形式语言与计算复染性第3章 Computability Theory 3．2 Decidability

黄文超

https：／／faculty．ustc．edu．cn／huangwenchao \longrightarrow 教学课程 \longrightarrow 形式语言与计算复杂性

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

Introduction

回顾：问：Why introducing Turing machine？
答：Prove that some problem cannot be solved algorithmically，i．e．， Hilbert＇s 10th problem

问：How？
答：Determine the Decidability
问：Why studying unsolvability？
答： 2 reasons
－You realize that the unsolvable problem must be simplified or altered before you can find an algorithmic solution
－Culture：stimulate your imagination and help you gain an important perspective on computation

3．2 Decidability

Introduction

回顾：问：Why introducing Turing machine？
答：Prove that some problem cannot be solved algorithmically，i．e．， Hilbert＇s 10th problem

问：How？
答：Determine the Decidability
问：Why studying unsolvability？
答： 2 reasons
－You realize that the unsolvable problem must be simplified or altered before you can find an algorithmic solution
－Culture：stimulate your imagination and help you gain an important perspective on computation

3．2 Decidability

Introduction

回顾：问：Why introducing Turing machine？
答：Prove that some problem cannot be solved algorithmically，i．e．， Hilbert＇s 10th problem

问：How？
答：Determine the Decidability
问：Why studying unsolvability？
答： 2 reasons
－You realize that the unsolvable problem must be simplified or altered before you can find an algorithmic solution．
－Culture：stimulate your imagination and help you gain an important perspective on computation

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

1．Decidable Languages

问：How to study the Decidability of problems？
答：Study the Decidability of the languages
问：Then？
答：Firstly，which are decidable？；Then，which are not？
问：Any examples of decidable language？
答：Let＇s play with Regular language，context－free language，
问：How to play？
答：Firstly，formally define the problem，i．e．，the language．Then prove the language is decidable

3．2 Decidability

1．Decidable Languages

问：How to study the Decidability of problems？
答：Study the Decidability of the languages
问：Then？
答：Firstly，which are decidable？；Then，which are not？
问：Any examples of decidable language？
答：Let＇s play with Regular language，context－free language，
问：How to play？
答：Firstly，formally define the problem，i．e．，the language．Then prove the language is decidable

3．2 Decidability

1．Decidable Languages

问：How to study the Decidability of problems？
答：Study the Decidability of the languages
问：Then？
答：Firstly，which are decidable？；Then，which are not？
问：Any examples of decidable language？
答：Let＇s play with Regular language，context－free language，．．．
问：How to play？
答：Firstly，formally define the problem，i．e．，the language．Then prove the
language is decidable

3．2 Decidability

1．Decidable Languages

问：How to study the Decidability of problems？
答：Study the Decidability of the languages
问：Then？
答：Firstly，which are decidable？；Then，which are not？
问：Any examples of decidable language？
答：Let＇s play with Regular language，context－free language，．．．
问：How to play？
答：Firstly，formally define the problem，i．e．，the language．Then prove the language is decidable

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of A_{DFA}

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明思路（Proof by Construction）

We simply need to present a TM M that decides A_{DFA} ． $M=$＂On input $\langle B, w\rangle$ ，where B is a DFA and w is a string：
（1）Simulate B on input w ．
（2）If the simulation ends in
－an accept state：accept
－a non－accepting state：reject

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

First，examine the input $\langle B, w\rangle$ ．
－Proper representation：
－B is simply a list of its five components：Q, Σ, δ, q_{0} ，and F
－When M receives its input，M first determines whether it properly represents a DFA B and a string w ．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

First，examine the input $\langle B, w\rangle$ ．
－Proper representation：
－B is simply a list of its five components：Q, Σ, δ, q_{0} ，and F
－When M receives its input，M first determines whether it properly represents a DFA B and a string w ．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

First，examine the input $\langle B, w\rangle$ ．
－Proper representation：
－B is simply a list of its five components：Q, Σ, δ, q_{0} ，and F
－When M receives its input，M first determines whether it properly represents a DFA B and a string w ．
－If not，M rejects．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

Then M carries out the simulation directly

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {DFA }}$

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

Then M carries out the simulation directly
－思路：It keeps track of B^{\prime} s current state and B^{\prime} s current position in the input w by writing this information down on its tape．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of A_{DFA}

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

Then M carries out the simulation directly
－Initially，B^{\prime} s current state is q_{0} and B^{\prime} s current input position is the leftmost symbol of w ．
－The states and position are updated according to the specified transition function δ ．
－When M finishes processing the last symbol of w ，
－M accepts the input if B is in an accepting state
－M rejects the input if B is in a nonaccepting state．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of A_{DFA}

