# 形式语言与计算复杂性 

第 3 章 Computability Theory 3．1 The Church－Turing Thesis
## 黄文超

https：／／faculty．ustc．edu．cn／huangwenchao $\longrightarrow$ 教学课程 $\longrightarrow$ 形式语言与计算复杂性

## 3．1 The Church－Turing Thesis

 Outline（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
4 The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 3．1 The Church－Turing Thesis

## Outline

（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 3．1 The Church－Turing Thesis

Introduction

## 回顾：

－Finite automata are good models for devices that have a small amount of memory
－Pushdown automata are good models for devices that have an unlimited memory that is usable only in the last in，first out manner of a stack


## 待解决问题：Some very simple tasks are beyond the capabilities of these

 models解决方案

## 3．1 The Church－Turing Thesis

Introduction

## 回顾：

－Finite automata are good models for devices that have a small amount of memory
－Pushdown automata are good models for devices that have an unlimited memory that is usable only in the last in，first out manner of a stack


待解决问题：Some very simple tasks are beyond the capabilities of these models
解决方案：Define new models：Turing Machines

## 3．1 The Church－Turing Thesis

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 3．1 The Church－Turing Thesis

1 Turing Machines

问：What is a Turing machine？
答：
－a much more powerful model，first proposed by Alan Turing in 1936
－uses an infinite tape as its unlimited memory
－can do everything that a real computer can do
－cannot solve certain problems


## 3．1 The Church－Turing Thesis

## 1 Turing Machines

问：How does a Turing machine process input string？
答：
－Initially，the tape contains only the input string and is blank everywhere else
－If the machine needs to store information，it may write this information on the tape．
－To read the information that it has written，the machine can move its head back over it
－The outputs accept and reject are obtained by entering designated accepting and rejecting states．
－If it doesn＇$t$ enter an accepting or a rejecting state，it will go on forever，never halting．


## 3．1 The Church－Turing Thesis

1 Turing Machines

问：Differences with finite automata？
答：
－A Turing machine can both write on the tape and read from it．
－The read－write head can move both to the left and to the right．
－The tape is infinite．
－The special states for rejecting and accepting take effect immediately．


## 3．1 The Church－Turing Thesis

## 1 Turing Machines

例：a Turing machine $M_{1}$ for testing membership in the language $B=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$
$M_{1}=$＂On input string $w$ ：
－Zig－zag across the tape to corresponding positions on either side of the \＃symbol to check whether these positions contain the same symbol．
－If they do not，or if no \＃is found，reject．
－Cross off symbols as they are checked to keep track of which symbols correspond．
－When all symbols to the left of the \＃have been crossed off，check for any remaining symbols to the right of the \＃．
－If any symbols remain，reject；otherwise，accept．＂

## 3．1 The Church－Turing Thesis

1 Turing Machines
例：a Turing machine $M_{1}$ for testing membership in the language $B=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$
$M_{1}=$＂On input string $w$ ：


## 3．1 The Church－Turing Thesis

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## Turing Machine

A Turing machine is a 7－tuple，$\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ ，where $Q, \Sigma$ ，
$\Gamma$ are all finite sets and
（1）$Q$ is the set of states，
（2）$\Sigma$ is the input alphabet not containing the blank symbol $\sqcup$
（3）$\Gamma$ is the tape alphabet，where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
（9）$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function．
（0）$q_{0} \in Q$ is the start state
（0）$q_{\text {accept }} \in Q$ is the accept state
（1）$q_{\text {reject }} \in Q$ is the reject state，where $q_{\text {reject }} \neq q_{\text {accept }}$

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Configuration

As a Turing machine computes，changes occur in
－the current state
－the current tape contents
－the current head location
A setting of these three items is called a configuration of the Turing machine．

例： $1011 q_{7} 01111$ represents the configuration when the tape is 101101111 ， the current state is $q_{7}$ ，and the head is currently on the second 0 ．

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Configuration

As a Turing machine computes，changes occur in
－the current state
－the current tape contents
－the current head location
A setting of these three items is called a configuration of the Turing machine．

例： $1011 q_{7} 01111$ represents the configuration when the tape is 101101111 ， the current state is $q_{7}$ ，and the head is currently on the second 0 ．


## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Yields

Say that configuration $C_{1}$ yields configuration $C_{2}$ if the Turing Machine can legally go from $C_{1}$ to $C_{2}$ in a single step．

例：Suppose that we have $a, b$ ，and $c$ in $\Gamma$ ，
－as well as $u$ and $v$ in $\Gamma^{*}$ and states $q_{i}$ and $q_{j}$ ．
－In that case，$u a q_{i} b v$ and $u q_{j} a c v$ are two configurations．

## Moves leftward：

ua $q_{i}$ bv yields $u q_{j}$ acv，if in the transition function $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
Moves rightward：
ua $q_{i}$ bv yields uac $q_{j} v$ ，if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Yields

Say that configuration $C_{1}$ yields configuration $C_{2}$ if the Turing Machine can legally go from $C_{1}$ to $C_{2}$ in a single step．

例：Suppose that we have $a, b$ ，and $c$ in $\Gamma$ ，
－as well as $u$ and $v$ in $\Gamma^{*}$ and states $q_{i}$ and $q_{j}$ ．
－In that case，$u a q_{i} b v$ and $u q_{j} a c v$ are two configurations．

## Moves leftward：

ua $a_{i}$ bv yields $u q_{j}$ acv，if in the transition function $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
Moves rightward：
ua $q_{i}$ bv yields uac $q_{j} v_{\text {，if }} \delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Yields

Say that configuration $C_{1}$ yields configuration $C_{2}$ if the Turing Machine can legally go from $C_{1}$ to $C_{2}$ in a single step．

