
形式语言与计算复杂性
第 3 章 Computability Theory
3.1 The Church-Turing Thesis

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式语言与计算复杂性

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 2 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 3 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Introduction

回顾:
Finite automata are good models for devices that have a small
amount of memory
Pushdown automata are good models for devices that have an
unlimited memory that is usable only in the last in, first out manner
of a stack

2.2 PUSHDOWN AUTOMATA 111

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent toG6.
(Actually the procedure given in Theorem 2.9 produces several variables Ui and
several rules Ui → a. We simplified the resulting grammar by using a single
variable U and rule U → a.)

S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS
A1 → SA
U → a
B → b

2.2
PUSHDOWN AUTOMATA

In this section we introduce a new type of computational model called pushdown
automata. These automata are like nondeterministic finite automata but have an
extra component called a stack. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown automata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is
context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it. Certain languages are more easily described in
terms of generators, whereas others are more easily described by recognizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the in-
put string, and the arrow represents the input head, pointing at the next input
symbol to be read.

FIGURE 2.11

Schematic of a finite automaton

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

112 CHAPTER 2 / CONTEXT-FREE LANGUAGES

With the addition of a stack component we obtain a schematic representation
of a pushdown automaton, as shown in the following figure.

FIGURE 2.12

Schematic of a pushdown automaton

A pushdown automaton (PDA) can write symbols on the stack and read them
back later. Writing a symbol “pushes down” all the other symbols on the stack.
At any time the symbol on the top of the stack can be read and removed. The
remaining symbols then move back up. Writing a symbol on the stack is of-
ten referred to as pushing the symbol, and removing a symbol is referred to as
popping it. Note that all access to the stack, for both reading and writing, may
be done only at the top. In other words a stack is a “last in, first out” storage
device. If certain information is written on the stack and additional information
is written afterward, the earlier information becomes inaccessible until the later
information is removed.

Plates on a cafeteria serving counter illustrate a stack. The stack of plates
rests on a spring so that when a new plate is placed on top of the stack, the plates
below it move down. The stack on a pushdown automaton is like a stack of
plates, with each plate having a symbol written on it.

A stack is valuable because it can hold an unlimited amount of information.
Recall that a finite automaton is unable to recognize the language {0n1n|n ≥ 0}
because it cannot store very large numbers in its finite memory. A PDA is able to
recognize this language because it can use its stack to store the number of 0s it
has seen. Thus the unlimited nature of a stack allows the PDA to store numbers of
unbounded size. The following informal description shows how the automaton
for this language works.

Read symbols from the input. As each 0 is read, push it onto the stack. As
soon as 1s are seen, pop a 0 off the stack for each 1 read. If reading the
input is finished exactly when the stack becomes empty of 0s, accept the
input. If the stack becomes empty while 1s remain or if the 1s are finished
while the stack still contains 0s or if any 0s appear in the input following
1s, reject the input.

As mentioned earlier, pushdown automata may be nondeterministic. Deter-
ministic and nondeterministic pushdown automata are not equivalent in power.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

待解决问题: Some very simple tasks are beyond the capabilities of these
models
解决方案: Define new models: Turing Machines

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Introduction

回顾:
Finite automata are good models for devices that have a small
amount of memory
Pushdown automata are good models for devices that have an
unlimited memory that is usable only in the last in, first out manner
of a stack

2.2 PUSHDOWN AUTOMATA 111

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent toG6.
(Actually the procedure given in Theorem 2.9 produces several variables Ui and
several rules Ui → a. We simplified the resulting grammar by using a single
variable U and rule U → a.)

S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS
A1 → SA
U → a
B → b

2.2
PUSHDOWN AUTOMATA

In this section we introduce a new type of computational model called pushdown
automata. These automata are like nondeterministic finite automata but have an
extra component called a stack. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown automata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is
context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it. Certain languages are more easily described in
terms of generators, whereas others are more easily described by recognizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the in-
put string, and the arrow represents the input head, pointing at the next input
symbol to be read.

FIGURE 2.11

Schematic of a finite automaton

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

112 CHAPTER 2 / CONTEXT-FREE LANGUAGES

With the addition of a stack component we obtain a schematic representation
of a pushdown automaton, as shown in the following figure.

FIGURE 2.12

Schematic of a pushdown automaton

A pushdown automaton (PDA) can write symbols on the stack and read them
back later. Writing a symbol “pushes down” all the other symbols on the stack.
At any time the symbol on the top of the stack can be read and removed. The
remaining symbols then move back up. Writing a symbol on the stack is of-
ten referred to as pushing the symbol, and removing a symbol is referred to as
popping it. Note that all access to the stack, for both reading and writing, may
be done only at the top. In other words a stack is a “last in, first out” storage
device. If certain information is written on the stack and additional information
is written afterward, the earlier information becomes inaccessible until the later
information is removed.

Plates on a cafeteria serving counter illustrate a stack. The stack of plates
rests on a spring so that when a new plate is placed on top of the stack, the plates
below it move down. The stack on a pushdown automaton is like a stack of
plates, with each plate having a symbol written on it.

A stack is valuable because it can hold an unlimited amount of information.
Recall that a finite automaton is unable to recognize the language {0n1n|n ≥ 0}
because it cannot store very large numbers in its finite memory. A PDA is able to
recognize this language because it can use its stack to store the number of 0s it
has seen. Thus the unlimited nature of a stack allows the PDA to store numbers of
unbounded size. The following informal description shows how the automaton
for this language works.

Read symbols from the input. As each 0 is read, push it onto the stack. As
soon as 1s are seen, pop a 0 off the stack for each 1 read. If reading the
input is finished exactly when the stack becomes empty of 0s, accept the
input. If the stack becomes empty while 1s remain or if the 1s are finished
while the stack still contains 0s or if any 0s appear in the input following
1s, reject the input.

As mentioned earlier, pushdown automata may be nondeterministic. Deter-
ministic and nondeterministic pushdown automata are not equivalent in power.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

待解决问题: Some very simple tasks are beyond the capabilities of these
models
解决方案: Define new models: Turing Machines

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 5 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines

问: What is a Turing machine?
答:

a much more powerful model, first proposed by Alan Turing in 1936
uses an infinite tape as its unlimited memory
can do everything that a real computer can do
cannot solve certain problems

166 CHAPTER 3 / THE CHURCH---TURING THESIS

Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

FIGURE 3.1

Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read–write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machineM1 for testing membership in the language
B = {w#w| w ∈ {0,1}∗}. We want M1 to accept if its input is a member of B
and to reject otherwise. To understand M1 better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M1 to work in that way. It makes multiple passes over the input
string with the read–write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M1 crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M1 goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary, M1’s
algorithm is as follows.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines

问: How does a Turing machine process input string?
答:

Initially, the tape contains only the input string and is blank
everywhere else
If the machine needs to store information, it may write this
information on the tape.
To read the information that it has written, the machine can move its
head back over it
The outputs accept and reject are obtained by entering designated
accepting and rejecting states.
If it doesn’t enter an accepting or a rejecting state, it will go on
forever, never halting.

166 CHAPTER 3 / THE CHURCH---TURING THESIS

Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

FIGURE 3.1

Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read–write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machineM1 for testing membership in the language
B = {w#w| w ∈ {0,1}∗}. We want M1 to accept if its input is a member of B
and to reject otherwise. To understand M1 better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M1 to work in that way. It makes multiple passes over the input
string with the read–write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M1 crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M1 goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary, M1’s
algorithm is as follows.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 7 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines

问: Differences with finite automata?
答:

A Turing machine can both write on the tape and read from it.
The read–write head can move both to the left and to the right.
The tape is infinite.
The special states for rejecting and accepting take effect immediately.

