of x and y, written xy, is the string obtained by appending y to the end of
x, as in x1 · · · xmy1 · · · yn

To concatenate a string with itself many times, we use the superscript
notation xk to mean

xx . . . x︸ ︷︷ ︸
k

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 38 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: Lexicographic order, String order
The lexicographic order of strings is the same as the familiar
dictionary order.
Shortlex order or string order: identical to lexicographic order, except
that shorter strings precede longer strings.

Thus the string ordering of all strings over the alphabet {0, 1} is
(ε, 0, 1, 00, 01, 10, 11, 000, . . .)

定义: Language, Prefix-Free
A language is a set of strings.
String x is a prefix of string y if a string z exists where xz = y

x is a proper prefix of y if in addition x ̸= y.
A language is prefix-free if no member is a proper prefix of another
member

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 39 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.5 Strings and Languages

定义: Lexicographic order, String order
The lexicographic order of strings is the same as the familiar
dictionary order.
Shortlex order or string order: identical to lexicographic order, except
that shorter strings precede longer strings.

Thus the string ordering of all strings over the alphabet {0, 1} is
(ε, 0, 1, 00, 01, 10, 11, 000, . . .)

定义: Language, Prefix-Free
A language is a set of strings.
String x is a prefix of string y if a string z exists where xz = y

x is a proper prefix of y if in addition x ̸= y.
A language is prefix-free if no member is a proper prefix of another
member

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 39 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 40 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Boolean logic, Boolean value, Boolean operations, Operands
Boolean logic: a mathematical system built around the two values

TRUE and FALSE: The values TRUE and FALSE are called the
Boolean values and are often represented by the values 1 and 0.

Boolean operations: which manipulate Boolean values, i.e.,
negation ¬: ¬0 = 1 and ¬1 = 0
conjunction or AND ∧: The conjunction of two Boolean values is 1 if
both of those values are 1.
disjunction or OR ∨: The disjunction of two Boolean values is 1 if
either of those values is 1.

Operands: Inputs of the operations

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 41 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Boolean logic, Boolean value, Boolean operations, Operands
Boolean logic: a mathematical system built around the two values

TRUE and FALSE: The values TRUE and FALSE are called the
Boolean values and are often represented by the values 1 and 0.

Boolean operations: which manipulate Boolean values, i.e.,
negation ¬: ¬0 = 1 and ¬1 = 0
conjunction or AND ∧: The conjunction of two Boolean values is 1 if
both of those values are 1.
disjunction or OR ∨: The disjunction of two Boolean values is 1 if
either of those values is 1.

Operands: Inputs of the operations

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 41 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Boolean logic, Boolean value, Boolean operations, Operands
Boolean logic: a mathematical system built around the two values

TRUE and FALSE: The values TRUE and FALSE are called the
Boolean values and are often represented by the values 1 and 0.

Boolean operations: which manipulate Boolean values, i.e.,
negation ¬: ¬0 = 1 and ¬1 = 0
conjunction or AND ∧: The conjunction of two Boolean values is 1 if
both of those values are 1.
disjunction or OR ∨: The disjunction of two Boolean values is 1 if
either of those values is 1.

Operands: Inputs of the operations

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 41 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Boolean logic, Boolean value, Boolean operations, Operands
Boolean logic: a mathematical system built around the two values

TRUE and FALSE: The values TRUE and FALSE are called the
Boolean values and are often represented by the values 1 and 0.

Boolean operations: which manipulate Boolean values, i.e.,
negation ¬: ¬0 = 1 and ¬1 = 0
conjunction or AND ∧: The conjunction of two Boolean values is 1 if
both of those values are 1.
disjunction or OR ∨: The disjunction of two Boolean values is 1 if
either of those values is 1.