例：Suppose that we have $a, b$ ，and $c$ in $\Gamma$ ，
－as well as $u$ and $v$ in $\Gamma^{*}$ and states $q_{i}$ and $q_{j}$ ．
－In that case，$u a q_{i} b v$ and $u q_{j} a c v$ are two configurations．
Moves leftward：
ua $q_{i}$ bv yields $u q_{j} a c v$ ，if in the transition function $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
Moves rightward：
ua $q_{i}$ bv yields uac $q_{j} v$ ，if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Yields

Say that configuration $C_{1}$ yields configuration $C_{2}$ if the Turing Machine can legally go from $C_{1}$ to $C_{2}$ in a single step．

例：Suppose that we have $a, b$ ，and $c$ in $\Gamma$ ，
－as well as $u$ and $v$ in $\Gamma^{*}$ and states $q_{i}$ and $q_{j}$ ．
－In that case，$u a q_{i} b v$ and $u q_{j} a c v$ are two configurations．
Moves leftward：
ua $q_{i}$ bv yields $u q_{j} a c v$ ，if in the transition function $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
Moves rightward：
$u a q_{i} b v$ yields uac $q_{j} v$ ，if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Start／Accepting／Rejecting／Halting Configuration

－start configuration of $M$ on input $w$ ：is the configuration $q_{0} w$ ，which indicates that the machine is in the start state $q_{0}$ with its head at the leftmost position on the tape
－accepting configuration：the state of the configuration is $q_{\text {accept }}$
－rejecting configuration：the state of the configuration is $q_{\text {reject }}$
－halting configurations：accepting and rejecting configurations


## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Start／Accepting／Rejecting／Halting Configuration

－start configuration of $M$ on input $w$ ：is the configuration $q_{0} w$ ，which indicates that the machine is in the start state $q_{0}$ with its head at the leftmost position on the tape
－accepting configuration：the state of the configuration is $q_{\text {accept }}$
－rejecting configuration：the state of the configuration is $q_{\text {reject }}$
－halting configurations：accepting and rejecting configurations

## 定义：Accept

A Turing machine $M$ accepts input $w$ if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ exists，where
（1）$C_{1}$ is the start configuration of $M$ on input $w$
（2）each $C_{i}$ yields $C_{i+1}$
（3）$C_{k}$ is an accepting configuration

## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Language，Recognize

The collection of strings that $M$ accepts is the language of $M$ ，or the language recognized by $M$ ，denoted $L(M)$

## 完义：Turing－recognizable

Call a language Turing－recognizable if some Turing machine recognizes it
问：What are the outcomes of a Turing machine？答：The machine may accept，reject，or loop．

问：What does loop mean？
答：the machine simply does not halt
问：Why introducing loop？
答：We prefer that a Turing machine does not loop


## 3．1 The Church－Turing Thesis

1 Turing Machines｜Definition

## 定义：Language，Recognize

The collection of strings that $M$ accepts is the language of $M$ ，or the language recognized by $M$ ，denoted $L(M)$