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

Then M carries out the simulation directly
－Initially，B^{\prime} s current state is q_{0} and B^{\prime} s current input position is the leftmost symbol of w ．
－The states and position are updated according to the specified transition function δ ．
> －When M finishes processing the last symbol of w ，
> －M accepts the input if B is in an accepting state
> －M reiects the input if B is in a nonaccepting state．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of A_{DFA}

The language A_{DFA} is decidable，where

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

证明（Proof by Construction）

Then M carries out the simulation directly
－Initially，B^{\prime} s current state is q_{0} and B^{\prime} s current input position is the leftmost symbol of w ．
－The states and position are updated according to the specified transition function δ ．
－When M finishes processing the last symbol of w ，
－M accepts the input if B is in an accepting state
－M rejects the input if B is in a nonaccepting state．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of A_{NFA}

The language A_{NFA} is decidable，where
$A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B$ is an NFA that accepts input string $w\}$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {NFA }}$

The language $A_{\text {NFA }}$ is decidable，where
$A_{\text {NFA }}=\{\langle B, w\rangle \mid B$ is an NFA that accepts input string $w\}$

证明：Proof by Construction
 Present a TM N that decides $A_{\text {NFA }}$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {NFA }}$

The language $A_{\text {NFA }}$ is decidable，where

$$
A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B \text { is an NFA that accepts input string } w\}
$$

证明：Proof by Construction

Present a TM N that decides $A_{\text {NFA }}$

- 方法 1：Operate like \underline{M}
- 方法 2：New idea：Have N use \underline{M} as a subroutine
－N converts the $N F A$ it receives as input to a DFA
－Pass the DFA and w to M

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {NFA }}$

The language A_{NFA} is decidable，where

$$
A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B \text { is an NFA that accepts input string } w\}
$$

证明：Proof by Construction

Present a TM N that decides $A_{\text {NFA }}$

- 方法 1：Operate like M
- 方法 2：New idea：Have N use \underline{M} as a subroutine
－N converts the NFA it receives as input to a DFA
－Pass the DFA and w to \underline{M}

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {NFA }}$

The language A_{NFA} is decidable，where

$$
A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B \text { is an NFA that accepts input string } w\}
$$

证明：Proof by Construction

Present a TM N that decides $A_{\text {NFA }}$
$N=$＂On input $\langle B, w\rangle$ ，where B is an NFA and w is a string：
（1）Convert NFA B to an equivalent DFA C
（2）Run TM \underline{M} on input $\langle C, w\rangle$
（3）If \underline{M} accepts，accept；otherwise，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {REX }}$

The language $A_{\text {REX }}$ is decidable，where
$A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is a regular expression that generates string $w\}$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $A_{\text {REX }}$

The language $A_{\text {REX }}$ is decidable，where
$A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is a regular expression that generates string $w\}$

证明

The following TM P decides $A_{\text {REX }}$
$P=$＂On input $\langle R, w\rangle$ ，where R is a regular expression and w is a string：
（1）Convert regular expression R to an equivalent NFA A
（2）Run TM \underline{N} on input $\langle A, w\rangle$ ．
（3）If \underline{N} accepts，accept；if \underline{N} rejects，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E_{\text {DFA }}$

The language E_{DFA} is decidable，where

$$
E_{\mathrm{DFA}}=\{\langle A\rangle \mid A \text { is a DFA and } L(A)=\emptyset\}
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of E_{DFA}

The language E_{DFA} is decidable，where

$$
E_{\mathrm{DFA}}=\{\langle A\rangle \mid A \text { is a DFA and } L(A)=\emptyset\}
$$

证明（Proof by Construction）

Design a TM T
$T=$＂On input $\langle A\rangle$ ，where A is a DFA：
（1）Mark the start state of A
（2）Repeat until no new states get marked
（3）Mark any state that has a transition coming into it from any state that is already marked．
（9）If no accept state is marked，accept；otherwise，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\mathrm{DFA}}$

The language $E Q_{\mathrm{DFA}}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\mathrm{DFA}}$

The language $E Q_{\text {DFA }}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

准备：Construct a DFA C

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\mathrm{DFA}}$

The language $E Q_{\text {DFA }}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

准备：Construct a DFA C

－The language of C is

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\text {DFA }}$

The language $E Q_{\mathrm{DFA}}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

准备：Construct a DFA C

－The language of C is

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

－Prove class of regular languages closed under complementation， union，and intersection．So C can be a DFA．
－DFA C can be constructed by a TM
\square

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\text {DFA }}$

The language $E Q_{\text {DFA }}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

准备：Construct a DFA C

－The language of C is

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

－Prove class of regular languages closed under complementation， union，and intersection．So C can be a DFA．
－DFA C can be constructed by a TM

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\text {DFA }}$

The language $E Q_{\text {DFA }}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

准备：Construct a DFA C

－The language of C is

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

－Prove class of regular languages closed under complementation， union，and intersection．So C can be a DFA．
－DFA C can be constructed by a TM
－$L(C)=\emptyset$ iff $L(A)=L(B)$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Regular Languages