166 CHAPTER 3 / THE CHURCH---TURING THESIS

Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

FIGURE 3.1

Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read–write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machineM1 for testing membership in the language
B = {w#w| w ∈ {0,1}∗}. We want M1 to accept if its input is a member of B
and to reject otherwise. To understand M1 better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M1 to work in that way. It makes multiple passes over the input
string with the read–write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M1 crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M1 goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary, M1’s
algorithm is as follows.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines

例: a Turing machine M1 for testing membership in the language
B = {w#w | w ∈ {0, 1}∗}
M1 = ”On input string w:

Zig-zag across the tape to corresponding positions on either side of
the # symbol to check whether these positions contain the same
symbol.

If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which symbols
correspond.

When all symbols to the left of the # have been crossed off, check
for any remaining symbols to the right of the #.

If any symbols remain, reject; otherwise, accept.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines

例: a Turing machine M1 for testing membership in the language
B = {w#w | w ∈ {0, 1}∗}
M1 = ”On input string w:

3.1 TURING MACHINES 167

M1 = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject .
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject ; otherwise, accept .”

The following figure contains several nonconsecutive snapshots of M1’s tape
after it is started on input 011000#011000.

FIGURE 3.2

Snapshots of Turing machine M1 computing on input 011000#011000

This description of Turing machineM1 sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality, we
almost never give formal descriptions of Turing machines because they tend to
be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function δ be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, δ takes the form: Q×Γ −→ Q×Γ×{L,R}.That is, when the machine

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

Turing Machine
A Turing machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ,
Γ are all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol ␣
3 Γ is the tape alphabet, where ␣ ∈ Γ and Σ ⊆ Γ
4 δ : Q × Γ → Q × Γ × {L, R} is the transition function.
5 q0 ∈ Q is the start state
6 qaccept ∈ Q is the accept state
7 qreject ∈ Q is the reject state, where qreject ̸= qaccept

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 11 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Configuration
As a Turing machine computes, changes occur in

the current state
the current tape contents
the current head location

A setting of these three items is called a configuration of the Turing
machine.

例: 1011q701111 represents the configuration when the tape is 101101111,
the current state is q7, and the head is currently on the second 0.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Configuration
As a Turing machine computes, changes occur in

the current state
the current tape contents
the current head location

A setting of these three items is called a configuration of the Turing
machine.

例: 1011q701111 represents the configuration when the tape is 101101111,
the current state is q7, and the head is currently on the second 0.

3.1 TURING MACHINES 169

FIGURE 3.4

A Turing machine with configuration 1011q701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in Γ, as well as u and v in Γ∗ and states qi
and qj . In that case, ua qi bv and u qj acv are two configurations. Say that

ua qi bv yields u qj acv

if in the transition function δ(qi, b) = (qj , c,L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

ua qi bv yields uac qj v

if δ(qi, b) = (qj , c,R).
Special cases occur when the head is at one of the ends of the configuration.

For the left-hand end, the configuration qi bv yields qj cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c qjv for the right-moving transition. For the right-hand end,
the configuration ua qi is equivalent to ua qi ! because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
is qaccept. In a rejecting configuration, the state of the configuration is qreject.
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
states qaccept and qreject, we equivalently could have defined the transition function
to have the more complicated form δ : Q′×Γ−→Q×Γ× {L,R}, where Q′ is Q
without qaccept and qreject. A Turing machine M accepts input w if a sequence of
configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Yields
Say that configuration C1 yields configuration C2 if the Turing Machine
can legally go from C1 to C2 in a single step.

例: Suppose that we have a, b, and c in Γ,
as well as u and v in Γ∗ and states qi and qj .
In that case, ua qi bv and u qj acv are two configurations.

Moves leftward:
ua qi bv yields u qj acv, if in the transition function δ(qi, b) = (qj , c, L)

Moves rightward:
ua qi bv yields uac qj v, if δ(qi, b) = (qj , c, R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Yields
Say that configuration C1 yields configuration C2 if the Turing Machine
can legally go from C1 to C2 in a single step.

例: Suppose that we have a, b, and c in Γ,
as well as u and v in Γ∗ and states qi and qj .
In that case, ua qi bv and u qj acv are two configurations.

Moves leftward:
ua qi bv yields u qj acv, if in the transition function δ(qi, b) = (qj , c, L)

Moves rightward:
ua qi bv yields uac qj v, if δ(qi, b) = (qj , c, R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Yields
Say that configuration C1 yields configuration C2 if the Turing Machine
can legally go from C1 to C2 in a single step.

例: Suppose that we have a, b, and c in Γ,
as well as u and v in Γ∗ and states qi and qj .
In that case, ua qi bv and u qj acv are two configurations.

Moves leftward:
ua qi bv yields u qj acv, if in the transition function δ(qi, b) = (qj , c, L)

Moves rightward:
ua qi bv yields uac qj v, if δ(qi, b) = (qj , c, R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Yields
Say that configuration C1 yields configuration C2 if the Turing Machine
can legally go from C1 to C2 in a single step.

例: Suppose that we have a, b, and c in Γ,
as well as u and v in Γ∗ and states qi and qj .
In that case, ua qi bv and u qj acv are two configurations.

Moves leftward:
ua qi bv yields u qj acv, if in the transition function δ(qi, b) = (qj , c, L)

Moves rightward:
ua qi bv yields uac qj v, if δ(qi, b) = (qj , c, R)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Start/Accepting/Rejecting/Halting Configuration
start configuration of M on input w: is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the
leftmost position on the tape
accepting configuration: the state of the configuration is qaccept

rejecting configuration: the state of the configuration is qreject

halting configurations: accepting and rejecting configurations

定义: Accept
A Turing machine M accepts input w if a sequence of configurations
C1, C2, . . . , Ck exists, where

1 C1 is the start configuration of M on input w

2 each Ci yields Ci+1
3 Ck is an accepting configuration

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Start/Accepting/Rejecting/Halting Configuration
start configuration of M on input w: is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the
leftmost position on the tape
accepting configuration: the state of the configuration is qaccept

rejecting configuration: the state of the configuration is qreject

halting configurations: accepting and rejecting configurations

定义: Accept
A Turing machine M accepts input w if a sequence of configurations
C1, C2, . . . , Ck exists, where

1 C1 is the start configuration of M on input w

2 each Ci yields Ci+1
3 Ck is an accepting configuration

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Language, Recognize
The collection of strings that M accepts is the language of M , or the
language recognized by M , denoted L(M)

定义: Turing-recognizable
Call a language Turing-recognizable if some Turing machine recognizes it

问: What are the outcomes of a Turing machine?
答: The machine may accept, reject, or loop.
问: What does loop mean?
答: the machine simply does not halt
问: Why introducing loop?
答: We prefer that a Turing machine does not loop
问: How? 答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Decide
Deciders are Turing machines that always make a decision to accept
or reject.
A decider that recognizes some language also is said to decide that
language.

定义: Turing-decidable
Call a language Turing-decidable or simply decidable if some Turing
machine decides it

问: Then, how?
答: Answer whether a language is Turing-decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Decide
Deciders are Turing machines that always make a decision to accept
or reject.
A decider that recognizes some language also is said to decide that
language.

定义: Turing-decidable
Call a language Turing-decidable or simply decidable if some Turing
machine decides it

问: Then, how?
答: Answer whether a language is Turing-decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Definition

定义: Decide
Deciders are Turing machines that always make a decision to accept
or reject.
A decider that recognizes some language also is said to decide that
language.

定义: Turing-decidable
Call a language Turing-decidable or simply decidable if some Turing
machine decides it

问: Then, how?
答: Answer whether a language is Turing-decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 1
A Turing Machine (TM) M2 that decides A = {02n | n ≥ 0}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 1
A Turing Machine (TM) M2 that decides A = {02n | n ≥ 0}

3.1 TURING MACHINES 171

will give only higher level descriptions because they are precise enough for our
purposes and are much easier to understand. Nevertheless, it is important to
remember that every higher level description is actually just shorthand for its
formal counterpart. With patience and care we could describe any of the Turing
machines in this book in complete formal detail.

