
形式语言与计算复杂性
第 3 章 Computability Theory

3.2 Decidability

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式语言与计算复杂性

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 2 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 3 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Introduction

回顾: 问: Why introducing Turing machine?
答: Prove that some problem cannot be solved algorithmically, i.e.,
Hilbert’s 10th problem

问: How?
答: Determine the Decidability

问: Why studying unsolvability?
答: 2 reasons

You realize that the unsolvable problem must be simplified or altered
before you can find an algorithmic solution.
Culture: stimulate your imagination and help you gain an important
perspective on computation

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Introduction

回顾: 问: Why introducing Turing machine?
答: Prove that some problem cannot be solved algorithmically, i.e.,
Hilbert’s 10th problem

问: How?
答: Determine the Decidability

问: Why studying unsolvability?
答: 2 reasons

You realize that the unsolvable problem must be simplified or altered
before you can find an algorithmic solution.
Culture: stimulate your imagination and help you gain an important
perspective on computation

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Introduction

回顾: 问: Why introducing Turing machine?
答: Prove that some problem cannot be solved algorithmically, i.e.,
Hilbert’s 10th problem

问: How?
答: Determine the Decidability

问: Why studying unsolvability?
答: 2 reasons

You realize that the unsolvable problem must be simplified or altered
before you can find an algorithmic solution.
Culture: stimulate your imagination and help you gain an important
perspective on computation

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 4 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 5 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages

问: How to study the Decidability of problems?
答: Study the Decidability of the languages

问: Then?
答: Firstly, which are decidable?; Then, which are not?

问: Any examples of decidable language?
答: Let’s play with Regular language, context-free language, …

问: How to play?
答: Firstly, formally define the problem, i.e., the language. Then prove the
language is decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages

问: How to study the Decidability of problems?
答: Study the Decidability of the languages

问: Then?
答: Firstly, which are decidable?; Then, which are not?

问: Any examples of decidable language?
答: Let’s play with Regular language, context-free language, …

问: How to play?
答: Firstly, formally define the problem, i.e., the language. Then prove the
language is decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages

问: How to study the Decidability of problems?
答: Study the Decidability of the languages

问: Then?
答: Firstly, which are decidable?; Then, which are not?

问: Any examples of decidable language?
答: Let’s play with Regular language, context-free language, …

问: How to play?
答: Firstly, formally define the problem, i.e., the language. Then prove the
language is decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages

问: How to study the Decidability of problems?
答: Study the Decidability of the languages

问: Then?
答: Firstly, which are decidable?; Then, which are not?

问: Any examples of decidable language?
答: Let’s play with Regular language, context-free language, …

问: How to play?
答: Firstly, formally define the problem, i.e., the language. Then prove the
language is decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 6 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 7 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明思路 (Proof by Construction)
We simply need to present a TM M that decides ADFA.
M = “On input ⟨B, w⟩, where B is a DFA and w is a string:

1 Simulate B on input w.
2 If the simulation ends in

an accept state: accept
a non-accepting state: reject

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
First, examine the input ⟨B, w⟩.

Proper representation:
B is simply a list of its five components: Q, Σ, δ, q0, and F

When M receives its input, M first determines whether it properly
represents a DFA B and a string w.

If not, M rejects.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
First, examine the input ⟨B, w⟩.

Proper representation:
B is simply a list of its five components: Q, Σ, δ, q0, and F

When M receives its input, M first determines whether it properly
represents a DFA B and a string w.

If not, M rejects.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
First, examine the input ⟨B, w⟩.

Proper representation:
B is simply a list of its five components: Q, Σ, δ, q0, and F

When M receives its input, M first determines whether it properly
represents a DFA B and a string w.