Operands: Inputs of the operations

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 41 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Exclusive, XOR, Equality, Implication
Exclusive, or XOR ⊕: 1, if either but not both of its two operands is 1
Equality ↔: 1, if both of its operands have the same value
implication →:

0, if its first operand is 1 and its second operand is 0
1, otherwise

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

定理: Distributive Law (分配律) (a Boolean Version)
P ∧ (Q ∨ R) equals (P ∧ Q) ∨ (P ∧ R)
P ∨ (Q ∧ R) equals (P ∨ Q) ∧ (P ∨ R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Exclusive, XOR, Equality, Implication
Exclusive, or XOR ⊕: 1, if either but not both of its two operands is 1
Equality ↔: 1, if both of its operands have the same value
implication →:

0, if its first operand is 1 and its second operand is 0
1, otherwise

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

定理: Distributive Law (分配律) (a Boolean Version)
P ∧ (Q ∨ R) equals (P ∧ Q) ∨ (P ∧ R)
P ∨ (Q ∧ R) equals (P ∨ Q) ∧ (P ∨ R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 49

https://faculty.ustc.edu.cn/huangwenchao

2. Notions and Terminology
2.6 Boolean Logic

定义: Exclusive, XOR, Equality, Implication
Exclusive, or XOR ⊕: 1, if either but not both of its two operands is 1
Equality ↔: 1, if both of its operands have the same value
implication →:

0, if its first operand is 1 and its second operand is 0
1, otherwise

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 15

tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0 ∧ 0 = 0 0 ∨ 0 = 0 ¬0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 ¬1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and × to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” andQ represents the
truth of the statement “today is Monday”, we may write P ∧ Q to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P ∨ Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the ⊕ symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol ↔, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol → and is 0 if its first operand is 1 and its second
operand is 0; otherwise,→ is 1. We summarize this information as follows.

0⊕ 0 = 0 0↔ 0 = 1 0→ 0 = 1
0⊕ 1 = 1 0↔ 1 = 0 0→ 1 = 1
1⊕ 0 = 1 1↔ 0 = 0 1→ 0 = 0
1⊕ 1 = 0 1↔ 1 = 1 1→ 1 = 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

P ∨Q ¬(¬P ∧ ¬Q)
P → Q ¬P ∨Q
P ↔ Q (P → Q) ∧ (Q→ P)
P ⊕Q ¬(P ↔ Q)

The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a× (b+ c) = (a× b) + (a× c). The Boolean version
comes in two forms:

• P ∧ (Q ∨R) equals (P ∧Q) ∨ (P ∧R), and its dual

• P ∨ (Q ∧R) equals (P ∨Q) ∧ (P ∨R).

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

定理: Distributive Law (分配律) (a Boolean Version)
P ∧ (Q ∨ R) equals (P ∧ Q) ∨ (P ∧ R)
P ∨ (Q ∧ R) equals (P ∨ Q) ∧ (P ∨ R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 49

https://faculty.ustc.edu.cn/huangwenchao

Outline

1 课前准备

2 Automata, Computability, and Complexity

3 Notions and Terminology
Set
Sequences and Tuples
Functions and Relations
Graphs
Strings and Languages
Boolean Logic

4 Definitions, Theorems, and Proofs

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 43 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

These three entities are central to every mathematical subject
Definitions (定义): describe the objects and notions that we use.

A mathematical statement about the definitions: expresses that some
object has a certain property.

The statement may or may not be true
No ambiguity for both definitions and statements

A proof (证明): is a convincing logical argument that a statement is
true.
A theorem (定理) is a mathematical statement proved true.

lemmas (引理): we prove statements, called lemmas, that are
interesting only because they assist in the proof of another, more
significant statement
corollaries (推论) of a theorem: the theorem or its proof may allow us
to conclude easily that other, related statements, called corollaries are
true

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

These three entities are central to every mathematical subject
Definitions (定义): describe the objects and notions that we use.

A mathematical statement about the definitions: expresses that some
object has a certain property.

The statement may or may not be true
No ambiguity for both definitions and statements

A proof (证明): is a convincing logical argument that a statement is
true.
A theorem (定理) is a mathematical statement proved true.

lemmas (引理): we prove statements, called lemmas, that are
interesting only because they assist in the proof of another, more
significant statement
corollaries (推论) of a theorem: the theorem or its proof may allow us
to conclude easily that other, related statements, called corollaries are
true

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

These three entities are central to every mathematical subject
Definitions (定义): describe the objects and notions that we use.