To help you make the connection between the formal descriptions and the
higher level descriptions, we give state diagrams in the next two examples. You
may skip over them if you already feel comfortable with this connection.

EXAMPLE 3.7

Here we describe a Turing machine (TM) M2 that decides A = {02n | n ≥ 0}, the
language consisting of all strings of 0s whose length is a power of 2.

M2 = “On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
2. If in stage 1 the tape contained a single 0, accept .
3. If in stage 1 the tape contained more than a single 0 and the

number of 0s was odd, reject .
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

Each iteration of stage 1 cuts the number of 0s in half. As the machine sweeps
across the tape in stage 1, it keeps track of whether the number of 0s seen is even
or odd. If that number is odd and greater than 1, the original number of 0s in
the input could not have been a power of 2. Therefore, the machine rejects in
this instance. However, if the number of 0s seen is 1, the original number must
have been a power of 2. So in this case, the machine accepts.

Now we give the formal description of M2 = (Q,Σ,Γ, δ, q1, qaccept, qreject):

• Q = {q1, q2, q3, q4, q5, qaccept, qreject},

• Σ = {0}, and

• Γ = {0,x,!}.

• We describe δ with a state diagram (see Figure 3.8).

• The start, accept, and reject states are q1, qaccept, and qreject, respectively.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 1
A Turing Machine (TM) M2 that decides A = {02n | n ≥ 0}

172 CHAPTER 3 / THE CHURCH---TURING THESIS

FIGURE 3.8

State diagram for Turing machine M2

In this state diagram, the label 0→!,R appears on the transition from q1 to q2.
This label signifies that when in state q1 with the head reading 0, the machine
goes to state q2, writes !, and moves the head to the right. In other words,
δ(q1,0) = (q2,!,R). For clarity we use the shorthand 0→R in the transition from
q3 to q4, to mean that the machine moves to the right when reading 0 in state q3
but doesn’t alter the tape, so δ(q3,0) = (q4,0,R).

This machine begins by writing a blank symbol over the leftmost 0 on the
tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is q10000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000 !q5x0x! !xq5xx!
!q2000 q5!x0x! !q5xxx!
!xq300 !q2x0x! q5!xxx!
!x0q40 !xq20x! !q2xxx!
!x0xq3! !xxq3x! !xq2xx!
!x0q5x! !xxxq3! !xxq2x!
!xq50x! !xxq5x! !xxxq2!

!xxx!qaccept

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 1
A Turing Machine (TM) M2 that decides A = {02n | n ≥ 0}172 CHAPTER 3 / THE CHURCH---TURING THESIS

FIGURE 3.8

State diagram for Turing machine M2

In this state diagram, the label 0→!,R appears on the transition from q1 to q2.
This label signifies that when in state q1 with the head reading 0, the machine
goes to state q2, writes !, and moves the head to the right. In other words,
δ(q1,0) = (q2,!,R). For clarity we use the shorthand 0→R in the transition from
q3 to q4, to mean that the machine moves to the right when reading 0 in state q3
but doesn’t alter the tape, so δ(q3,0) = (q4,0,R).

This machine begins by writing a blank symbol over the leftmost 0 on the
tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is q10000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000 !q5x0x! !xq5xx!
!q2000 q5!x0x! !q5xxx!
!xq300 !q2x0x! q5!xxx!
!x0q40 !xq20x! !q2xxx!
!x0xq3! !xxq3x! !xq2xx!
!x0q5x! !xxxq3! !xxq2x!
!xq50x! !xxq5x! !xxxq2!

!xxx!qaccept

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 2
A Turing Machine M1
for testing
membership in the
language B =
{w#w | w ∈ {0, 1}∗}

3.1 TURING MACHINES 173

EXAMPLE 3.9

The following is a formal description of M1 = (Q,Σ,Γ, δ, q1, qaccept, qreject), the
Turing machine that we informally described (page 167) for deciding the lan-
guage B = {w#w| w ∈ {0,1}∗}.

• Q = {q1, . . . , q8, qaccept, qreject},
• Σ = {0,1,#}, and Γ = {0,1,#,x,!}.
• We describe δ with a state diagram (see the following figure).

• The start, accept, and reject states are q1, qaccept, and qreject, respectively.

FIGURE 3.10

State diagram for Turing machine M1

In Figure 3.10, which depicts the state diagram of TM M1, you will find the
label 0,1→R on the transition going from q3 to itself. That label means that the
machine stays in q3 and moves to the right when it reads a 0 or a 1 in state q3. It
doesn’t change the symbol on the tape.

Stage 1 is implemented by states q1 through q7, and stage 2 by the remaining
states. To simplify the figure, we don’t show the reject state or the transitions
going to the reject state. Those transitions occur implicitly whenever a state
lacks an outgoing transition for a particular symbol. Thus because in state q5
no outgoing arrow with a # is present, if a # occurs under the head when the
machine is in state q5, it goes to state qreject. For completeness, we say that the
head moves right in each of these transitions to the reject state.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
1 Turing Machines | Examples

例 2
A Turing Machine M1
for testing
membership in the
language B =
{w#w | w ∈ {0, 1}∗}

3.1 TURING MACHINES 167

M1 = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject .
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject ; otherwise, accept .”

The following figure contains several nonconsecutive snapshots of M1’s tape
after it is started on input 011000#011000.

FIGURE 3.2

Snapshots of Turing machine M1 computing on input 011000#011000

This description of Turing machineM1 sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality, we
almost never give formal descriptions of Turing machines because they tend to
be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function δ be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, δ takes the form: Q×Γ −→ Q×Γ×{L,R}.That is, when the machine

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines

回顾: Equivalence
DFAs and NFAs are equivalent in language recognition power
DPDAs and PDAs are not equivalent in language recognition power

问: What are the variants of a Turing machine?
答: Multitape Turing Machine, Nondeterministic Turing Machine,
Enumerator, …

问: Do the original model and its reasonable variants all have the same
power?
答: Yes

问: Why?
答: Robustness, i.e., invariance to certain changes

问: How?
答: See the following…

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines

回顾: Equivalence
DFAs and NFAs are equivalent in language recognition power
DPDAs and PDAs are not equivalent in language recognition power

问: What are the variants of a Turing machine?
答: Multitape Turing Machine, Nondeterministic Turing Machine,
Enumerator, …

问: Do the original model and its reasonable variants all have the same
power?
答: Yes

问: Why?
答: Robustness, i.e., invariance to certain changes

问: How?
答: See the following…

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines

回顾: Equivalence
DFAs and NFAs are equivalent in language recognition power
DPDAs and PDAs are not equivalent in language recognition power

问: What are the variants of a Turing machine?
答: Multitape Turing Machine, Nondeterministic Turing Machine,
Enumerator, …

问: Do the original model and its reasonable variants all have the same
power?
答: Yes

问: Why?
答: Robustness, i.e., invariance to certain changes

问: How?
答: See the following…

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines

回顾: Equivalence
DFAs and NFAs are equivalent in language recognition power
DPDAs and PDAs are not equivalent in language recognition power

问: What are the variants of a Turing machine?
答: Multitape Turing Machine, Nondeterministic Turing Machine,
Enumerator, …

问: Do the original model and its reasonable variants all have the same
power?
答: Yes

问: Why?
答: Robustness, i.e., invariance to certain changes

问: How?
答: See the following…

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines

回顾: Equivalence
DFAs and NFAs are equivalent in language recognition power
DPDAs and PDAs are not equivalent in language recognition power

问: What are the variants of a Turing machine?
答: Multitape Turing Machine, Nondeterministic Turing Machine,
Enumerator, …

问: Do the original model and its reasonable variants all have the same
power?
答: Yes

问: Why?
答: Robustness, i.e., invariance to certain changes

问: How?
答: See the following…

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 22 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

问: What is a Multitape Turing Machine?
答: like an ordinary Turing Machine with several tapes

Each tape has its own head for reading and writing.
Initially the input appears on tape 1, and the others start out blank.
The transition function is changed to allow for reading, writing, and
moving the heads on some or all of the tapes simultaneously.