定理：Decidability of $E Q_{\text {DFA }}$

The language $E Q_{\text {DFA }}$ is decidable，where

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

证明（Proof by Construction）

$F=$＂On input $\langle A, B\rangle$ ，where A and B are DFAs：
（1）Construct DFA \underline{C} as described
（2）Run TM \underline{T} on input $\langle C\rangle$
（3）If T accepts，accept．If T rejects，reject．＂

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of A_{CFG}

The language A_{CFG} is decidable，where

$$
A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\}
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of A_{CFG}

The language A_{CFG} is decidable，where

$$
A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\}
$$

证明思路

可选方案：

（1）use G to go through all derivations to determine whether any is a derivation of w ．
－This idea doesn＇t work，as infinitely many derivations may have to be tried
－If G does not generate w ，this algorithm would never halt．
（2）ensure that the algorithm tries only finitely many derivations
－Convert G into Chomsky normal form
－anv derivation of w has $2 n-1$ steps

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of A_{CFG}

The language A_{CFG} is decidable，where

$$
A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\}
$$

证明思路

可选方案：

（1）use G to go through all derivations to determine whether any is a derivation of w ．
－This idea doest t work，as infinitely many derivations may have to be
－If G does not generate w ，this algorithm would never halt．
（2）ensure that the algorithm tries only finitely many derivations
－Convert G into Chomsky normal form
－any derivation of w has $2 n-1$ steps

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of A_{CFG}

The language A_{CFG} is decidable，where

$$
A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\}
$$

证明（Proof by Construction）

The TM S for A_{CFG} follows．
$S=$＂On input $\langle G, w\rangle$ ，where G is a CFG and w is a string：
（1）Convert G to an equivalent grammar in Chomsky normal form．
（2）List all derivations with $2 n-1$ steps，where n is the length of w ； except if $n=0$ ，then instead list all derivations with one step．
（3）If any of these derivations generate w ，accept；if not，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案：
3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案： use TM \underline{S}－It states that we can test whether a CFG generates some particular string w ．
－The algorithm might try going through all possible w＇s，one by one
－there are infinitely many w^{\prime} s to try

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案： use TM \underline{S}－It states that we can test whether a CFG generates some particular string w ．
－The algorithm might try going through all possible $w^{\prime} s$ ，one by one
－there are infinitely many $w^{\prime} \mathrm{s}$ to try

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案： use TM \underline{S}－It states that we can test whether a CFG generates some particular string w ．
－The algorithm might try going through all possible $w^{\prime} \mathrm{s}$ ，one by one
－there are infinitely many w＇s to try

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案： use TM \underline{S}－It states that we can test whether a CFG generates some particular string w ．
－The algorithm might try going through all possible $w^{\prime} \mathrm{s}$ ，one by one
－there are infinitely many $w^{\prime} \mathrm{s}$ to try

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案：

Propagate from terminal symbols
－First，the algorithm marks all the terminal symbols in the grammar
－Then，it scans all the rules of the grammar
－If it ever finds a rule that permits some variable to be replaced by some string of symbols，all of which are already marked，the algorithm knows that this variable can be marked，too

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案：

Propagate from terminal symbols
－First，the algorithm marks all the terminal symbols in the grammar
－Then，it scans all the rules of the grammar
－If it ever finds a rule that permits some variable to be replaced by some string of symbols，all of which are already marked，the algorithm knows that this variable can be marked，too

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明思路

可选方案：

Propagate from terminal symbols
－First，the algorithm marks all the terminal symbols in the grammar
－Then，it scans all the rules of the grammar
－If it ever finds a rule that permits some variable to be replaced by some string of symbols，all of which are already marked，the algorithm knows that this variable can be marked，too

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理：Decidability of E_{CFG}

The language E_{CFG} is decidable，where

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

证明（Proof by Construction）

$R=$＂On input $\langle G\rangle$ ，where G is a CFG：
（1）Mark all terminal symbols in G
（2）Repeat until no new variables get marked：
（3）Mark any variable A where G has a rule $A \rightarrow U_{1} U_{2} \cdots U_{k}$ and each symbol U_{1}, \ldots, U_{k} has already been marked
（9）If the start variable is not marked，accept；otherwise，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

问题：Decidability of $E Q_{\text {CFG }}$

Is the language $E Q_{\mathrm{CFG}}$ decidable？

$$
E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\} .
$$

答：No！
问：Why not designing a TM similar to TM \underline{F} ？
答：The design of F depends on closure property under complementation or intersection

问：How to prove that $E Q_{\mathrm{CFG}}$ is not decidable？
答：See Chap 3．3 Reducibility．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