A mathematical statement about the definitions: expresses that some
object has a certain property.

The statement may or may not be true
No ambiguity for both definitions and statements

A proof (证明): is a convincing logical argument that a statement is
true.
A theorem (定理) is a mathematical statement proved true.

lemmas (引理): we prove statements, called lemmas, that are
interesting only because they assist in the proof of another, more
significant statement
corollaries (推论) of a theorem: the theorem or its proof may allow us
to conclude easily that other, related statements, called corollaries are
true

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

How to find proofs?
Step 0: finding proofs isn’t always easy
Step 1: carefully read the statement you want to prove
Step 2: when you want to prove a statement or part thereof, try to
get an intuitive, “gut”feeling of why it should be true.
Step 3: when you believe that you have found the proof, you must
write it up properly.

Advices:
Be patient
Come back to it

think about it a bit, leave it, and then return a few minutes or hours
later

Be neat
Be concise

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

Types of proofs:
Proof by Construction

by demonstrating how to construct the object
e.g., given A, A → B, B → C, prove: C

Proof by Contradiction
We assume that the theorem is false and then show that this
assumption leads to an obviously false consequence, called a
contradiction.
e.g., given ¬A, B → A, prove ¬B

Proof by Induction
Every proof by induction consists of two parts, the basis and the
induction step.

basis step: prove P (1) is true
induction step: prove P (n) → P (n + 1)
P (i) is called induction hypothesis

e.g., prove 1 + 2 + · · · + n = n(n+1)
2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 46 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

Types of proofs:
Proof by Construction

by demonstrating how to construct the object
e.g., given A, A → B, B → C, prove: C

Proof by Contradiction
We assume that the theorem is false and then show that this
assumption leads to an obviously false consequence, called a
contradiction.
e.g., given ¬A, B → A, prove ¬B

Proof by Induction
Every proof by induction consists of two parts, the basis and the
induction step.

basis step: prove P (1) is true
induction step: prove P (n) → P (n + 1)
P (i) is called induction hypothesis

e.g., prove 1 + 2 + · · · + n = n(n+1)
2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 46 / 49

https://faculty.ustc.edu.cn/huangwenchao

3. Definitions, Theorems, and Proofs

Types of proofs:
Proof by Construction

by demonstrating how to construct the object
e.g., given A, A → B, B → C, prove: C

Proof by Contradiction
We assume that the theorem is false and then show that this
assumption leads to an obviously false consequence, called a
contradiction.
e.g., given ¬A, B → A, prove ¬B

Proof by Induction
Every proof by induction consists of two parts, the basis and the
induction step.

basis step: prove P (1) is true
induction step: prove P (n) → P (n + 1)
P (i) is called induction hypothesis

e.g., prove 1 + 2 + · · · + n = n(n+1)
2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 46 / 49

https://faculty.ustc.edu.cn/huangwenchao

作业

EXERCISES 25

We do so with the following steps. First, from the definition of Pk+1 from
Pk, we know that

Pk+1 = PkM − Y.

Therefore, using the induction hypothesis to calculate Pk,

Pk+1 =

[
PMk − Y

(
Mk − 1

M − 1

)]
M − Y.

Multiplying through by M and rewriting Y yields

Pk+1 = PMk+1 − Y

(
Mk+1 −M

M − 1

)
− Y

(
M − 1

M − 1

)

= PMk+1 − Y

(
Mk+1 − 1

M − 1

)
.

Thus the formula is correct for t = k + 1, which proves the theorem.

Problem 0.15 asks you to use the preceding formula to calculate actual mort-
gage payments.