定义：Turing－recognizable
Call a language Turing－recognizable if some Turing machine recognizes it

```
问:What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答:We prefer that a Turing machine does not loop
问:How? 答:见下页
    ttps://faculty.ustc.edu.cn/hu&

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Definition

\section*{定义：Language，Recognize}

The collection of strings that \(M\) accepts is the language of \(M\) ，or the language recognized by \(M\) ，denoted \(L(M)\)

定义：Turing－recognizable
Call a language Turing－recognizable if some Turing machine recognizes it
问：What are the outcomes of a Turing machine？
答：The machine may accept，reject，or loop．
What does loop mean？
the machine simply does not halt
Why introducing loop？
We prefer that a Turing machine does not loop

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Definition

\section*{定义：Language，Recognize}

The collection of strings that \(M\) accepts is the language of \(M\) ，or the language recognized by \(M\) ，denoted \(L(M)\)

定义：Turing－recognizable
Call a language Turing－recognizable if some Turing machine recognizes it
问：What are the outcomes of a Turing machine？
答：The machine may accept，reject，or loop．
问：What does loop mean？
答：the machine simply does not halt

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Definition

\section*{定义：Language，Recognize}

The collection of strings that \(M\) accepts is the language of \(M\) ，or the language recognized by \(M\) ，denoted \(L(M)\)

\section*{定义：Turing－recognizable}

Call a language Turing－recognizable if some Turing machine recognizes it
问：What are the outcomes of a Turing machine？
答：The machine may accept，reject，or loop．
问：What does loop mean？
答：the machine simply does not halt
问：Why introducing loop？
答：We prefer that a Turing machine does not loop

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Definition

\section*{定义：Language，Recognize}

The collection of strings that \(M\) accepts is the language of \(M\) ，or the language recognized by \(M\) ，denoted \(L(M)\)

\section*{定义：Turing－recognizable}

Call a language Turing－recognizable if some Turing machine recognizes it
问：What are the outcomes of a Turing machine？
答：The machine may accept，reject，or loop．
问：What does loop mean？
答：the machine simply does not halt
问：Why introducing loop？
答：We prefer that a Turing machine does not loop
问：How？答：见下页

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Definition

\section*{定义：Decide}
－Deciders are Turing machines that always make a decision to accept or reject．
－A decider that recognizes some language also is said to decide that language．

\section*{定义：Turing－decidable}

Call a language Turing－decidable or simply decidable if some Turing
machine decides it
问：Then，how？
答：Answer whether a language is Turing－decidable

\section*{3．1 The Church－Turing Thesis \\ 1 Turing Machines｜Definition}

\section*{定义：Decide}
－Deciders are Turing machines that always make a decision to accept or reject．
－A decider that recognizes some language also is said to decide that language．

\section*{定义：Turing－decidable}

Call a language Turing－decidable or simply decidable if some Turing machine decides it

问：Then，how？
答：Answer whether a language is Turing－decidable

\section*{3．1 The Church－Turing Thesis \\ 1 Turing Machines｜Definition}

\section*{定义：Decide}
－Deciders are Turing machines that always make a decision to accept or reject．
－A decider that recognizes some language also is said to decide that language．

\section*{定义：Turing－decidable}

Call a language Turing－decidable or simply decidable if some Turing machine decides it

问：Then，how？
答：Answer whether a language is Turing－decidable

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Examples

\begin{abstract}
例 1
A Turing Machine（TM）\(M_{2}\) that decides \(A=\left\{0^{2^{n}} \mid n \geq 0\right\}\)
\end{abstract}

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Examples

\section*{例 1}

A Turing Machine（TM）\(M_{2}\) that decides \(A=\left\{0^{2^{n}} \mid n \geq 0\right\}\)
\(M_{2}=\)＂On input string \(w:\)
1．Sweep left to right across the tape，crossing off every other 0 ．
2．If in stage 1 the tape contained a single 0 ，accept．
3．If in stage 1 the tape contained more than a single 0 and the number of 0 s was odd，reject．
4．Return the head to the left－hand end of the tape．
5．Go to stage 1．＂

\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Examples

\section*{例 1}

A Turing Machine（TM）\(M_{2}\) that decides \(A=\left\{0^{2^{n}} \mid n \geq 0\right\}\)
\begin{tabular}{|c|c|c|}
\hline \(q_{1} 0000\) & \(\sqcup q_{5} \mathrm{x} 0 \mathrm{x} \sqcup\) & \(\sqcup \mathrm{x} q_{5} \mathrm{XX} \sqcup\) \\
\hline \(\sqcup q_{2} 000\) & \(q_{5} \sqcup \mathrm{x} 0 \mathrm{x} \sqcup\) & \(\sqcup q_{5} \mathrm{XXX} \sqcup\) \\
\hline \(\sqcup \mathrm{x} q_{3} 00\) & \(\sqcup q_{2} \mathrm{x} 0 \mathrm{x} \sqcup\) & \(q_{5} \sqcup \mathrm{xXX} \sqcup\) \\
\hline \(\sqcup \mathrm{x} 0 q_{4} 0\) & \(\sqcup \mathrm{x} q_{2} 0 \mathrm{x} \sqcup\) & \(\sqcup q_{2} \mathrm{xxX} \sqcup\) \\
\hline \(\sqcup \mathrm{x} 0 \mathrm{x} q_{3}{ }^{\text {b }}\) & \(\sqcup \mathrm{XX} q_{3} \mathrm{X} \sqcup\) & \(\sqcup \mathrm{x} q_{2} \mathrm{XX} \sqcup\) \\
\hline \(\sqcup \mathrm{x} 0 q_{5} \mathrm{x} \sqcup\) & \(\sqcup \mathrm{xxx} q_{3}{ }^{\square}\) & \(\sqcup \mathrm{xx} q_{2} \mathrm{X} \sqcup\) \\
\hline \(\sqcup \mathrm{x} q_{5} 0 \mathrm{x} \sqcup\) & \(\sqcup \mathrm{Xx} q_{5} \mathrm{X} \sqcup\) & \(\sqcup \mathrm{XXX} q_{2} \sqcup\) \\
\hline & & \(\sqcup \mathrm{XXX} \sqcup q_{\text {accep }}\) \\
\hline
\end{tabular}

\subsection*{3.1 The Church-Turing Thesis}

1 Turing Machines | Examples

\section*{例 1}

A Turing Machine (TM) \(M_{2}\) that decides \(A=\left\{0^{2^{n}} \mid n \geq 0\right\}\)


\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Examples

\section*{例 2}

A Turing Machine \(M_{1}\) for testing membership in the language \(B=\) \(\left\{w \# w \mid w \in\{0,1\}^{*}\right\}\)


\section*{3．1 The Church－Turing Thesis}

1 Turing Machines｜Examples

\section*{例 2}

A Turing Machine \(M_{1}\) for testing membership in the language \(B=\) \(\left\{w \# w \mid w \in\{0,1\}^{*}\right\}\)


\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
2 Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines
回顾：Equivalence
－DFAs and NFAs are equivalent in language recognition power
－DPDAs and PDAs are not equivalent in language recognition power

\section*{问：What are the variants of a Turing machine？ \\ 答：Multitape Turing Machine，Nondeterministic Turing Machine， Enumerator，}

问：Do the original model and its reasonable variants all have the same

答：Robustness，i．e．，invariance to certain changes
问：How？
答：See the following

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines
回顾：Equivalence
－DFAs and NFAs are equivalent in language recognition power
－DPDAs and PDAs are not equivalent in language recognition power
问：What are the variants of a Turing machine？
答：Multitape Turing Machine，Nondeterministic Turing Machine， Enumerator，．．．


\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines
回顾：Equivalence
－DFAs and NFAs are equivalent in language recognition power
－DPDAs and PDAs are not equivalent in language recognition power
问：What are the variants of a Turing machine？
答：Multitape Turing Machine，Nondeterministic Turing Machine， Enumerator，．．．

问：Do the original model and its reasonable variants all have the same power？
答：Yes


Robustness，i．e．，invariance to certain changes
回：How？
See the following．．．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines
回顾：Equivalence
－DFAs and NFAs are equivalent in language recognition power
－DPDAs and PDAs are not equivalent in language recognition power
问：What are the variants of a Turing machine？
答：Multitape Turing Machine，Nondeterministic Turing Machine， Enumerator，．．．

问：Do the original model and its reasonable variants all have the same power？
答：Yes
问：Why？
答：Robustness，i．e．，invariance to certain changes

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines
回顾：Equivalence
－DFAs and NFAs are equivalent in language recognition power
－DPDAs and PDAs are not equivalent in language recognition power
问：What are the variants of a Turing machine？
答：Multitape Turing Machine，Nondeterministic Turing Machine， Enumerator，．．．

问：Do the original model and its reasonable variants all have the same power？
答：Yes
问：Why？
答：Robustness，i．e．，invariance to certain changes
问：How？
答：See the following．．．

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Multitape Turing Machine
问：What is a Multitape Turing Machine？
答：like an ordinary Turing Machine with several tapes
－Each tape has its own head for reading and writing．
－Initially the input appears on tape 1，and the others start out blank．
－The transition function is changed to allow for reading，writing，and moving the heads on some or all of the tapes simultaneously．
where \(k\) is the number of tapes
The expression \(\delta\left(a_{i}, a_{1}, \ldots, a_{k}\right)=\left(a_{i}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)\)
－if the machine is in state \(q_{i}\) and heads 1 through \(k\) are reading symbols \(a_{1}\) through \(a_{k}\)
－the machine goes to state \(q_{j}\) ，writes symbols \(b_{1}\) through \(b_{k}\) ，and directs each head to move left or right，or to stay put，\(=\)

\subsection*{3.1 The Church-Turing Thesis}

\section*{2 Variants of Turing Machines | Multitape Turing Machine}

问: What is a Multitape Turing Machine?
答: like an ordinary Turing Machine with several tapes
- Each tape has its own head for reading and writing.
- Initially the input appears on tape 1, and the others start out blank.
- The transition function is changed to allow for reading, writing, and moving the heads on some or all of the tapes simultaneously.
\[
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}
\]
where \(k\) is the number of tapes
- if the machine is in state \(q_{i}\) and heads 1 through \(k\) are reading symbols \(a_{1}\) through \(a_{k}\)
- the machine goes to state \(q_{j}\), writes symbols \(b_{1}\) through \(b_{k}\), and directs each head to move left or right, or to stay put,

\section*{3．1 The Church－Turing Thesis}

\section*{2 Variants of Turing Machines｜Multitape Turing Machine}

问：What is a Multitape Turing Machine？
答：like an ordinary Turing Machine with several tapes
－Each tape has its own head for reading and writing．
－Initially the input appears on tape 1，and the others start out blank．
－The transition function is changed to allow for reading，writing，and moving the heads on some or all of the tapes simultaneously．
\[
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}
\]
where \(k\) is the number of tapes
The expression \(\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)\)
－if the machine is in state \(q_{i}\) and heads 1 through \(k\) are reading symbols \(a_{1}\) through \(a_{k}\)
－the machine goes to state \(q_{j}\) ，writes symbols \(b_{1}\) through \(b_{k}\) ，and directs each head to move left or right，or to stay put，

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Multitape Turing Machine

\section*{定理}

Every multitape Turing machine has an equivalent single－tape TM

\section*{证明思路：（Proof by Construction）}
\(S\) simulates the effect of \(k\) tapes by storing their information on its single tape
－Separate the contents of the different tapes：uses the new symbol \＃ as a delimiter to
－Keep track of the locations of the heads：writing a tape symbol with a dot above it to mark the place where the head on that tape would be．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Multitape Turing Machine

\section*{定理}

Every multitape Turing machine has an equivalent single－tape TM


\title{
3．1 The Church－Turing Thesis \\ 2 Variants of Turing Machines｜Multitape Turing Machine
}

\section*{定理}

Every multitape Turing machine has an equivalent single－tape TM

\section*{推论}

A language is Turing－recognizable if and only if some multitape Turing machine recognize it．

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

问：What is a Nondeterministic Turing Machine？
答：At any point in a computation，the machine may proceed according to several possibilities．
\[
\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})
\]

If some branch of the computation leads to the accept state，the machine accepts its input．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{证明思路：（Proof by Construction）}

Simulate any nondeterministic TM \(N\) with a deterministic TM \(D\)
－have \(D\) try all possible branches of \(N^{\prime}\) s nondeterministic computation
－If \(D\) ever finds the accept state on one of these branches，\(D\) accepts．
－Otherwise，\(D^{\prime} \mathrm{s}\) simulation will not terminate．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{证明思路：（Proof by Construction）}

The machine \(D\) uses its three tapes


\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{证明思路：（Proof by Construction）}

Tape 1 always contains the input string and is never altered．


\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{证明思路：（Proof by Construction）}

Tape 2 maintains a copy of \(N^{\prime}\) s tape on some branch of its nondeterministic computation．


\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{证明思路：（Proof by Construction）}

Tape 3 keeps track of \(D^{\prime}\) s location in \(N^{\prime}\) s nondeterministic computation tree．The string represents the branch of \(N^{\prime}\) s computation．


\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine


\section*{证明：（Proof by Construction）}

1．Initially，tape 1 contains the input \(w\) ，and tapes 2 and 3 are empty．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine


\section*{证明：（Proof by Construction）}

2．Copy tape 1 to tape 2 and initialize the string on tape 3 to be \(\varepsilon\) ．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine


\section*{证明：（Proof by Construction）}

3．Use tape 2 to simulate \(N\) with input \(w\) on one branch of its nondeterministic computation．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine


\section*{证明：（Proof by Construction）}

4．Replace the string on tape 3 with the next string in the string ordering． Simulate the next branch of \(N^{\prime}\) s computation by going to stage 2

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Nondeterministic Turing Machine

\section*{定理}

Every nondeterministic Turing machine has an equivalent deterministic Turing Machine

\section*{推论 1}

A language is Turing－recognizable if and only if some nondeterministic Turing machine recognizes it．

定义：Decider：A special nondeterministic TM
We call a nondeterministic Turing machine a decider if all branches halt on all inputs．

\section*{推论 2}

A language is decidable if and only if some nondeterministic Turing machine decides it．

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator


问：What is an Enumerator？
答：An enumerator is a Turing machine with an attached printer
问：How to use the printer？
答：Every time the Turing machine wants to add a string to the list，it sends the string to the printer
－If the enumerator doesn＇t halt，it may print an infinite list of strings．
－The language enumerated by \(E\) is the collection of all the strings that it eventually prints out．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator


问：What is an Enumerator？
答：An enumerator is a Turing machine with an attached printer
问：How to use the printer？
答：Every time the Turing machine wants to add a string to the list，it sends the string to the printer
－If the enumerator doesn＇t halt，it may print an infinite list of strings．
－The language enumerated by \(E\) is the collection of all the strings that
it eventually prints out．

\section*{3．1 The Church－Turing Thesis}

\section*{2 Variants of Turing Machines｜Enumerator}


问：What is an Enumerator？
答：An enumerator is a Turing machine with an attached printer
问：How to use the printer？
答：Every time the Turing machine wants to add a string to the list，it sends the string to the printer
－If the enumerator doesn＇t halt，it may print an infinite list of strings．