δ : Q × Γk → Q × Γk × {L, R, S}k

where k is the number of tapes
The expression δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L, R, . . . , L)

if the machine is in state qi and heads 1 through k are reading
symbols a1 through ak

the machine goes to state qj , writes symbols b1 through bk, and
directs each head to move left or right, or to stay put,

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

问: What is a Multitape Turing Machine?
答: like an ordinary Turing Machine with several tapes

Each tape has its own head for reading and writing.
Initially the input appears on tape 1, and the others start out blank.
The transition function is changed to allow for reading, writing, and
moving the heads on some or all of the tapes simultaneously.

δ : Q × Γk → Q × Γk × {L, R, S}k

where k is the number of tapes
The expression δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L, R, . . . , L)

if the machine is in state qi and heads 1 through k are reading
symbols a1 through ak

the machine goes to state qj , writes symbols b1 through bk, and
directs each head to move left or right, or to stay put,

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

问: What is a Multitape Turing Machine?
答: like an ordinary Turing Machine with several tapes

Each tape has its own head for reading and writing.
Initially the input appears on tape 1, and the others start out blank.
The transition function is changed to allow for reading, writing, and
moving the heads on some or all of the tapes simultaneously.

δ : Q × Γk → Q × Γk × {L, R, S}k

where k is the number of tapes
The expression δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L, R, . . . , L)

if the machine is in state qi and heads 1 through k are reading
symbols a1 through ak

the machine goes to state qj , writes symbols b1 through bk, and
directs each head to move left or right, or to stay put,

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

定理
Every multitape Turing machine has an equivalent single-tape TM

证明思路: (Proof by Construction)
S simulates the effect of k tapes by storing their information on its single
tape

Separate the contents of the different tapes: uses the new symbol #
as a delimiter to
Keep track of the locations of the heads: writing a tape symbol with a
dot above it to mark the place where the head on that tape would be.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

定理
Every multitape Turing machine has an equivalent single-tape TM

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulateM with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

of M . The formatted tape contains

#
•
w1w2 · · · wn #

•!#
•!# · · · #.

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way thatM ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Multitape Turing Machine

定理
Every multitape Turing machine has an equivalent single-tape TM

推论
A language is Turing-recognizable if and only if some multitape Turing
machine recognize it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

问: What is a Nondeterministic Turing Machine?
答: At any point in a computation, the machine may proceed according to
several possibilities.

δ : Q × Γ → P(Q × Γ × {L, R})

If some branch of the computation leads to the accept state, the machine
accepts its input.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

证明思路: (Proof by Construction)
Simulate any nondeterministic TM N with a deterministic TM D

have D try all possible branches of N’s nondeterministic
computation

If D ever finds the accept state on one of these branches, D accepts.
Otherwise, D’s simulation will not terminate.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

证明思路: (Proof by Construction)
The machine D uses its three tapes

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

证明思路: (Proof by Construction)
Tape 1 always contains the input string and is never altered.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

证明思路: (Proof by Construction)
Tape 2 maintains a copy of N’s tape on some branch of its
nondeterministic computation.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

证明思路: (Proof by Construction)
Tape 3 keeps track of D’s location in N’s nondeterministic
computation tree. The string represents the branch of N’s computation.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

证明: (Proof by Construction)
1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

证明: (Proof by Construction)
2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

证明: (Proof by Construction)
3. Use tape 2 to simulate N with input w on one branch of its
nondeterministic computation.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

证明: (Proof by Construction)
4. Replace the string on tape 3 with the next string in the string ordering.

Simulate the next branch of N’s computation by going to stage 2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Nondeterministic Turing Machine

定理
Every nondeterministic Turing machine has an equivalent deterministic
Turing Machine

推论 1
A language is Turing-recognizable if and only if some nondeterministic
Turing machine recognizes it.

定义: Decider: A special nondeterministic TM
We call a nondeterministic Turing machine a decider if all branches halt on
all inputs.

推论 2
A language is decidable if and only if some nondeterministic Turing
machine decides it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

180 CHAPTER 3 / THE CHURCH---TURING THESIS

COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this corollary follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation,D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine
decides it.

ENUMERATORS

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language. That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model.

FIGURE 3.20

Schematic of an enumerator

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: What is an Enumerator?
答: An enumerator is a Turing machine with an attached printer
问: How to use the printer?
答: Every time the Turing machine wants to add a string to the list, it
sends the string to the printer

If the enumerator doesn’t halt, it may print an infinite list of strings.
The language enumerated by E is the collection of all the strings that
it eventually prints out.
Moreover, E may generate the strings of the language in any order,
possibly with repetitions.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

180 CHAPTER 3 / THE CHURCH---TURING THESIS

COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this corollary follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation,D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine
decides it.

ENUMERATORS

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language. That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model.

FIGURE 3.20

Schematic of an enumerator

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: What is an Enumerator?
答: An enumerator is a Turing machine with an attached printer
问: How to use the printer?
答: Every time the Turing machine wants to add a string to the list, it
sends the string to the printer

If the enumerator doesn’t halt, it may print an infinite list of strings.
The language enumerated by E is the collection of all the strings that
it eventually prints out.
Moreover, E may generate the strings of the language in any order,
possibly with repetitions.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

180 CHAPTER 3 / THE CHURCH---TURING THESIS

COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this corollary follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation,D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine
decides it.

ENUMERATORS

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language. That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model.

FIGURE 3.20

Schematic of an enumerator

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: What is an Enumerator?
答: An enumerator is a Turing machine with an attached printer
问: How to use the printer?
答: Every time the Turing machine wants to add a string to the list, it
sends the string to the printer

If the enumerator doesn’t halt, it may print an infinite list of strings.
The language enumerated by E is the collection of all the strings that
it eventually prints out.
Moreover, E may generate the strings of the language in any order,
possibly with repetitions.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

证明: (Prove by Construction)
Part 1: if we have an enumerator E that enumerates a language A, prove
that a TM M recognizes A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

证明: (Prove by Construction)
Part 1: if we have an enumerator E that enumerates a language A, prove
that a TM M recognizes A

M=“on input w:
Run E. Every time that E outputs a string, compare it with w.
If w ever appears in the output of E, accept ”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

证明: (Prove by Construction)
Part 2: if TM M recognizes a language A, we can construct the following
enumerator E for A.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

证明: (Prove by Construction)
Part 2: if TM M recognizes a language A, we can construct the following
enumerator E for A.
Say that s1, s2, s3, . . . is a list of all possible strings in Σ∗

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Enumerator

定理
A language is Turing-recognizable if and only if some enumerator
enumerates it.

证明: (Prove by Construction)
Part 2: if TM M recognizes a language A, we can construct the following
enumerator E for A.
Say that s1, s2, s3, . . . is a list of all possible strings in Σ∗

E = “Ignore the input.
1 Repeat the following for i = 1, 2, 3, . . .

2 Run M for i steps on each input, s1, s2, . . . , si

3 If any computations accept, print out the corresponding sj”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 31 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Equivalence with other models

回顾: Several variants of the Turing machine model are equivalent in
power.