If not, M rejects.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
Then M carries out the simulation directly

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
Then M carries out the simulation directly
思路: It keeps track of B’s current state and B’s current position
in the input w by writing this information down on its tape.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
Then M carries out the simulation directly

Initially, B’s current state is q0 and B’s current input position is
the leftmost symbol of w.
The states and position are updated according to the specified
transition function δ.
When M finishes processing the last symbol of w,

M accepts the input if B is in an accepting state
M rejects the input if B is in a nonaccepting state.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
Then M carries out the simulation directly

Initially, B’s current state is q0 and B’s current input position is
the leftmost symbol of w.
The states and position are updated according to the specified
transition function δ.
When M finishes processing the last symbol of w,

M accepts the input if B is in an accepting state
M rejects the input if B is in a nonaccepting state.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ADFA

The language ADFA is decidable, where
ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

证明 (Proof by Construction)
Then M carries out the simulation directly

Initially, B’s current state is q0 and B’s current input position is
the leftmost symbol of w.
The states and position are updated according to the specified
transition function δ.
When M finishes processing the last symbol of w,

M accepts the input if B is in an accepting state
M rejects the input if B is in a nonaccepting state.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 8 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ANFA

The language ANFA is decidable, where
ANFA = {⟨B, w⟩ | B is an NFA that accepts input string w}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ANFA

The language ANFA is decidable, where
ANFA = {⟨B, w⟩ | B is an NFA that accepts input string w}

证明: Proof by Construction
Present a TM N that decides ANFA

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ANFA

The language ANFA is decidable, where
ANFA = {⟨B, w⟩ | B is an NFA that accepts input string w}

证明: Proof by Construction
Present a TM N that decides ANFA

方法 1: Operate like M

方法 2: New idea: Have N use M as a subroutine
N converts the NFA it receives as input to a DFA
Pass the DFA and w to M

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ANFA

The language ANFA is decidable, where
ANFA = {⟨B, w⟩ | B is an NFA that accepts input string w}

证明: Proof by Construction
Present a TM N that decides ANFA

方法 1: Operate like M

方法 2: New idea: Have N use M as a subroutine
N converts the NFA it receives as input to a DFA
Pass the DFA and w to M

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of ANFA

The language ANFA is decidable, where
ANFA = {⟨B, w⟩ | B is an NFA that accepts input string w}

证明: Proof by Construction
Present a TM N that decides ANFA

N = “On input ⟨B, w⟩, where B is an NFA and w is a string:
1 Convert NFA B to an equivalent DFA C

2 Run TM M on input ⟨C, w⟩
3 If M accepts, accept; otherwise, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 9 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of AREX

The language AREX is decidable, where
AREX = {⟨R, w⟩ | R is a regular expression that generates string w}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of AREX

The language AREX is decidable, where
AREX = {⟨R, w⟩ | R is a regular expression that generates string w}

证明
The following TM P decides AREX

P = “On input ⟨R, w⟩, where R is a regular expression and w is a string:
1 Convert regular expression R to an equivalent NFA A

2 Run TM N on input ⟨A, w⟩.
3 If N accepts, accept; if N rejects, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 10 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EDFA

The language EDFA is decidable, where
EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 11 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EDFA

The language EDFA is decidable, where
EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}

证明 (Proof by Construction)
Design a TM T

T =“On input ⟨A⟩, where A is a DFA:
1 Mark the start state of A

2 Repeat until no new states get marked
3 Mark any state that has a transition coming into it from any state

that is already marked.
4 If no accept state is marked, accept; otherwise, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 11 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

准备: Construct a DFA C

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

准备: Construct a DFA C

The language of C is
L(C) =

(
L(A) ∩ L(B)

)
∪

(
L(A) ∩ L(B)

)

4.1 DECIDABLE LANGUAGES 197

The next theorem states that determining whether two DFAs recognize the
same language is decidable. Let

EQDFA = {〈A,B〉| A and B are DFAs and L(A) = L(B)}.

THEOREM 4.5

EQDFA is a decidable language.

PROOF To prove this theorem, we use Theorem 4.4. We construct a new
DFA C from A and B, where C accepts only those strings that are accepted by
either A or B but not by both. Thus, if A and B recognize the same language,
C will accept nothing. The language of C is

L(C) =
(
L(A) ∩ L(B)

)
∪
(
L(A) ∩ L(B)

)
.

This expression is sometimes called the symmetric difference of L(A) and L(B)
and is illustrated in the following figure. Here, L(A) is the complement of L(A).
The symmetric difference is useful here because L(C) = ∅ iff L(A) = L(B).
We can construct C from A and B with the constructions for proving the class
of regular languages closed under complementation, union, and intersection.
These constructions are algorithms that can be carried out by Turing machines.
Once we have constructed C, we can use Theorem 4.4 to test whether L(C) is
empty. If it is empty, L(A) and L(B) must be equal.