－The language enumerated by \(E\) is the collection of all the strings that it eventually prints out．

\title{
3．1 The Church－Turing Thesis \\ 2 Variants of Turing Machines｜Enumerator
}

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{证明：（Prove by Construction）}

Part 1：if we have an enumerator \(E\) that enumerates a language \(A\) ，prove that a TM \(M\) recognizes \(A\)

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{证明：（Prove by Construction）}

Part 1：if we have an enumerator \(E\) that enumerates a language \(A\) ，prove that a TM \(M\) recognizes \(A\)
\(M=\)＂on input \(w\) ：
－Run \(E\) ．Every time that \(E\) outputs a string，compare it with \(w\) ．
－If \(w\) ever appears in the output of \(E\) ，accept＂

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{证明：（Prove by Construction）}

Part 2：if TM \(M\) recognizes a language \(A\) ，we can construct the following enumerator \(E\) for \(A\) ．

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{证明：（Prove by Construction）}

Part 2：if TM \(M\) recognizes a language \(A\) ，we can construct the following enumerator \(E\) for \(A\) ．
Say that \(s_{1}, s_{2}, s_{3}, \ldots\) is a list of all possible strings in \(\Sigma^{*}\)

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Enumerator

\section*{定理}

A language is Turing－recognizable if and only if some enumerator enumerates it．

\section*{证明：（Prove by Construction）}

Part 2：if TM \(M\) recognizes a language \(A\) ，we can construct the following enumerator \(E\) for \(A\) ．
Say that \(s_{1}, s_{2}, s_{3}, \ldots\) is a list of all possible strings in \(\Sigma^{*}\)
\(E=\)＂Ignore the input．
（1）Repeat the following for \(i=1,2,3, \ldots\)
（2）Run \(M\) for \(i\) steps on each input，\(s_{1}, s_{2}, \ldots, s_{i}\)
（3）If any computations accept，print out the corresponding \(s_{j}\)＂

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Equivalence with other models

回顾：Several variants of the Turing machine model are equivalent in power．

问：Why are they equivalent？
答：All share the essential feature of Turing machines－namely， unrestricted access to unlimited memory

问：Any examples for understanding the phenomenon？
答：Pascal，LISP，C，C＋＋．．．
问：What can be implied from the phenomenon？
答：见下页（ALgorithm）

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Equivalence with other models

回顾：Several variants of the Turing machine model are equivalent in power．

问：Why are they equivalent？
答：All share the essential feature of Turing machines－namely， unrestricted access to unlimited memory

问：Any examples for understanding the phenomenon？
答：Pascal，LISP，C，C＋＋．．．
问：What can be implied from the phenomenon？
答：见下页（ALgorithm）

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Equivalence with other models

回顾：Several variants of the Turing machine model are equivalent in power．

问：Why are they equivalent？
答：All share the essential feature of Turing machines－namely， unrestricted access to unlimited memory

问：Any examples for understanding the phenomenon？
答：Pascal，LISP，C，C＋＋．．．
问：What can be implied from the phenomenon？
答：见下页（ALgorithm）

\section*{3．1 The Church－Turing Thesis}

2 Variants of Turing Machines｜Equivalence with other models

回顾：Several variants of the Turing machine model are equivalent in power．

问：Why are they equivalent？
答：All share the essential feature of Turing machines－namely， unrestricted access to unlimited memory

问：Any examples for understanding the phenomenon？
答：Pascal，LISP，C，C＋＋．．．
问：What can be implied from the phenomenon？
答：见下页（ALgorithm）

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
2 Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm

问：What can a Turing machine do？
猜想：It seems to achieve an algorithm
问：How to define an algorithm？
答：A story to tell before definition
问：Summary of the story？
答：The notion of algorithm itself was not defined precisely until the twentieth century

问：Why do we need precise definition of algorithm？
答：It is a crucial step before solving certain problems，e．g．，the 10th Hilbert＇s Problem．

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm

问：What can a Turing machine do？
猜想：It seems to achieve an algorithm
问：How to define an algorithm？
答：A story to tell before definition
问：Summary of the story？
答：The notion of algorithm itself was not defined precisely until the twentieth century

问：Why do we need precise definition of algorithm？
答：It is a crucial step before solving certain problems，e．g．，the 10 th Hilbert＇s Problem．

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm

问：What can a Turing machine do？
猜想：It seems to achieve an algorithm
问：How to define an algorithm？
答：A story to tell before definition
问：Summary of the story？
答：The notion of algorithm itself was not defined precisely until the twentieth century

问：Why do we need precise definition of algorithm？
答：It is a crucial step before solving certain problems，e．g．，the 10 th Hilbert＇s Problem．

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm

问：What can a Turing machine do？
猜想：It seems to achieve an algorithm
问：How to define an algorithm？
答：A story to tell before definition
问：Summary of the story？
答：The notion of algorithm itself was not defined precisely until the twentieth century

问：Why do we need precise definition of algorithm？
答：It is a crucial step before solving certain problems，e．g．，the 10th Hilbert＇s Problem．

\section*{3．1 The Church－Turing Thesis}

Outline
（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis
问：What are Hilbert＇s Problems？
答：1900，International Congress of Mathematicians
－delivered by mathematician David Hilbert
－ 23 mathematical problems
－a challenge for the coming century
－The 10th problem concerned algorithms
What is the 10th problem？
Devise an＂algorithm＂that tests whether a polynomial has an integral root．
－ \(6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10\) has a root at \(x=5, y=3\) ，and \(z=0\)
－note：He did not use the term algorithm but rather＂a process according to which it can be determined by a finite number of operations．

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis
问：What are Hilbert＇s Problems？
答：1900，International Congress of Mathematicians
－delivered by mathematician David Hilbert
－ 23 mathematical problems
－a challenge for the coming century
－The 10th problem concerned algorithms
问：What is the 10th problem？
答：Devise an＂algorithm＂that tests whether a polynomial has an integral root．
－ \(6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10\) has a root at \(x=5, y=3\) ，and \(z=0\)
－note：He did not use the term algorithm but rather＂a process according to which it can be determined by a finite number of operations．＂

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Does the process／algorithm exists for the 10th problem？
答：No
问：Why？
答： 2 steps：
（1）Define algorithm
（2）Prove it by using the definition

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Does the process／algorithm exists for the 10th problem？
答：No
问：Why？
答： 2 steps：
（1）Define algorithm
－proposed by Alonzo Church and Alan Turing in 1936
（2）Prove it by using the definition
－Matijasević＇s theorem

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Does the process／algorithm exists for the 10th problem？
答：No
问：Why？
答： 2 steps：
（1）Define algorithm
－proposed by Alonzo Church and Alan Turing in 1936
（2）Prove it by using the definition
－Matijasević s theorem

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Does the process／algorithm exists for the 10th problem？
答：No
问：Why？
答： 2 steps：
（1）Define algorithm
－proposed by Alonzo Church and Alan Turing in 1936
（2）Prove it by using the definition
－Matijasevićc s theorem

\section*{3．1 The Church－Turing Thesis}

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：How to define algorithm？
答： 2 ways
－Church used a notational system called the \(\lambda\)－calculus to define algorithms
－Turing did it with his＂machines＂
问：What are the connections between the 2 definitions？
答：They are equivalent，which is called the Church－Turing Thesis
```