问: Why are they equivalent?
答: All share the essential feature of Turing machines—namely,
unrestricted access to unlimited memory

问: Any examples for understanding the phenomenon?
答: Pascal, LISP, C, C++…

问: What can be implied from the phenomenon?
答: 见下页 (ALgorithm)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Equivalence with other models

回顾: Several variants of the Turing machine model are equivalent in
power.

问: Why are they equivalent?
答: All share the essential feature of Turing machines—namely,
unrestricted access to unlimited memory

问: Any examples for understanding the phenomenon?
答: Pascal, LISP, C, C++…

问: What can be implied from the phenomenon?
答: 见下页 (ALgorithm)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Equivalence with other models

回顾: Several variants of the Turing machine model are equivalent in
power.

问: Why are they equivalent?
答: All share the essential feature of Turing machines—namely,
unrestricted access to unlimited memory

问: Any examples for understanding the phenomenon?
答: Pascal, LISP, C, C++…

问: What can be implied from the phenomenon?
答: 见下页 (ALgorithm)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
2 Variants of Turing Machines | Equivalence with other models

回顾: Several variants of the Turing machine model are equivalent in
power.

问: Why are they equivalent?
答: All share the essential feature of Turing machines—namely,
unrestricted access to unlimited memory

问: Any examples for understanding the phenomenon?
答: Pascal, LISP, C, C++…

问: What can be implied from the phenomenon?
答: 见下页 (ALgorithm)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 33 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm

问: What can a Turing machine do?
猜想: It seems to achieve an algorithm

问: How to define an algorithm?
答: A story to tell before definition

问：Summary of the story?
答: The notion of algorithm itself was not defined precisely until the
twentieth century

问: Why do we need precise definition of algorithm?
答: It is a crucial step before solving certain problems, e.g., the 10th
Hilbert’s Problem.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm

问: What can a Turing machine do?
猜想: It seems to achieve an algorithm

问: How to define an algorithm?
答: A story to tell before definition

问：Summary of the story?
答: The notion of algorithm itself was not defined precisely until the
twentieth century

问: Why do we need precise definition of algorithm?
答: It is a crucial step before solving certain problems, e.g., the 10th
Hilbert’s Problem.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm

问: What can a Turing machine do?
猜想: It seems to achieve an algorithm

问: How to define an algorithm?
答: A story to tell before definition

问：Summary of the story?
答: The notion of algorithm itself was not defined precisely until the
twentieth century

问: Why do we need precise definition of algorithm?
答: It is a crucial step before solving certain problems, e.g., the 10th
Hilbert’s Problem.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm

问: What can a Turing machine do?
猜想: It seems to achieve an algorithm

问: How to define an algorithm?
答: A story to tell before definition

问：Summary of the story?
答: The notion of algorithm itself was not defined precisely until the
twentieth century

问: Why do we need precise definition of algorithm?
答: It is a crucial step before solving certain problems, e.g., the 10th
Hilbert’s Problem.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 35 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: What are Hilbert’s Problems?
答: 1900, International Congress of Mathematicians

delivered by mathematician David Hilbert
23 mathematical problems
a challenge for the coming century
The 10th problem concerned algorithms

问: What is the 10th problem?
答: Devise an “algorithm” that tests whether a polynomial has an integral
root.

6x3yz2 + 3xy2 − x3 − 10 has a root at x = 5, y = 3, and z = 0
note: He did not use the term algorithm but rather “a process
according to which it can be determined by a finite number of
operations.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 36 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: What are Hilbert’s Problems?
答: 1900, International Congress of Mathematicians

delivered by mathematician David Hilbert
23 mathematical problems
a challenge for the coming century
The 10th problem concerned algorithms

问: What is the 10th problem?
答: Devise an “algorithm” that tests whether a polynomial has an integral
root.

6x3yz2 + 3xy2 − x3 − 10 has a root at x = 5, y = 3, and z = 0
note: He did not use the term algorithm but rather “a process
according to which it can be determined by a finite number of
operations.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 36 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Does the process/algorithm exists for the 10th problem?
答: No

问: Why?
答: 2 steps:

1 Define algorithm
proposed by Alonzo Church and Alan Turing in 1936

2 Prove it by using the definition
Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Does the process/algorithm exists for the 10th problem?
答: No

问: Why?
答: 2 steps:

1 Define algorithm
proposed by Alonzo Church and Alan Turing in 1936

2 Prove it by using the definition
Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Does the process/algorithm exists for the 10th problem?
答: No

问: Why?
答: 2 steps:

1 Define algorithm
proposed by Alonzo Church and Alan Turing in 1936

2 Prove it by using the definition
Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Does the process/algorithm exists for the 10th problem?
答: No

问: Why?
答: 2 steps:

1 Define algorithm
proposed by Alonzo Church and Alan Turing in 1936

2 Prove it by using the definition
Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 37 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: How to define algorithm?
答: 2 ways

Church used a notational system called the λ-calculus to define
algorithms
Turing did it with his “machines”

问: What are the connections between the 2 definitions?
答: They are equivalent, which is called the Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: How to define 10th problem using Turing machine?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 38 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: How to define algorithm?
答: 2 ways

Church used a notational system called the λ-calculus to define
algorithms
Turing did it with his “machines”

问: What are the connections between the 2 definitions?
答: They are equivalent, which is called the Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: How to define 10th problem using Turing machine?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 38 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: How to define algorithm?
答: 2 ways

Church used a notational system called the λ-calculus to define
algorithms
Turing did it with his “machines”

问: What are the connections between the 2 definitions?
答: They are equivalent, which is called the Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

问: How to define 10th problem using Turing machine?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 38 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

定义: Hilbert’s 10th problem
Let D = {p | p is a polynomial with an integral root}, whether the set D
is decidable ?

答: No, D is not decidable.

问: Another problem: is it recognizable?
答: Yes

问: Why?
答: Consider a simpler problem:

Let D1 = {p | p is a polynomial over x with an integral root},
whether the set D1 is recognizable?

184 CHAPTER 3 / THE CHURCH---TURING THESIS

Let’s phrase Hilbert’s tenth problem in our terminology. Doing so helps to
introduce some themes that we explore in Chapters 4 and 5. Let

D = {p| p is a polynomial with an integral root}.

Hilbert’s tenth problem asks in essence whether the set D is decidable. The
answer is negative. In contrast, we can show that D is Turing-recognizable.
Before doing so, let’s consider a simpler problem. It is an analog of Hilbert’s
tenth problem for polynomials that have only a single variable, such as 4x3 −
2x2 + x− 7. Let

D1 = {p| p is a polynomial over x with an integral root}.

Here is a TM M1 that recognizes D1:

M1 = “On input 〈p〉: where p is a polynomial over the variable x.
1. Evaluate pwith x set successively to the values 0, 1,−1, 2,−2, 3,
−3, If at any point the polynomial evaluates to 0, accept .”

If p has an integral root,M1 eventually will find it and accept. If p does not have
an integral root, M1 will run forever. For the multivariable case, we can present
a similar TM M that recognizes D. Here, M goes through all possible settings of
its variables to integral values.

Both M1 and M are recognizers but not deciders. We can convert M1 to be
a decider for D1 because we can calculate bounds within which the roots of a
single variable polynomial must lie and restrict the search to these bounds. In
Problem 3.21 you are asked to show that the roots of such a polynomial must lie
between the values

± k
cmax

c1
,

where k is the number of terms in the polynomial, cmax is the coefficient with
the largest absolute value, and c1 is the coefficient of the highest order term. If a
root is not found within these bounds, the machine rejects. Matijasevic̆’s theorem
shows that calculating such bounds for multivariable polynomials is impossible.