问题：Decidability of $E Q_{\text {CFG }}$

Is the language $E Q_{\mathrm{CFG}}$ decidable？

$$
E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\} .
$$

答：No！

问：Why not designing a TM similar to TM \underline{F} ？
答：The design of F depends on closure property under complementation or intersection

问：How to prove that $E Q_{\mathrm{CFG}}$ is not decidable？
答：See Chap 3．3 Reducibility．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

问题：Decidability of $E Q_{\text {CFG }}$

Is the language $E Q_{\mathrm{CFG}}$ decidable？

$$
E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\} .
$$

答：No！

问：Why not designing a TM similar to TM \underline{F} ？
答：The design of F depends on closure property under complementation or intersection

问：How to prove that $E Q_{\mathrm{CFG}}$ is not decidable？
答
See Chap 3．3 Reducibility．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

问题：Decidability of $E Q_{\text {CFG }}$

Is the language $E Q_{\mathrm{CFG}}$ decidable？

$$
E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\} .
$$

答：No！
问：Why not designing a TM similar to TM \underline{F} ？
答：The design of F depends on closure property under complementation or intersection

问：How to prove that $E Q_{\mathrm{CFG}}$ is not decidable？
答：See Chap 3．3 Reducibility．

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理

Every context－free language is decidable

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理

Every context－free language is decidable

证明

Let A be a CFL．
Let G be a CFG for A ．
Design a TM M_{G} that decides A ．
$M_{G}=$＂On input w ：
（1）Run TM \underline{S} on input $\langle G, w\rangle$ ．
（2）If this machine accepts，accept；if it rejects，reject．＂

3．2 Decidability

1．Decidable Languages｜Decidable Problems Concerning Context－free Languages

定理

Every context－free language is decidable

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

2．Undecidability
问：What sorts of problems are unsolvable by computer？Are they esoteric （深奥），dwelling only in the minds of theoreticians？
答：No！Even some ordinary problems that people want to solve turn out to be computationally unsolvable．

问：Any examples？
答：The general problem of software verification is not solvable by computer

问：So，why do we study undecidability？
答： 2 points
－help you develop a feeling for the types of problems that are unsolvable
－to learn techniques for proving unsolvability．

3．2 Decidability

2．Undecidability
问：What sorts of problems are unsolvable by computer？Are they esoteric （深奥），dwelling only in the minds of theoreticians？
答：No！Even some ordinary problems that people want to solve turn out to be computationally unsolvable．

问：Any examples？
答：The general problem of software verification is not solvable by computer．

So，why do we study undecidability？
答： 2 points
－help you cevelop a feeling for the types of problems that are
－to learn techniques for proving unsolvability．

3．2 Decidability

2．Undecidability

问：What sorts of problems are unsolvable by computer？Are they esoteric （深奥），dwelling only in the minds of theoreticians？
答：No！Even some ordinary problems that people want to solve turn out to be computationally unsolvable．

问：Any examples？
答：The general problem of software verification is not solvable by computer．

问：So，why do we study undecidability？
答： 2 points
－help you develop a feeling for the types of problems that are unsolvable
－to learn techniques for proving unsolvability．
问：Now，what is first undecidable problem to analyze？

3．2 Decidability

2．Undecidability

问：What sorts of problems are unsolvable by computer？Are they esoteric （深奥），dwelling only in the minds of theoreticians？
答：No！Even some ordinary problems that people want to solve turn out to be computationally unsolvable．

问：Any examples？
答：The general problem of software verification is not solvable by computer．

问：So，why do we study undecidability？
答： 2 points
－help you develop a feeling for the types of problems that are unsolvable
－to learn techniques for proving unsolvability．
问：Now，what is first undecidable problem to analyze？
答：A_{TM}

3．2 Decidability

2．Undecidability

定理

The language A_{TM} is recognizable but undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

问：How to prove that A_{TM} is recognizable？
答：construct a Turing machine U ：
$\mathrm{U}=$＂On input $\langle M, w\rangle$ ，where M is a TM and w is a string：
© Simulate M on input w
（2）If M ever enters its accept state，accept；if M ever enters its reject state，reject．＂

问：Why is $A_{\text {TM }}$ undecidable？
答：M may loop on w
问：How to formally prove the undecidability？

3．2 Decidability

2．Undecidability

定理

The language A_{TM} is recognizable but undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

问：How to prove that A_{TM} is recognizable？
答：construct a Turing machine U ：

（1）Simulate M on input w
（2）If M ever enters its accept state，accept；if M ever enters its reject state，reject．＂

问：Why is $A_{\text {TM }}$ undecidable？

3．2 Decidability

2．Undecidability

定理

The language A_{TM} is recognizable but undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

问：How to prove that A_{TM} is recognizable？
答：construct a Turing machine U ：
$\mathrm{U}=$＂On input $\langle M, w\rangle$ ，where M is a TM and w is a string：
（1）Simulate M on input w
（2）If M ever enters its accept state，accept；if M ever enters its reject state，reject．＂
问：Why is A_{TM} undecidable？
答：M may loop on w
问：How to formally prove the undecidability？