Intuitive notion
of algorithms

问：How to define 10th problem using Turing machine？
$\square$

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：How to define algorithm？
答： 2 ways
－Church used a notational system called the $\lambda$－calculus to define algorithms
－Turing did it with his＂machines＂
问：What are the connections between the 2 definitions？
答：They are equivalent，which is called the Church－Turing Thesis

| Intuitive notion <br> of algorithms | equals | Turing machine <br> algorithms |
| :---: | :---: | :---: |

问：How to define 10th problem using Turing machine？
$\square$

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：How to define algorithm？
答： 2 ways
－Church used a notational system called the $\lambda$－calculus to define algorithms
－Turing did it with his＂machines＂
问：What are the connections between the 2 definitions？
答：They are equivalent，which is called the Church－Turing Thesis

| Intuitive notion <br> of algorithms | equals | Turing machine <br> algorithms |
| :---: | :---: | :---: |

问：How to define 10th problem using Turing machine？
答：见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

## 定义：Hilbert＇s 10th problem

Let $D=\{p \mid p$ is a polynomial with an integral root $\}$ ，whether the set $D$ is decidable？

答：No，$D$ is not decidable．


Another problem：is it recognizable？

答：Consider a simpler problem：
－Let $D_{1}=\{p \mid p$ is a polynomial over $x$ with an integral root $\}$ ， whether the set $D_{1}$ is recognizable？
$M_{1}=$＂On input $\langle p\rangle$ ：where $p$ is a polynomial over the variable $x$
1．Evaluate $p$ with $x$ set successively to the values $0,1,-1,2,-2,3$ ，

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

## 定义：Hilbert＇s 10th problem

Let $D=\{p \mid p$ is a polynomial with an integral root $\}$ ，whether the set $D$ is decidable？

答：No，$D$ is not decidable．
问：Another problem：is it recognizable？
答：Yes
问：Why？
答：Consider a simpler problem：
－Let $D_{1}=\{p \mid p$ is a polynomial over $x$ with an integral root $\}$ ， whether the set $D_{1}$ is recognizable？
$M_{1}=$＂On input $\langle p\rangle$ ：where $p$ is a polynomial over the variable $x$
1．Evaluate $p$ with $x$ set successively to the values $0,1,-1,2,-2,3$ ， $-3, \ldots$ If at any point the polynomial evaluates to 0 ，accept＂䠉

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

## 定义：Hilbert＇s 10th problem

Let $D=\{p \mid p$ is a polynomial with an integral root $\}$ ，whether the set $D$ is decidable？

答：No，$D$ is not decidable．
问：Another problem：is it recognizable？
答：Yes
问：Why？
答：Consider a simpler problem：
－Let $D_{1}=\{p \mid p$ is a polynomial over $x$ with an integral root $\}$ ， whether the set $D_{1}$ is recognizable？
$M_{1}=$＂On input $\langle p\rangle$ ：where $p$ is a polynomial over the variable $x$ ．
1．Evaluate $p$ with $x$ set successively to the values $0,1,-1,2,-2,3$ ，
$-3, \ldots$ ．If at any point the polynomial evaluates to 0 ，accept．＂