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation. We
continue to speak of Turing machines, but our real focus from now on is on al-
gorithms. That is, the Turing machine merely serves as a precise model for the
definition of algorithm. We skip over the extensive theory of Turing machines
themselves and do not spend much time on the low-level programming of Tur-
ing machines. We need only to be comfortable enough with Turing machines to
believe that they capture all algorithms.

With that in mind, let’s standardize the way we describe Turing machine algo-
rithms. Initially, we ask: What is the right level of detail to give when describing

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 39 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

定义: Hilbert’s 10th problem
Let D = {p | p is a polynomial with an integral root}, whether the set D
is decidable ?

答: No, D is not decidable.

问: Another problem: is it recognizable?
答: Yes

问: Why?
答: Consider a simpler problem:

Let D1 = {p | p is a polynomial over x with an integral root},
whether the set D1 is recognizable?

184 CHAPTER 3 / THE CHURCH---TURING THESIS

Let’s phrase Hilbert’s tenth problem in our terminology. Doing so helps to
introduce some themes that we explore in Chapters 4 and 5. Let

D = {p| p is a polynomial with an integral root}.

Hilbert’s tenth problem asks in essence whether the set D is decidable. The
answer is negative. In contrast, we can show that D is Turing-recognizable.
Before doing so, let’s consider a simpler problem. It is an analog of Hilbert’s
tenth problem for polynomials that have only a single variable, such as 4x3 −
2x2 + x− 7. Let

D1 = {p| p is a polynomial over x with an integral root}.

Here is a TM M1 that recognizes D1:

M1 = “On input 〈p〉: where p is a polynomial over the variable x.
1. Evaluate pwith x set successively to the values 0, 1,−1, 2,−2, 3,
−3, If at any point the polynomial evaluates to 0, accept .”

If p has an integral root,M1 eventually will find it and accept. If p does not have
an integral root, M1 will run forever. For the multivariable case, we can present
a similar TM M that recognizes D. Here, M goes through all possible settings of
its variables to integral values.

Both M1 and M are recognizers but not deciders. We can convert M1 to be
a decider for D1 because we can calculate bounds within which the roots of a
single variable polynomial must lie and restrict the search to these bounds. In
Problem 3.21 you are asked to show that the roots of such a polynomial must lie
between the values

± k
cmax

c1
,

where k is the number of terms in the polynomial, cmax is the coefficient with
the largest absolute value, and c1 is the coefficient of the highest order term. If a
root is not found within these bounds, the machine rejects. Matijasevic̆’s theorem
shows that calculating such bounds for multivariable polynomials is impossible.

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation. We
continue to speak of Turing machines, but our real focus from now on is on al-
gorithms. That is, the Turing machine merely serves as a precise model for the
definition of algorithm. We skip over the extensive theory of Turing machines
themselves and do not spend much time on the low-level programming of Tur-
ing machines. We need only to be comfortable enough with Turing machines to
believe that they capture all algorithms.

With that in mind, let’s standardize the way we describe Turing machine algo-
rithms. Initially, we ask: What is the right level of detail to give when describing

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 39 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

定义: Hilbert’s 10th problem
Let D = {p | p is a polynomial with an integral root}, whether the set D
is decidable ?

答: No, D is not decidable.

问: Another problem: is it recognizable?
答: Yes

问: Why?
答: Consider a simpler problem:

Let D1 = {p | p is a polynomial over x with an integral root},
whether the set D1 is recognizable?

184 CHAPTER 3 / THE CHURCH---TURING THESIS

Let’s phrase Hilbert’s tenth problem in our terminology. Doing so helps to
introduce some themes that we explore in Chapters 4 and 5. Let

D = {p| p is a polynomial with an integral root}.

Hilbert’s tenth problem asks in essence whether the set D is decidable. The
answer is negative. In contrast, we can show that D is Turing-recognizable.
Before doing so, let’s consider a simpler problem. It is an analog of Hilbert’s
tenth problem for polynomials that have only a single variable, such as 4x3 −
2x2 + x− 7. Let

D1 = {p| p is a polynomial over x with an integral root}.

Here is a TM M1 that recognizes D1:

M1 = “On input 〈p〉: where p is a polynomial over the variable x.
1. Evaluate pwith x set successively to the values 0, 1,−1, 2,−2, 3,
−3, If at any point the polynomial evaluates to 0, accept .”

If p has an integral root,M1 eventually will find it and accept. If p does not have
an integral root, M1 will run forever. For the multivariable case, we can present
a similar TM M that recognizes D. Here, M goes through all possible settings of
its variables to integral values.

Both M1 and M are recognizers but not deciders. We can convert M1 to be
a decider for D1 because we can calculate bounds within which the roots of a
single variable polynomial must lie and restrict the search to these bounds. In
Problem 3.21 you are asked to show that the roots of such a polynomial must lie
between the values

± k
cmax

c1
,

where k is the number of terms in the polynomial, cmax is the coefficient with
the largest absolute value, and c1 is the coefficient of the highest order term. If a
root is not found within these bounds, the machine rejects. Matijasevic̆’s theorem
shows that calculating such bounds for multivariable polynomials is impossible.

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation. We
continue to speak of Turing machines, but our real focus from now on is on al-
gorithms. That is, the Turing machine merely serves as a precise model for the
definition of algorithm. We skip over the extensive theory of Turing machines
themselves and do not spend much time on the low-level programming of Tur-
ing machines. We need only to be comfortable enough with Turing machines to
believe that they capture all algorithms.

With that in mind, let’s standardize the way we describe Turing machine algo-
rithms. Initially, we ask: What is the right level of detail to give when describing

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 39 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Whether D1 is decidable?
答: Yes, because we can calculate bounds within which the roots of a
single variable polynomial must lie, and restrict the search to these bounds

问: Whether D is decidable?
答: No, because calculating such bounds for multivariable polynomials is
impossible, by Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 40 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Hilbert’s Problems & The Church-Turing Thesis

问: Whether D1 is decidable?
答: Yes, because we can calculate bounds within which the roots of a
single variable polynomial must lie, and restrict the search to these bounds

问: Whether D is decidable?
答: No, because calculating such bounds for multivariable polynomials is
impossible, by Matijasevic̆’s theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 40 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 41 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: Why introducing Algorithm?
答: We have come to a turning point:

Focus on algorithms
instead of Turing Machines

问: Why?
答: Now, we prefer Expressiveness (higher-level description), to Precision
(lower-level description), in describing algorithms.

问: What is the right level of detail to give when describing such
algorithms?
答: Standardize the way we describe Turing machine algorithms

问: How?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: Why introducing Algorithm?
答: We have come to a turning point:

Focus on algorithms
instead of Turing Machines

问: Why?
答: Now, we prefer Expressiveness (higher-level description), to Precision
(lower-level description), in describing algorithms.

问: What is the right level of detail to give when describing such
algorithms?
答: Standardize the way we describe Turing machine algorithms

问: How?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: Why introducing Algorithm?
答: We have come to a turning point:

Focus on algorithms
instead of Turing Machines

问: Why?
答: Now, we prefer Expressiveness (higher-level description), to Precision
(lower-level description), in describing algorithms.

问: What is the right level of detail to give when describing such
algorithms?
答: Standardize the way we describe Turing machine algorithms

问: How?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: Why introducing Algorithm?
答: We have come to a turning point:

Focus on algorithms
instead of Turing Machines

问: Why?
答: Now, we prefer Expressiveness (higher-level description), to Precision
(lower-level description), in describing algorithms.

问: What is the right level of detail to give when describing such
algorithms?
答: Standardize the way we describe Turing machine algorithms

问: How?
答: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 42 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: Let’s entertain three possibilities:

formal description: spells out in full the Turing machine’s states,
transition function, and so on
implementation description: describe the way that the Turing
machine moves its head and the way that it stores data on its tape
high-level description: describe an algorithm, ignoring the
implementation details.