F = “On input 〈A,B〉, where A and B are DFAs:
1. Construct DFA C as described.
2. Run TM T from Theorem 4.4 on input 〈C〉.
3. If T accepts, accept . If T rejects, reject .”

FIGURE 4.6

The symmetric difference of L(A) and L(B)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

准备: Construct a DFA C

The language of C is
L(C) =

(
L(A) ∩ L(B)

)
∪

(
L(A) ∩ L(B)

)
Prove class of regular languages closed under complementation,
union, and intersection. So C can be a DFA.
DFA C can be constructed by a TM
L(C) = ∅ iff L(A) = L(B)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

准备: Construct a DFA C

The language of C is
L(C) =

(
L(A) ∩ L(B)

)
∪

(
L(A) ∩ L(B)

)
Prove class of regular languages closed under complementation,
union, and intersection. So C can be a DFA.
DFA C can be constructed by a TM
L(C) = ∅ iff L(A) = L(B)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

准备: Construct a DFA C

The language of C is
L(C) =

(
L(A) ∩ L(B)

)
∪

(
L(A) ∩ L(B)

)
Prove class of regular languages closed under complementation,
union, and intersection. So C can be a DFA.
DFA C can be constructed by a TM
L(C) = ∅ iff L(A) = L(B)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQDFA

The language EQDFA is decidable, where
EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

证明 (Proof by Construction)
F = “On input ⟨A, B⟩, where A and B are DFAs:

1 Construct DFA C as described
2 Run TM T on input ⟨C⟩
3 If T accepts, accept. If T rejects, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 12 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 13 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ACFG

The language ACFG is decidable, where
ACFG = {⟨G, w⟩ | G is a CFG that generates string w}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ACFG

The language ACFG is decidable, where
ACFG = {⟨G, w⟩ | G is a CFG that generates string w}

证明思路
可选方案:

1 use G to go through all derivations to determine whether any is a
derivation of w.

This idea doesn’t work, as infinitely many derivations may have to be
tried
If G does not generate w, this algorithm would never halt.

2 ensure that the algorithm tries only finitely many derivations
Convert G into Chomsky normal form
any derivation of w has 2n − 1 steps

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ACFG

The language ACFG is decidable, where
ACFG = {⟨G, w⟩ | G is a CFG that generates string w}

证明思路
可选方案:

1 use G to go through all derivations to determine whether any is a
derivation of w.

This idea doesn’t work, as infinitely many derivations may have to be
tried
If G does not generate w, this algorithm would never halt.

2 ensure that the algorithm tries only finitely many derivations
Convert G into Chomsky normal form
any derivation of w has 2n − 1 steps

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ACFG

The language ACFG is decidable, where
ACFG = {⟨G, w⟩ | G is a CFG that generates string w}

证明 (Proof by Construction)
The TM S for ACFG follows.
S = “On input ⟨G, w⟩, where G is a CFG and w is a string:

1 Convert G to an equivalent grammar in Chomsky normal form.
2 List all derivations with 2n − 1 steps, where n is the length of w;

except if n = 0, then instead list all derivations with one step.
3 If any of these derivations generate w, accept; if not, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 14 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
use TM S

It states that we can test whether a CFG generates some particular
string w.
The algorithm might try going through all possible w’s, one by one
there are infinitely many w’s to try

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
use TM S

It states that we can test whether a CFG generates some particular
string w.
The algorithm might try going through all possible w’s, one by one
there are infinitely many w’s to try

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
use TM S

It states that we can test whether a CFG generates some particular
string w.
The algorithm might try going through all possible w’s, one by one
there are infinitely many w’s to try

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
use TM S

It states that we can test whether a CFG generates some particular
string w.
The algorithm might try going through all possible w’s, one by one
there are infinitely many w’s to try

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
Propagate from terminal symbols

First, the algorithm marks all the terminal symbols in the grammar
Then, it scans all the rules of the grammar

If it ever finds a rule that permits some variable to be replaced by some
string of symbols, all of which are already marked, the algorithm knows
that this variable can be marked, too

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
Propagate from terminal symbols

First, the algorithm marks all the terminal symbols in the grammar
Then, it scans all the rules of the grammar

If it ever finds a rule that permits some variable to be replaced by some
string of symbols, all of which are already marked, the algorithm knows
that this variable can be marked, too

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明思路
可选方案:
Propagate from terminal symbols

First, the algorithm marks all the terminal symbols in the grammar
Then, it scans all the rules of the grammar