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Whether $D_{1}$ is decidable？
答：Yes，because we can calculate bounds within which the roots of a single variable polynomial must lie，and restrict the search to these bounds

问：Whether $D$ is decidable？
答：No，because calculating such bounds for multivariable polynomials is impossible，by Matijasevič＇s theorem

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Hilbert＇s Problems \＆The Church－Turing Thesis

问：Whether $D_{1}$ is decidable？
答：Yes，because we can calculate bounds within which the roots of a single variable polynomial must lie，and restrict the search to these bounds

问：Whether $D$ is decidable？
答：No，because calculating such bounds for multivariable polynomials is impossible，by Matijasevič＇s theorem

## 3．1 The Church－Turing Thesis

Outline
（1）Introduction
2 Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：Why introducing Algorithm？
答：We have come to a turning point：
－Focus on algorithms
－instead of Turing Machines
问：Why？
答：Now，we prefer Expressiveness（higher－level description），to Precision （lower－level description），in describing algorithms．

问：What is the right level of detail to give when describing such algorithms？
答：Standardize the way we describe Turing machine algorithms
问：How？
答：见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：Why introducing Algorithm？
答：We have come to a turning point：
－Focus on algorithms
－instead of Turing Machines
问：Why？
答：Now，we prefer Expressiveness（higher－level description），to Precision （lower－level description），in describing algorithms．

问：What is the right level of detail to give when describing such
algorithms？
答：Standardize the way we describe Turing machine algorithms

答：见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：Why introducing Algorithm？
答：We have come to a turning point：
－Focus on algorithms
－instead of Turing Machines
问：Why？
答：Now，we prefer Expressiveness（higher－level description），to Precision （lower－level description），in describing algorithms．

问：What is the right level of detail to give when describing such algorithms？
答：Standardize the way we describe Turing machine algorithms

问How？
见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：Why introducing Algorithm？
答：We have come to a turning point：
－Focus on algorithms
－instead of Turing Machines
问：Why？
答：Now，we prefer Expressiveness（higher－level description），to Precision （lower－level description），in describing algorithms．

问：What is the right level of detail to give when describing such algorithms？
答：Standardize the way we describe Turing machine algorithms
问：How？
答：见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines
问：How？
答：Let＇s entertain three possibilities：
－formal description：spells out in full the Turing machine＇s states， transition function，and so on
－implementation description：describe the way that the Turing machine moves its head and the way that it stores data on its tape
－high－level description：describe an algorithm，ignoring the implementation details．

问：Then？
Practice with the possibilities．．．and be confident．．．．
Then？？
Set up a format and higher－level notation．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines
问：How？
答：Let＇s entertain three possibilities：
－formal description：spells out in full the Turing machine＇s states， transition function，and so on
－implementation description：describe the way that the Turing machine moves its head and the way that it stores data on its tape
－high－level description：describe an algorithm，ignoring the implementation details．

问：Then？
答：Practice with the possibilities．．．and be confident．．．． Then？？
Set up a format and higher－level notation．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines
问：How？
答：Let＇s entertain three possibilities：
－formal description：spells out in full the Turing machine＇s states， transition function，and so on
－implementation description：describe the way that the Turing machine moves its head and the way that it stores data on its tape
－high－level description：describe an algorithm，ignoring the implementation details．

问：Then？
答：Practice with the possibilities．．．and be confident．．．．
问：Then？？
答：Set up a format and higher－level notation．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines
问：How？
答：Let＇s entertain three possibilities：
－formal description：spells out in full the Turing machine＇s states， transition function，and so on
－implementation description：describe the way that the Turing machine moves its head and the way that it stores data on its tape
－high－level description：describe an algorithm，ignoring the implementation details．

问：Then？
答：Practice with the possibilities．．．and be confident．．．．
问：Then？？
答：Set up a format and higher－level notation．
问：How？答：见下页

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：How？
答：set up the notation of input，and the format of describing algorithms
－types of input：
－string $w$
－object $\langle O\rangle$ as a string：Strings can easily represent polynomials， graphs，grammars，automata，and any combination of those objects． －objects $\left\langle O_{1}, O_{2}, \ldots, O_{k}\right\rangle$ as a string
－format：
－describe algorithms with an indented segment of text
－break the algorithm into stages
－The first line of the algorithm describes the input to the machine．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：How？
答：set up the notation of input，and the format of describing algorithms
－types of input：
－ $\operatorname{string} w$
－object $\langle O\rangle$ as a string：Strings can easily represent polynomials， graphs，grammars，automata，and any combination of those objects．
－objects $\left\langle O_{1}, O_{2}, \ldots, O_{k}\right\rangle$ as a string
－format：
－describe algorithms with an indented segment of text
－break the algorithm into stages
－The first line of the algorithm describes the input to the machine．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

问：How？
答：set up the notation of input，and the format of describing algorithms
－types of input：
－ $\operatorname{string} w$
－object $\langle O\rangle$ as a string：Strings can easily represent polynomials， graphs，grammars，automata，and any combination of those objects．
－objects $\left\langle O_{1}, O_{2}, \ldots, O_{k}\right\rangle$ as a string
－format：
－describe algorithms with an indented segment of text
－break the algorithm into stages
－The first line of the algorithm describes the input to the machine．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines
例
Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（1）The following is a high－level description of a TM $M$ that decides A．
$M=$＂On input $\langle G\rangle$ ，the encoding of a graph $G$ ：
1．Select the first node of $G$ and mark it．
2．Repeat the following stage until no new nodes are marked：
3．For each node in $G$ ，mark it if it is attached by an edge to a node that is already marked．
4．Scan all the nodes of $G$ to determine whether they all are marked．If they are，accept；otherwise，reject．＂