问: Then?
答: Practice with the possibilities…and be confident….

问: Then??
答: Set up a format and higher-level notation.

问: How? 答: 见下页
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 43 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: Let’s entertain three possibilities:

formal description: spells out in full the Turing machine’s states,
transition function, and so on
implementation description: describe the way that the Turing
machine moves its head and the way that it stores data on its tape
high-level description: describe an algorithm, ignoring the
implementation details.

问: Then?
答: Practice with the possibilities…and be confident….

问: Then??
答: Set up a format and higher-level notation.

问: How? 答: 见下页
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 43 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: Let’s entertain three possibilities:

formal description: spells out in full the Turing machine’s states,
transition function, and so on
implementation description: describe the way that the Turing
machine moves its head and the way that it stores data on its tape
high-level description: describe an algorithm, ignoring the
implementation details.

问: Then?
答: Practice with the possibilities…and be confident….

问: Then??
答: Set up a format and higher-level notation.

问: How? 答: 见下页
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 43 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: Let’s entertain three possibilities:

formal description: spells out in full the Turing machine’s states,
transition function, and so on
implementation description: describe the way that the Turing
machine moves its head and the way that it stores data on its tape
high-level description: describe an algorithm, ignoring the
implementation details.

问: Then?
答: Practice with the possibilities…and be confident….

问: Then??
答: Set up a format and higher-level notation.

问: How? 答: 见下页
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 43 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: set up the notation of input, and the format of describing algorithms

types of input:
string w
object ⟨O⟩ as a string: Strings can easily represent polynomials,
graphs, grammars, automata, and any combination of those objects.
objects ⟨O1, O2, . . . , Ok⟩ as a string

format:
describe algorithms with an indented segment of text
break the algorithm into stages
The first line of the algorithm describes the input to the machine.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: set up the notation of input, and the format of describing algorithms

types of input:
string w
object ⟨O⟩ as a string: Strings can easily represent polynomials,
graphs, grammars, automata, and any combination of those objects.
objects ⟨O1, O2, . . . , Ok⟩ as a string

format:
describe algorithms with an indented segment of text
break the algorithm into stages
The first line of the algorithm describes the input to the machine.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

问: How?
答: set up the notation of input, and the format of describing algorithms

types of input:
string w
object ⟨O⟩ as a string: Strings can easily represent polynomials,
graphs, grammars, automata, and any combination of those objects.
objects ⟨O1, O2, . . . , Ok⟩ as a string

format:
describe algorithms with an indented segment of text
break the algorithm into stages
The first line of the algorithm describes the input to the machine.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 44 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (1) The following is a high-level description of a TM M that decides
A.

186 CHAPTER 3 / THE CHURCH---TURING THESIS

The following is a high-level description of a TM M that decides A.

M = “On input 〈G〉, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:
3. For each node in G, mark it if it is attached by an edge to a

node that is already marked.
4. Scan all the nodes of G to determine whether they all are

marked. If they are, accept ; otherwise, reject .”

For additional practice, let’s examine some implementation-level details of
Turing machine M . Usually we won’t give this level of detail in the future and
you won’t need to either, unless specifically requested to do so in an exercise.
First, we must understand how 〈G〉 encodes the graph G as a string. Consider
an encoding that is a list of the nodes of G followed by a list of the edges of G.
Each node is a decimal number, and each edge is the pair of decimal numbers
that represent the nodes at the two endpoints of the edge. The following figure
depicts such a graph and its encoding.

FIGURE 3.24

A graph G and its encoding 〈G〉

When M receives the input 〈G〉, it first checks to determine whether the
input is the proper encoding of some graph. To do so, M scans the tape to be
sure that there are two lists and that they are in the proper form. The first list
should be a list of distinct decimal numbers, and the second should be a list of
pairs of decimal numbers. Then M checks several things. First, the node list
should contain no repetitions; and second, every node appearing on the edge list
should also appear on the node list. For the first, we can use the procedure given
in Example 3.12 for TM M4 that checks element distinctness. A similar method
works for the second check. If the input passes these checks, it is the encoding
of some graph G. This verification completes the input check, and M goes on
to stage 1.

For stage 1, M marks the first node with a dot on the leftmost digit.
For stage 2, M scans the list of nodes to find an undotted node n1 and flags

it by marking it differently—say, by underlining the first symbol. Then M scans
the list again to find a dotted node n2 and underlines it, too.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details:

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details:
How ⟨G⟩ encodes the graph G as a string

Each node is a decimal number
each edge is the pair of decimal numbers

186 CHAPTER 3 / THE CHURCH---TURING THESIS

The following is a high-level description of a TM M that decides A.

M = “On input 〈G〉, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:
3. For each node in G, mark it if it is attached by an edge to a

node that is already marked.
4. Scan all the nodes of G to determine whether they all are

marked. If they are, accept ; otherwise, reject .”

For additional practice, let’s examine some implementation-level details of
Turing machine M . Usually we won’t give this level of detail in the future and
you won’t need to either, unless specifically requested to do so in an exercise.
First, we must understand how 〈G〉 encodes the graph G as a string. Consider
an encoding that is a list of the nodes of G followed by a list of the edges of G.
Each node is a decimal number, and each edge is the pair of decimal numbers
that represent the nodes at the two endpoints of the edge. The following figure
depicts such a graph and its encoding.

FIGURE 3.24

A graph G and its encoding 〈G〉

When M receives the input 〈G〉, it first checks to determine whether the
input is the proper encoding of some graph. To do so, M scans the tape to be
sure that there are two lists and that they are in the proper form. The first list
should be a list of distinct decimal numbers, and the second should be a list of
pairs of decimal numbers. Then M checks several things. First, the node list
should contain no repetitions; and second, every node appearing on the edge list
should also appear on the node list. For the first, we can use the procedure given
in Example 3.12 for TM M4 that checks element distinctness. A similar method
works for the second check. If the input passes these checks, it is the encoding
of some graph G. This verification completes the input check, and M goes on
to stage 1.

For stage 1, M marks the first node with a dot on the leftmost digit.
For stage 2, M scans the list of nodes to find an undotted node n1 and flags

it by marking it differently—say, by underlining the first symbol. Then M scans
the list again to find a dotted node n2 and underlines it, too.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details:
How to determine whether the input is the proper encoding of some
graph?

the first list should be a list of distinct decimal numbers
the second should be a list of pairs of decimal numbers.
the node list should contain no repetitions
every node appearing on the edge list should also appear on the node
list

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 1:
M marks the first node with a dot on the leftmost digit

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it
M scans the list of edges: test whether the two underlined nodes n1
and n2 are the ones appearing in that edge

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it
M scans the list of edges: test whether the two underlined nodes n1
and n2 are the ones appearing in that edge

If they are, M dots n1, removes the underlines, goes on from the
beginning of stage 2

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it
M scans the list of edges: test whether the two underlined nodes n1
and n2 are the ones appearing in that edge

If they aren’t, M checks the next edge on the list

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it
M scans the list of edges: test whether the two underlined nodes n1
and n2 are the ones appearing in that edge

If there are no more edges, {n1, n2} is not an edge of G

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it

Then M moves the underline on n2 to the next dotted node and now
calls this node n2.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it

Then M moves the underline on n2 to the next dotted node and now
calls this node n2.
check, as before, whether the new pair {n1, n2} is an edge ...