3．2 Decidability

2．Undecidability

定理

The language A_{TM} is recognizable but undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

问：How to prove that A_{TM} is recognizable？
答：construct a Turing machine U ：
$\mathrm{U}=$＂On input $\langle M, w\rangle$ ，where M is a TM and w is a string：
（1）Simulate M on input w
（2）If M ever enters its accept state，accept；if M ever enters its reject state，reject．＂
问：Why is $A_{\text {TM }}$ undecidable？
答：M may loop on w
问：How to formally prove the undecidability？

3．2 Decidability

2．Undecidability

定理

The language A_{TM} is recognizable but undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

问：How to prove that A_{TM} is recognizable？
答：construct a Turing machine U ：
$\mathrm{U}=$＂On input $\langle M, w\rangle$ ，where M is a TM and w is a string：
（1）Simulate M on input w
（2）If M ever enters its accept state，accept；if M ever enters its reject state，reject．＂
问：Why is $A_{\text {TM }}$ undecidable？
答：M may loop on w
问：How to formally prove the undecidability？
答：－Proof

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

2．Undecidability｜The Diagonalization Method

问：How to prove the undecidability of a language？
答：Use the technique called Diagonalization（对角论证法）
问：The origin of Diagonalization？
答：Discovered by mathematician Georg Cantor in 1873
－used in the problem of measuring the sizes of infinite sets
－i．e．，how to compare the relative size of 2 infinite sets？
－Idea：two finite sets have the same size if the elements of one set can be paired with the elements of the other set．

3．2 Decidability

2．Undecidability｜The Diagonalization Method

问：How to prove the undecidability of a language？
答：Use the technique called Diagonalization（对角论证法）
问：The origin of Diagonalization？
答：Discovered by mathematician Georg Cantor in 1873
－used in the problem of measuring the sizes of infinite sets
－i．e．，how to compare the relative size of 2 infinite sets？
－Idea：two finite sets have the same size if the elements of one set can be paired with the elements of the other set．

3．2 Decidability

2．Undecidability｜The Diagonalization Method
定义：one－to－one，onto，same size，correspondence
Assume that we have sets A and B and a function f from A to B ．Say that f is
－one－to－one，or injective：$f(a) \neq f(b)$ whenever $a \neq b$
－onto，or surjective：for every $b \in B$ ，there is an $a \in A$ such that $f(a)=b$
－correspondence，or bijective：both one－to－one and onto
Say that A and B have the same size if there is a correspondence function $f: A \rightarrow B$ ．

3．2 Decidability

2．Undecidability｜The Diagonalization Method
定义：one－to－one，onto，same size，correspondence
Assume that we have sets A and B and a function f from A to B ．Say that f is
－one－to－one，or injective：$f(a) \neq f(b)$ whenever $a \neq b$
－onto，or surjective：for every $b \in B$ ，there is an $a \in A$ such that

$$
f(a)=b
$$

－correspondence，or bijective：both one－to－one and onto
Say that A and B have the same size if there is a correspondence function $f: A \rightarrow B$ ．

例：same size

Let \mathcal{N} be the set of natural numbers $\{1,2,3, \ldots\}$
Let \mathcal{E} be the set of even natural numbers $\{2,4,6, \ldots\}$
\mathcal{N} and \mathcal{E} have the same size

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定义：countable

A set A is countable if either it is finite or it has the same size as \mathcal{N}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定义：countable

A set A is countable if either it is finite or it has the same size as \mathcal{N}

例

Let $Q=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathcal{N}\right\}, Q$ is countable

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}
－Find an x in \mathcal{R} that is not paired with anything in \mathcal{N}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}
－In other words，ensure that $x \neq f(n)$ for any n

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}
－Let the nth fractional digit of x be anything different from the $n t h$ fractional digit of $f(n)$

n	$f(n)$	
1	$3.14159 \ldots$	
2	$55.5 \underline{5} 555 \ldots$	
3	$0.12 \underline{3} 45 \ldots$	$x=0.4641 \ldots$
4	$0.500 \underline{0} 0 \ldots$	

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}
－So x is different from any $f(n)$

3．2 Decidability

2．Undecidability｜The Diagonalization Method

定理：uncountable of \mathcal{R}

\mathcal{R} is uncountable， where \mathcal{R} is the set of real numbers，e．g．，$\pi=3.14 \ldots, \sqrt{2}=1.414 \ldots$

证明：（Proof by Contradiction）

－Suppose that a correspondence f existed between \mathcal{N} and \mathcal{R}
－So x is different from any $f(n)$
－Contradiction