If it ever finds a rule that permits some variable to be replaced by some
string of symbols, all of which are already marked, the algorithm knows
that this variable can be marked, too

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of ECFG

The language ECFG is decidable, where
ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

证明 (Proof by Construction)
R = “On input ⟨G⟩, where G is a CFG:

1 Mark all terminal symbols in G

2 Repeat until no new variables get marked:
3 Mark any variable A where G has a rule A → U1U2 · · · Uk and each

symbol U1, . . . , Uk has already been marked
4 If the start variable is not marked, accept; otherwise, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 15 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

问题: Decidability of EQCFG

Is the language EQCFG decidable?
EQCFG = {⟨G, H⟩ | G and H are CFGs and L(G) = L(H)}.

答: No!

问: Why not designing a TM similar to TM F ?
答: The design of F depends on closure property under complementation
or intersection

问: How to prove that EQCFG is not decidable?
答: See Chap 3.3 Reducibility.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

问题: Decidability of EQCFG

Is the language EQCFG decidable?
EQCFG = {⟨G, H⟩ | G and H are CFGs and L(G) = L(H)}.

答: No!

问: Why not designing a TM similar to TM F ?
答: The design of F depends on closure property under complementation
or intersection

问: How to prove that EQCFG is not decidable?
答: See Chap 3.3 Reducibility.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

问题: Decidability of EQCFG

Is the language EQCFG decidable?
EQCFG = {⟨G, H⟩ | G and H are CFGs and L(G) = L(H)}.

答: No!

问: Why not designing a TM similar to TM F ?
答: The design of F depends on closure property under complementation
or intersection

问: How to prove that EQCFG is not decidable?
答: See Chap 3.3 Reducibility.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

问题: Decidability of EQCFG

Is the language EQCFG decidable?
EQCFG = {⟨G, H⟩ | G and H are CFGs and L(G) = L(H)}.

答: No!

问: Why not designing a TM similar to TM F ?
答: The design of F depends on closure property under complementation
or intersection

问: How to prove that EQCFG is not decidable?
答: See Chap 3.3 Reducibility.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 16 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理
Every context-free language is decidable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理
Every context-free language is decidable

证明
Let A be a CFL.
Let G be a CFG for A.

Design a TM MG that decides A.
MG = “On input w:

1 Run TM S on input ⟨G, w⟩.
2 If this machine accepts, accept; if it rejects, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理
Every context-free language is decidable 4.2 UNDECIDABILITY 201

FIGURE 4.10

The relationship among classes of languages

4.2
UNDECIDABILITY

In this section, we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that all
problems will eventually yield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sorts of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
computer.

In this section and in Chapter 5, you will encounter several computationally
unsolvable problems. We aim to help you develop a feeling for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 17 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 18 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

问: What sorts of problems are unsolvable by computer? Are they esoteric
(深奥), dwelling only in the minds of theoreticians?
答: No! Even some ordinary problems that people want to solve turn out
to be computationally unsolvable.

问: Any examples?
答: The general problem of software verification is not solvable by
computer.

问: So, why do we study undecidability?
答: 2 points

help you develop a feeling for the types of problems that are
unsolvable
to learn techniques for proving unsolvability.

问: Now, what is first undecidable problem to analyze?
答: ATM

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

问: What sorts of problems are unsolvable by computer? Are they esoteric
(深奥), dwelling only in the minds of theoreticians?
答: No! Even some ordinary problems that people want to solve turn out
to be computationally unsolvable.

问: Any examples?
答: The general problem of software verification is not solvable by
computer.

问: So, why do we study undecidability?
答: 2 points

help you develop a feeling for the types of problems that are
unsolvable
to learn techniques for proving unsolvability.

问: Now, what is first undecidable problem to analyze?
答: ATM

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

问: What sorts of problems are unsolvable by computer? Are they esoteric
(深奥), dwelling only in the minds of theoreticians?
答: No! Even some ordinary problems that people want to solve turn out
to be computationally unsolvable.

问: Any examples?
答: The general problem of software verification is not solvable by
computer.

问: So, why do we study undecidability?
答: 2 points

help you develop a feeling for the types of problems that are
unsolvable
to learn techniques for proving unsolvability.