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it
M scans the list of nodes: find an dotted node n2 and underline it

Then M moves the underline on n2 to the next dotted node and now
calls this node n2.
check, as before, whether the new pair {n1, n2} is an edge ...
If there are no more dotted nodes, n1 is not attached to any dotted
nodes

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it

Then M sets the underlines so that n1 is the next undotted node and
repeats

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 2:
M scans the list of nodes: find an undotted node n1 and underline it

Then M sets the underlines so that n1 is the next undotted node and
repeats
If there are no more undotted nodes, M has not been able to find any
new nodes to dot, so it moves on to stage 4

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 45 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
3 The Definition of Algorithm | Terminology for describe Turing Machines

例
Design a TM M that decides A, where

A = {⟨G⟩ | G is a connected undirected graph}

答: (2) examine some implementation-level details: stage 4:
M scans the list of nodes to determine whether all are dotted

If they are, it enters the accept state
otherwise, it enters the reject state

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 46 / 50

https://faculty.ustc.edu.cn/huangwenchao

3.1 The Church-Turing Thesis
Outline

1 Introduction
2 Turing Machines

Definition
Examples

3 Variants of Turing Machines
Multitape Turing Machine
Nondeterministic Turing Machine
Enumerator
Equivalence with other models

4 The Definition of Algorithm
Hilbert’s Problems & The Church-Turing Thesis
Terminology for describe Turing Machines

5 Conclusions

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 47 / 50

https://faculty.ustc.edu.cn/huangwenchao

总结

定义
Turing Machine
configuration , yields
Start/Accepting/Rejecting/Halting Configuration
accept , recognize , Turing-recognizable
decide , Turing-decidable
multitape Turing machine , nondeterministic Turing machine
enumerator
algorithm , Church-Turing Thesis
Hilbert’s 10th problem

定理
multitape Turing machine has ≡ single-tape Turing machine
nondeterministic Turing machine has ≡ deterministic Turing machine
Turing-recognizable ∼ enumerator

推论
Turing-recognizable ∼ multitape Turing machine
Turing-recognizable ∼ nondeterministic Turing machine
Turing-decidable ∼ nondeterministic Turing machine

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 48 / 50

https://faculty.ustc.edu.cn/huangwenchao

作业

EXERCISES 187

Now M scans the list of edges. For each edge, M tests whether the two
underlined nodes n1 and n2 are the ones appearing in that edge. If they are,
M dots n1, removes the underlines, and goes on from the beginning of stage 2.
If they aren’t, M checks the next edge on the list. If there are no more edges,
{n1, n2} is not an edge of G. Then M moves the underline on n2 to the next
dotted node and now calls this node n2. It repeats the steps in this paragraph
to check, as before, whether the new pair {n1, n2} is an edge. If there are no
more dotted nodes, n1 is not attached to any dotted nodes. Then M sets the
underlines so that n1 is the next undotted node and n2 is the first dotted node
and repeats the steps in this paragraph. If there are no more undotted nodes,M
has not been able to find any new nodes to dot, so it moves on to stage 4.

For stage 4, M scans the list of nodes to determine whether all are dotted.
If they are, it enters the accept state; otherwise, it enters the reject state. This
completes the description of TM M .

EXERCISES

3.1 This exercise concerns TM M2, whose description and state diagram appear in Ex-
ample 3.7. In each of the parts, give the sequence of configurations that M2 enters
when started on the indicated input string.

a. 0.
Ab. 00.

c. 000.

d. 000000.

3.2 This exercise concerns TM M1, whose description and state diagram appear in Ex-
ample 3.9. In each of the parts, give the sequence of configurations that M1 enters
when started on the indicated input string.

Aa. 11.

b. 1#1.

c. 1##1.

d. 10#11.

e. 10#10.

A3.3 Modify the proof of Theorem 3.16 to obtain Corollary 3.19, showing that a lan-
guage is decidable iff some nondeterministic Turing machine decides it. (You may
assume the following theorem about trees. If every node in a tree has finitely many
children and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

3.4 Give a formal definition of an enumerator. Consider it to be a type of two-tape
Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

EXERCISES 187

Now M scans the list of edges. For each edge, M tests whether the two
underlined nodes n1 and n2 are the ones appearing in that edge. If they are,
M dots n1, removes the underlines, and goes on from the beginning of stage 2.
If they aren’t, M checks the next edge on the list. If there are no more edges,
{n1, n2} is not an edge of G. Then M moves the underline on n2 to the next
dotted node and now calls this node n2. It repeats the steps in this paragraph
to check, as before, whether the new pair {n1, n2} is an edge. If there are no
more dotted nodes, n1 is not attached to any dotted nodes. Then M sets the
underlines so that n1 is the next undotted node and n2 is the first dotted node
and repeats the steps in this paragraph. If there are no more undotted nodes,M
has not been able to find any new nodes to dot, so it moves on to stage 4.

For stage 4, M scans the list of nodes to determine whether all are dotted.
If they are, it enters the accept state; otherwise, it enters the reject state. This
completes the description of TM M .

EXERCISES

3.1 This exercise concerns TM M2, whose description and state diagram appear in Ex-
ample 3.7. In each of the parts, give the sequence of configurations that M2 enters
when started on the indicated input string.

a. 0.
Ab. 00.

c. 000.

d. 000000.

3.2 This exercise concerns TM M1, whose description and state diagram appear in Ex-
ample 3.9. In each of the parts, give the sequence of configurations that M1 enters
when started on the indicated input string.

Aa. 11.

b. 1#1.

c. 1##1.

d. 10#11.

e. 10#10.

A3.3 Modify the proof of Theorem 3.16 to obtain Corollary 3.19, showing that a lan-
guage is decidable iff some nondeterministic Turing machine decides it. (You may
assume the following theorem about trees. If every node in a tree has finitely many
children and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

3.4 Give a formal definition of an enumerator. Consider it to be a type of two-tape
Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 49 / 50

https://faculty.ustc.edu.cn/huangwenchao

作业

188 CHAPTER 3 / THE CHURCH---TURING THESIS

A3.5 Examine the formal definition of a Turing machine to answer the following ques-
tions, and explain your reasoning.

a. Can a Turing machine ever write the blank symbol ! on its tape?

b. Can the tape alphabet Γ be the same as the input alphabet Σ?

c. Can a Turing machine’s head ever be in the same location in two successive
steps?

d. Can a Turing machine contain just a single state?

3.6 In Theorem 3.21, we showed that a language is Turing-recognizable iff some enu-
merator enumerates it. Why didn’t we use the following simpler algorithm for the
forward direction of the proof? As before, s1, s2, . . . is a list of all strings in Σ∗.

E = “Ignore the input.
1. Repeat the following for i = 1, 2, 3,
2. RunM on si.
3. If it accepts, print out si.”

3.7 Explain why the following is not a description of a legitimate Turing machine.

Mbad = “On input 〈p〉, a polynomial over variables x1, . . . , xk:
1. Try all possible settings of x1, . . . , xk to integer values.
2. Evaluate p on all of these settings.
3. If any of these settings evaluates to 0, accept ; otherwise, reject .”

3.8 Give implementation-level descriptions of Turing machines that decide the follow-
ing languages over the alphabet {0,1}.

Aa. {w| w contains an equal number of 0s and 1s}

b. {w| w contains twice as many 0s as 1s}

c. {w| w does not contain twice as many 0s as 1s}

PROBLEMS

3.9 Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an
NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more
powerful (recognize a larger class of languages) than 0-PDAs.

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

A3.10 Say that a write-once Turing machine is a single-tape TM that can alter each tape
square at most once (including the input portion of the tape). Show that this variant
Turing machine model is equivalent to the ordinary Turing machine model. (Hint:
As a first step, consider the case whereby the Turing machine may alter each tape
square at most twice. Use lots of tape.)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 50 / 50

https://faculty.ustc.edu.cn/huangwenchao

	Introduction
	Turing Machines
	Definition
	Examples

	Variants of Turing Machines
	Multitape Turing Machine
	Nondeterministic Turing Machine
	Enumerator
	Equivalence with other models

	The Definition of Algorithm
	Hilbert's Problems & The Church-Turing Thesis
	Terminology for describe Turing Machines

	Conclusions