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

－Suppose that every language are Turing－recognizable

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

－Suppose that every language are Turing－recognizable
－The set of all Turing－machines has at least the same size with the set of all languages

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

－Suppose that every language are Turing－recognizable
－The set of all Turing－machines has at least the same size with the set of all languages
－Proof by Contradiction：
（1）The set of all Turing－machines is countable
（2）The set of all languages is uncountable

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（1）Prove：The set of all Turing－machines is countable
－Because each Turing machine M has an encoding into a string $\langle M\rangle$ －The set of all strings Σ^{*} is countable for any alphabet Σ
－（1）is Proved

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（1）Prove：The set of all Turing－machines is countable
－Because each Turing machine M has an encoding into a string $\langle M\rangle$ －The set of all strings Σ^{*} is countable for any alphabet Σ
－（1）is Proved

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（1）Prove：The set of all Turing－machines is countable
－Because each Turing machine M has an encoding into a string $\langle M\rangle$
－The set of all strings Σ^{*} is countable for any alphabet Σ
－We may form a list of Σ^{*} by writing down all strings of length 0 ，length 1 ，length 2，and so on

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（1）Prove：The set of all Turing－machines is countable
－Because each Turing machine M has an encoding into a string $\langle M\rangle$
－The set of all strings Σ^{*} is countable for any alphabet Σ
－We may form a list of Σ^{*} by writing down all strings of length 0 ，length 1，length 2，and so on
－（1）is Proved

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable －Let \mathcal{B} be the set of all infinite binary sequences．
－Prove：

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable
－Let \mathcal{B} be the set of all infinite binary sequences．
－An infinite binary sequence is an unending sequence of 0 s and 1 s ．
－Prove：

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable
－Let \mathcal{B} be the set of all infinite binary sequences．
－An infinite binary sequence is an unending sequence of 0 s and 1 s ．
－Prove：

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable
－Let \mathcal{B} be the set of all infinite binary sequences．
－An infinite binary sequence is an unending sequence of 0 s and 1 s ．
－Prove：
－（2．1） \mathcal{B} is uncountable，similar to the Theorem
－（2．2）Prove Obligation：There is a correspondence $f: \mathcal{L} \rightarrow \mathcal{B}$ ，
－i．e．，each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable
－Let \mathcal{B} be the set of all infinite binary sequences．
－An infinite binary sequence is an unending sequence of 0 s and 1 s ．
－Prove：
－（2．1） \mathcal{B} is uncountable，similar to the Theorem
－（2．2）Prove Obligation：There is a correspondence $f: \mathcal{L} \rightarrow \mathcal{B}$ ，
each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable
－Let \mathcal{B} be the set of all infinite binary sequences．
－An infinite binary sequence is an unending sequence of 0 s and 1 s ．
－Prove：
－（2．1） \mathcal{B} is uncountable，similar to the Theorem
－（2．2）Prove Obligation：There is a correspondence $f: \mathcal{L} \rightarrow \mathcal{B}$ ，
－i．e．，each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2．2）Prove Obligation：Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2．2）Prove Obligation：Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B} Prove：Let $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ ：
－The i th bit of that sequence（characteristic sequence of A, χ_{A} ）is

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2．2）Prove Obligation：Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}
Prove：Let $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ ：
－The i th bit of that sequence（characteristic sequence of A, χ_{A} ）is
－a 1 if $s_{i} \in A$
－a 0 if $s_{i} \notin A$

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2．2）Prove Obligation：Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}
Prove：Let $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ ：For simplicity，if $\Sigma=\{0,1\}$
－The i th bit of that sequence（characteristic sequence of A, χ_{A} ）is
－a 1 if $s_{i} \in A$
－a 0 if $s_{i} \notin A$

$$
\begin{aligned}
& \Sigma^{*}=\{\varepsilon, \quad 0, \quad 1, \quad 00,01,10,11,000,001, \cdots\} ; \\
& A=\{\quad 0, \quad 00,01, \quad 000,001, \cdots\} \text {; } \\
& \chi_{A}=\begin{array}{llllllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

（2）Prove：The set of all languages，denoted as \mathcal{L} over Σ ，is uncountable －Let \mathcal{B} be the set of all infinite binary sequences．
－Prove：
－（2．2）Prove Obligation：There is a correspondence $f: \mathcal{L} \rightarrow \mathcal{B}$ ，
－i．e．，each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

3．2 Decidability

2．Undecidability｜The Diagonalization Method

推论

Some languages are not Turing－recognizable．

证明：（Proof by Contradiction）

－Proof by Contradiction：
（1）The set of all Turing－machines is countable
（2）The set of all languages is uncountable
Proved

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}（Recall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}（Recall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM} CRean

The language $A_{\text {TM }}$ is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