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain. Write a short informal English description of each set.

a. {1, 3, 5, 7, . . . }

b. { . . . ,−4,−2, 0, 2, 4, . . . }

c. {n| n = 2m for some m in N}

d. {n| n = 2m for some m in N , and n = 3k for some k in N}

e. {w| w is a string of 0s and 1s and w equals the reverse of w}

f. {n| n is an integer and n = n+ 1}

0.2 Write formal descriptions of the following sets.

a. The set containing the numbers 1, 10, and 100

b. The set containing all integers that are greater than 5

c. The set containing all natural numbers that are less than 5

d. The set containing the string aba

e. The set containing the empty string

f. The set containing nothing at all

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 47 / 49

https://faculty.ustc.edu.cn/huangwenchao

作业

26 CHAPTER 0 / INTRODUCTION

0.3 Let A be the set {x, y, z} and B be the set {x, y}.

a. Is A a subset of B?

b. Is B a subset of A?

c. What is A ∪B?

d. What is A ∩B?

e. What is A×B?

f. What is the power set of B?

0.4 If A has a elements and B has b elements, how many elements are in A × B?
Explain your answer.

0.5 If C is a set with c elements, how many elements are in the power set of C? Explain
your answer.

0.6 LetX be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. The unary function
f : X−→Y and the binary function g : X ×Y−→Y are described in the following
tables.

n f(n)
1 6
2 7
3 6
4 7
5 6

g 6 7 8 9 10
1 10 10 10 10 10
2 7 8 9 10 6
3 7 7 8 8 9
4 9 8 7 6 10
5 6 6 6 6 6

a. What is the value of f(2)?

b. What are the range and domain of f?

c. What is the value of g(2, 10)?

d. What are the range and domain of g?

e. What is the value of g(4, f(4))?

0.7 For each part, give a relation that satisfies the condition.

a. Reflexive and symmetric but not transitive

b. Reflexive and transitive but not symmetric

c. Symmetric and transitive but not reflexive

0.8 Consider the undirected graph G=(V,E) where V , the set of nodes, is {1, 2, 3, 4}
and E, the set of edges, is {{1, 2}, {2, 3}, {1, 3}, {2, 4}, {1, 4}}. Draw the
graph G. What are the degrees of each node? Indicate a path from node 3 to
node 4 on your drawing of G.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 48 / 49

https://faculty.ustc.edu.cn/huangwenchao

作业

26 CHAPTER 0 / INTRODUCTION

0.3 Let A be the set {x, y, z} and B be the set {x, y}.

a. Is A a subset of B?

b. Is B a subset of A?

c. What is A ∪B?

d. What is A ∩B?

e. What is A×B?

f. What is the power set of B?

0.4 If A has a elements and B has b elements, how many elements are in A × B?
Explain your answer.

0.5 If C is a set with c elements, how many elements are in the power set of C? Explain
your answer.

0.6 LetX be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. The unary function
f : X−→Y and the binary function g : X ×Y−→Y are described in the following
tables.

n f(n)
1 6
2 7
3 6
4 7
5 6

g 6 7 8 9 10
1 10 10 10 10 10
2 7 8 9 10 6
3 7 7 8 8 9
4 9 8 7 6 10
5 6 6 6 6 6

a. What is the value of f(2)?

b. What are the range and domain of f?

c. What is the value of g(2, 10)?

d. What are the range and domain of g?

e. What is the value of g(4, f(4))?

0.7 For each part, give a relation that satisfies the condition.

a. Reflexive and symmetric but not transitive

b. Reflexive and transitive but not symmetric

c. Symmetric and transitive but not reflexive

0.8 Consider the undirected graph G=(V,E) where V , the set of nodes, is {1, 2, 3, 4}
and E, the set of edges, is {{1, 2}, {2, 3}, {1, 3}, {2, 4}, {1, 4}}. Draw the
graph G. What are the degrees of each node? Indicate a path from node 3 to
node 4 on your drawing of G.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 49 / 49

https://faculty.ustc.edu.cn/huangwenchao

	课前准备
	Automata, Computability, and Complexity
	Notions and Terminology
	Set
	Sequences and Tuples
	Functions and Relations
	Graphs
	Strings and Languages
	Boolean Logic

	Definitions, Theorems, and Proofs