问: Now, what is first undecidable problem to analyze?
答: ATM

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

问: What sorts of problems are unsolvable by computer? Are they esoteric
(深奥), dwelling only in the minds of theoreticians?
答: No! Even some ordinary problems that people want to solve turn out
to be computationally unsolvable.

问: Any examples?
答: The general problem of software verification is not solvable by
computer.

问: So, why do we study undecidability?
答: 2 points

help you develop a feeling for the types of problems that are
unsolvable
to learn techniques for proving unsolvability.

问: Now, what is first undecidable problem to analyze?
答: ATM

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 19 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

定理
The language ATM is recognizable but undecidable, where

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

问: How to prove that ATM is recognizable?
答: construct a Turing machine U :
U =“On input ⟨M, w⟩, where M is a TM and w is a string:

1 Simulate M on input w
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.”
问: Why is ATM undecidable?
答: M may loop on w

问: How to formally prove the undecidability?
答: Proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

定理
The language ATM is recognizable but undecidable, where

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

问: How to prove that ATM is recognizable?
答: construct a Turing machine U :
U =“On input ⟨M, w⟩, where M is a TM and w is a string:

1 Simulate M on input w
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.”
问: Why is ATM undecidable?
答: M may loop on w

问: How to formally prove the undecidability?
答: Proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

定理
The language ATM is recognizable but undecidable, where

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

问: How to prove that ATM is recognizable?
答: construct a Turing machine U :
U =“On input ⟨M, w⟩, where M is a TM and w is a string:

1 Simulate M on input w
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.”
问: Why is ATM undecidable?
答: M may loop on w

问: How to formally prove the undecidability?
答: Proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

定理
The language ATM is recognizable but undecidable, where

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

问: How to prove that ATM is recognizable?
答: construct a Turing machine U :
U =“On input ⟨M, w⟩, where M is a TM and w is a string:

1 Simulate M on input w
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.”
问: Why is ATM undecidable?
答: M may loop on w

问: How to formally prove the undecidability?
答: Proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability

定理
The language ATM is recognizable but undecidable, where

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

问: How to prove that ATM is recognizable?
答: construct a Turing machine U :
U =“On input ⟨M, w⟩, where M is a TM and w is a string:

1 Simulate M on input w
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.”
问: Why is ATM undecidable?
答: M may loop on w

问: How to formally prove the undecidability?
答: Proof

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 20 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 21 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

问: How to prove the undecidability of a language?
答: Use the technique called Diagonalization (对角论证法)

问: The origin of Diagonalization?
答: Discovered by mathematician Georg Cantor in 1873

used in the problem of measuring the sizes of infinite sets
i.e., how to compare the relative size of 2 infinite sets?

Idea: two finite sets have the same size if the elements of one set can
be paired with the elements of the other set.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 22 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

问: How to prove the undecidability of a language?
答: Use the technique called Diagonalization (对角论证法)

问: The origin of Diagonalization?
答: Discovered by mathematician Georg Cantor in 1873

used in the problem of measuring the sizes of infinite sets
i.e., how to compare the relative size of 2 infinite sets?

Idea: two finite sets have the same size if the elements of one set can
be paired with the elements of the other set.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 22 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定义: one-to-one, onto, same size, correspondence
Assume that we have sets A and B and a function f from A to B. Say
that f is

one-to-one, or injective: f(a) ̸= f(b) whenever a ̸= b

onto, or surjective: for every b ∈ B, there is an a ∈ A such that
f(a) = b

correspondence, or bijective: both one-to-one and onto
Say that A and B have the same size if there is a correspondence function
f : A → B.

例: same size
Let N be the set of natural numbers {1, 2, 3, . . . }
Let E be the set of even natural numbers {2, 4, 6, . . . }
N and E have the same size

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定义: one-to-one, onto, same size, correspondence
Assume that we have sets A and B and a function f from A to B. Say
that f is

one-to-one, or injective: f(a) ̸= f(b) whenever a ̸= b

onto, or surjective: for every b ∈ B, there is an a ∈ A such that
f(a) = b

correspondence, or bijective: both one-to-one and onto
Say that A and B have the same size if there is a correspondence function
f : A → B.