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：
－How $\langle G\rangle$ encodes the graph $G$ as a string
－Each node is a decimal number
－each edge is the pair of decimal numbers


$$
\begin{aligned}
& \langle G\rangle= \\
& (1,2,3,4)((1,2),(2,3),(3,1),(1,4))
\end{aligned}
$$

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：
－How to determine whether the input is the proper encoding of some graph？
－the first list should be a list of distinct decimal numbers
－the second should be a list of pairs of decimal numbers．
－the node list should contain no repetitions
－every node appearing on the edge list should also appear on the node list

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 1：
－$M$ marks the first node with a dot on the leftmost digit

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：
stage 2 ：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2 ：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－$M$ scans the list of edges：test whether the two underlined nodes $n_{1}$ and $n_{2}$ are the ones appearing in that edge

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－$M$ scans the list of edges：test whether the two underlined nodes $n_{1}$ and $n_{2}$ are the ones appearing in that edge
－If they are，$M$ dots $n_{1}$ ，removes the underlines，goes on from the beginning of stage 2

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－$M$ scans the list of edges：test whether the two underlined nodes $n_{1}$ and $n_{2}$ are the ones appearing in that edge
－If they aren＇ $\mathrm{t}, M$ checks the next edge on the list

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－$M$ scans the list of edges：test whether the two underlined nodes $n_{1}$ and $n_{2}$ are the ones appearing in that edge
－If there are no more edges，$\left\{n_{1}, n_{2}\right\}$ is not an edge of $G$

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－Then $M$ moves the underline on $n_{2}$ to the next dotted node and now calls this node $n_{2}$ ．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－Then $M$ moves the underline on $n_{2}$ to the next dotted node and now calls this node $n_{2}$ ．
－check，as before，whether the new pair $\left\{n_{1}, n_{2}\right\}$ is an edge ．．．

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－$M$ scans the list of nodes：find an dotted node $n_{2}$ and underline it
－Then $M$ moves the underline on $n_{2}$ to the next dotted node and now calls this node $n_{2}$ ．
－check，as before，whether the new pair $\left\{n_{1}, n_{2}\right\}$ is an edge ．．．
－If there are no more dotted nodes，$n_{1}$ is not attached to any dotted nodes

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2 ：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－Then $M$ sets the underlines so that $n_{1}$ is the next undotted node and repeats

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 2：
－$M$ scans the list of nodes：find an undotted node $n_{1}$ and underline it
－Then $M$ sets the underlines so that $n_{1}$ is the next undotted node and repeats
－If there are no more undotted nodes，$M$ has not been able to find any new nodes to dot，so it moves on to stage 4

## 3．1 The Church－Turing Thesis

3 The Definition of Algorithm｜Terminology for describe Turing Machines

## 例

Design a TM $M$ that decides $A$ ，where

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

答：（2）examine some implementation－level details：stage 4：
－$M$ scans the list of nodes to determine whether all are dotted
－If they are，it enters the accept state
－otherwise，it enters the reject state

## 3．1 The Church－Turing Thesis

## Outline

（1）Introduction
（2）Turing Machines
－Definition
－Examples
（3）Variants of Turing Machines
－Multitape Turing Machine
－Nondeterministic Turing Machine
－Enumerator
－Equivalence with other models
（4）The Definition of Algorithm
－Hilbert＇s Problems \＆The Church－Turing Thesis
－Terminology for describe Turing Machines
（5）Conclusions

## 总结

－定义
－Turing Machine
－configuration，yields
－Start／Accepting／Rejecting／Halting Configuration
－accept，recognize，Turing－recognizable
－decide ，Turing－decidable
－multitape Turing machine，nondeterministic Turing machine
－enumerator
－algorithm ，Church－Turing Thesis
－Hilbert＇s 10th problem
－定理
－multitape Turing machine has $\equiv$ single－tape Turing machine
－nondeterministic Turing machine has $\equiv$ deterministic Turing machine
－Turing－recognizable $\sim$ enumerator
－推论
－Turing－recognizable $\sim$ multitape Turing machine
－Turing－recognizable $\sim$ nondeterministic Turing machine
－Turing－decidable $\sim$ nondeterministic Turing machine

## 作业

3．1 This exercise concerns TM $M_{2}$ ，whose description and state diagram appear in Ex－ ample 3．7．In each of the parts，give the sequence of configurations that $M_{2}$ enters when started on the indicated input string．
a． 0 ．
${ }^{\mathrm{A}}$ b． 00.
c． 000 ．
d． 000000 ．
3．2 This exercise concerns TM $M_{1}$ ，whose description and state diagram appear in Ex－ ample 3．9．In each of the parts，give the sequence of configurations that $M_{1}$ enters when started on the indicated input string．

Aa． 11 ．
b．1\＃1．
c．1\＃\＃1．
d． $10 \# 11$ ．
e．10\＃10．

## 作业

3．7 Explain why the following is not a description of a legitimate Turing machine．
$M_{\mathrm{bad}}=$＂On input $\langle p\rangle$ ，a polynomial over variables $x_{1}, \ldots, x_{k}$ ：
1．Try all possible settings of $x_{1}, \ldots, x_{k}$ to integer values．
2．Evaluate $p$ on all of these settings．
3．If any of these settings evaluates to 0 ，accept ；otherwise，reject．＂
3．8 Give implementation－level descriptions of Turing machines that decide the follow－ ing languages over the alphabet $\{0,1\}$ ．

A．$\{w \mid w$ contains an equal number of 0 s and 1 s$\}$
b．$\{w \mid w$ contains twice as many 0 s as 1 s$\}$
c．$\{w \mid w$ does not contain twice as many 0 s as 1 s$\}$