－Construct a TM D using H
$D=$＂On input $\langle M\rangle$ ，where M is a TM：
（1）Run H on input $\langle M,\langle M\rangle\rangle$ ．
（2）Output the opposite of what H outputs．That is，if H accepts，reject； and if H rejects，accept．＂

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}（Recall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
\begin{gathered}
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\
\text { reject } & \text { if } M \text { does not accept } w\end{cases} \\
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\
\text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
\end{gathered}
$$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
\begin{gathered}
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\
\text { reject } & \text { if } M \text { does not accept } w\end{cases} \\
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\
\text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases} \\
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\
\text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
\end{gathered}
$$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}（Recall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
\begin{gathered}
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\
\text { reject } & \text { if } M \text { does not accept } w\end{cases} \\
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\
\text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
\end{gathered}
$$

D rejects $\langle D\rangle$ exactly when D accepts $\langle D\rangle$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}（Recall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

证明：（Proof by Contradiction）

－Suppose that H is a decider for A_{TM} ，where

$$
\begin{gathered}
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\
\text { reject } & \text { if } M \text { does not accept } w\end{cases} \\
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\
\text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
\end{gathered}
$$

D rejects $\langle D\rangle$ exactly when D accepts $\langle D\rangle$
Contradiction．Proved．

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM} CRecall

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

分析：Diagonalization：

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

分析：Diagonalization：

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots
M_{1}	accept		accept		
M_{2}	accept	accept	accept	accept	
M_{3}					\ldots
M_{4}	accept	accept			
\vdots		\vdots			

图：Entry i, j is accept if M_{i} accepts $\left\langle M_{j}\right\rangle$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

分析：Diagonalization：

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots
M_{1}	accept	reject	accept	reject	
M_{2}	accept	accept	accept	accept	\ldots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	
\vdots		\vdots			

图：Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

分析：Diagonalization：D computes the opposite of the diagonal entries

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots	$\langle D\rangle$	\ldots
M_{1}	accept	reject	accept	reject		accept	
M_{2}	$\frac{\text { accept }}{}$	accept	accept	accept	\ldots	accept	
M_{3}	reject	$\frac{\text { reject }}{}$	reject	reject	\ldots	reject	\ldots
M_{4}	accept	accept	$\frac{\text { reject }}{\text { reject }}$	$\underline{\text { reject }}$		accept	
\vdots			\vdots		\ddots		
D	reject	reject	accept	accept		？	
\vdots			\vdots				\ddots

图：Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$

3．2 Decidability

2．Undecidability｜An Undecidable Language

定理：Undecidability of A_{TM}

The language A_{TM} is undecidable，where

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } \mathrm{M} \text { accepts } w\}
$$

分析：Diagonalization：D computes the opposite of the diagonal entries

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots	$\langle D\rangle$	
M_{1}	accept	reject	accept	reject		accept	
M_{2}	accept	accept	accept	accept		accept	
M_{3}	reject	reject	reject	reject		reject	
M_{4}	accept	accept	reject	$\underline{\text { reject }}$		accept	
D	reject	reject	accept	accept		？	

图：Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$
If D is in the figure，a contradiction occurs at＂？＂

3．2 Decidability

Outline
（1）Introduction
（2）Decidable Languages
－Decidable Problems Concerning Regular Languages
－Decidable Problems Concerning Context－free Languages
（3）Undecidability
－The Diagonalization Method
－An Undecidable Language
－A Turing－unrecognizable Language

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

问：Besides undecidable，is there a language even not Turing－recognizable？答：Yes

问：How to prove it？
答：Define co－Turing－recognizable first．

宿以 CO－Turing－recognizable
 A language is co－Turing－recognizable if it is the complement of a
 Turing－recognizable language

问：Then？
答：Show a Theorem（加下页），and then prove by using the Theorem

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

问：Besides undecidable，is there a language even not Turing－recognizable？答：Yes

问：How to prove it？
答：Define co－Turing－recognizable first．

定义：co－Turing－recognizable

A language is co－Turing－recognizable if it is the complement of a Turing－recognizable language

Then？
Show a Theorem（加下页），and then prove by using the Theorem

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

问：Besides undecidable，is there a language even not Turing－recognizable？答：Yes

问：How to prove it？
答：Define co－Turing－recognizable first．

定义：co－Turing－recognizable

A language is co－Turing－recognizable if it is the complement of a Turing－recognizable language

问：Then？
答：Show a Theorem（加下页），and then prove by using the Theorem

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 1：If A is decidable
Let M be the decider for A
－If $w \in A, M$ accepts w ，so A is Turing－recognizable o If $\omega \in \bar{A}$ i．e．，$w \notin A, M$ rejects $A, 50 A$ is co－Turing－recognizable

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 1：If A is decidable
Let M be the decider for A
－If $w \in A, M$ accepts w ，so A is Turing－recognizable
－If $w \in \bar{A}$ ，i．e．，$w \notin A, M$ rejects A ，so A is co－Turing－recognizable

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 1：If A is decidable

Let M be the decider for A
－If $w \in A, M$ accepts w ，so A is Turing－recognizable
－If $w \in \bar{A}$ ，i．e．，$w \notin A, M$ rejects A ，so A is co－Turing－recognizable

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 2：If A is Turing－recognizable and co－Turing－recognizable
Let M_{1} be the recognizer for A
Let M_{2} be the recognizer for \bar{A}

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 2：If A is Turing－recognizable and co－Turing－recognizable
Let M_{1} be the recognizer for A
Let M_{2} be the recognizer for \bar{A}
Construct the TM M ：

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

证明 2：If A is Turing－recognizable and co－Turing－recognizable
Let M_{1} be the recognizer for A
Let M_{2} be the recognizer for \bar{A}
Construct the TM M ：
$M=$＂On input w ：
（1）Run both M_{1} and M_{2} on input w in parallel
（2）If M_{1} accepts，accept；if M_{2} accepts，reject．＂

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

推论

$A_{\text {TM }}$ is not Turing－recognizable

讯明：（Proof by Contradiction）
－$A_{\text {TM }}$ is Turing－recognizable
－If $\overline{A_{\text {TM }}}$ is Turing－recognizable
－$A_{\text {TM }}$ is co－Turing－recognizable
－A_{TM} is decidable
－Contradiction．Proved

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

推论

$\overline{A_{\mathrm{TM}}}$ is not Turing－recognizable

评明：（Proof by Contradiction）
－$A_{\text {TM }}$ is Turing－recognizable
－If $\overline{A_{\mathrm{TM}}}$ is Turing－recognizable
－A_{TM} is co－Turing－recognizable
－A_{TM} is decidable
－Contradiction．Proved

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language

定理

A language is decidable，iff it is Turing－recognizable and co－Turing－recognizable．

推论

$\overline{A_{\mathrm{TM}}}$ is not Turing－recognizable

证明：（Proof by Contradiction）

－A_{TM} is Turing－recognizable
－If $\overline{A_{\mathrm{TM}}}$ is Turing－recognizable
－$A_{\text {TM }}$ is co－Turing－recognizable
－A_{TM} is decidable
－Contradiction．Proved

3．2 Decidability

2．Undecidability｜A Turing－unrecognizable Language
总结
－定义：
－one－to－one，onto，same size，correspondence
－countable，co－Turing－recognizable
－定理：
－uncountable of \mathcal{R}
－decidable \equiv Turing－recognizable \wedge co－Turing－recognizable
－推论：
－Some languages are not Turing－recognizable
－Decidable：
－$A_{\mathrm{DFA}}, A_{\mathrm{NFA}}, A_{\mathrm{REX}}, \underline{E_{\mathrm{DFA}}}, E Q_{\mathrm{DFA}}$
－$\overline{A_{\mathrm{CFG}}}, \overline{E_{\mathrm{CFG}}}, \overline{\text { every }}$ context－free language
－Recognizable：A_{TM}
－Undecidable：$\underline{E Q_{\mathrm{CFG}}}$（Not proved yet），$\underline{A_{\mathrm{TM}}}$
－Turing－unrecognizable：$\overline{A_{\mathrm{TM}}}$

作业

4．1 Answer all parts for the following DFA M and give reasons for your answers．

a．Is $\langle M, 0100\rangle \in A_{\text {DFA }}$ ？
d．Is $\langle M, 0100\rangle \in A_{\text {REX }}$ ？
b．Is $\langle M, 011\rangle \in A_{\mathrm{DFA}}$ ？
e．Is $\langle M\rangle \in E_{\mathrm{DFA}}$ ？
c．Is $\langle M\rangle \in A_{\mathrm{DFA}}$ ？
f．Is $\langle M, M\rangle \in E Q_{\text {DFA }}$ ？

4．3 Let $A L L_{\mathrm{DFA}}=\left\{\langle A\rangle \mid A\right.$ is a DFA and $\left.L(A)=\Sigma^{*}\right\}$ ．Show that $A L L_{\mathrm{DFA}}$ is decidable．

作业

4．6 Let X be the set $\{1,2,3,4,5\}$ and Y be the set $\{6,7,8,9,10\}$ ．We describe the functions $f: X \longrightarrow Y$ and $g: X \longrightarrow Y$ in the following tables．Answer each part and give a reason for each negative answer．

n	$f(n)$
1	6
2	7
3	6
4	7
5	6

n	$g(n)$
1	10
2	9
3	8
4	7
5	6

A．Is f one－to－one？
b．Is f onto？
${ }^{\text {A }} \mathbf{d}$ ．Is g one－to－one？
e．Is g onto？
c．Is f a correspondence？

4．7 Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$ ．Show that \mathcal{B} is uncountable using a proof by diagonalization．