例: same size
Let N be the set of natural numbers {1, 2, 3, . . . }
Let E be the set of even natural numbers {2, 4, 6, . . . }
N and E have the same size

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 23 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定义: countable
A set A is countable if either it is finite or it has the same size as N

例
Let Q = {m

n | m, n ∈ N }, Q is countable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定义: countable
A set A is countable if either it is finite or it has the same size as N

例
Let Q = {m

n | m, n ∈ N }, Q is countable

204 CHAPTER 4 / DECIDABILITY

elements of Q. Then we pair the first element on the list with the number 1
from N , the second element on the list with the number 2 from N , and so on.
We must ensure that every member of Q appears only once on the list.

To get this list, we make an infinite matrix containing all the positive ratio-
nal numbers, as shown in Figure 4.16. The ith row contains all numbers with
numerator i and the jth column has all numbers with denominator j. So the
number i

j occurs in the ith row and jth column.
Now we turn this matrix into a list. One (bad) way to attempt it would be to

begin the list with all the elements in the first row. That isn’t a good approach
because the first row is infinite, so the list would never get to the second row.
Instead we list the elements on the diagonals, which are superimposed on the
diagram, starting from the corner. The first diagonal contains the single element
1
1 , and the second diagonal contains the two elements 2

1 and 1
2 . So the first

three elements on the list are 1
1 ,

2
1 , and

1
2 . In the third diagonal, a complication

arises. It contains 3
1 ,

2
2 , and

1
3 . If we simply added these to the list, we would

repeat 1
1 = 2

2 . We avoid doing so by skipping an element when it would cause
a repetition. So we add only the two new elements 3

1 and 1
3 . Continuing in this

way, we obtain a list of all the elements of Q.

FIGURE 4.16

A correspondence of N and Q

After seeing the correspondence of N and Q, you might think that any two
infinite sets can be shown to have the same size. After all, you need only demon-
strate a correspondence, and this example shows that surprising correspondences
do exist. However, for some infinite sets, no correspondence with N exists.
These sets are simply too big. Such sets are called uncountable.

The set of real numbers is an example of an uncountable set. A real number
is one that has a decimal representation. The numbers π = 3.1415926 . . . and

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 24 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R
Find an x in R that is not paired with anything in N

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R
In other words, ensure that x ̸= f(n) for any n

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R
Let the nth fractional digit of x be anything different from the nth
fractional digit of f(n)206 CHAPTER 4 / DECIDABILITY

n f(n)
1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .

...
...

x = 0.4641 . . .

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
Turing-recognizable, as we state in the following corollary.

COROLLARY 4.18

Some languages are not Turing-recognizable.

PROOF To show that the set of all Turing machines is countable, we first
observe that the set of all strings Σ∗ is countable for any alphabet Σ. With only
finitely many strings of each length, we may form a list of Σ∗ by writing down
all strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string 〈M〉. If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

To show that the set of all languages is uncountable, we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of 0s and 1s. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar
to the one we used in Theorem 4.17 to show thatR is uncountable.

Let L be the set of all languages over alphabet Σ. We show that L is un-
countable by giving a correspondence with B, thus showing that the two sets are
the same size. Let Σ∗ = {s1, s2, s3, . . .}. Each language A ∈ L has a unique
sequence in B. The ith bit of that sequence is a 1 if si ∈ A and is a 0 if si $∈ A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence χA would be

Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · } ;
A = { 0, 00, 01, 000, 001, · · · } ;

χA = 0 1 0 1 1 0 0 1 1 · · · .

The function f : L−→B, where f(A) equals the characteristic sequence of
A, is one-to-one and onto, and hence is a correspondence. Therefore, as B is
uncountable, L is uncountable as well.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R
So x is different from any f(n)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

定理: uncountable of R
R is uncountable,

where R is the set of real numbers, e.g., π = 3.14 . . . ,
√

2 = 1.414 . . .

证明: (Proof by Contradiction)
Suppose that a correspondence f existed between N and R
So x is different from any f(n)

Contradiction

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 25 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
Suppose that every language are Turing-recognizable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
Suppose that every language are Turing-recognizable
The set of all Turing-machines has at least the same size with the set
of all languages

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
Suppose that every language are Turing-recognizable
The set of all Turing-machines has at least the same size with the set
of all languages
Proof by Contradiction:

1 The set of all Turing-machines is countable
2 The set of all languages is uncountable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(1) Prove: The set of all Turing-machines is countable

Because each Turing machine M has an encoding into a string ⟨M⟩
The set of all strings Σ∗ is countable for any alphabet Σ

We may form a list of Σ∗ by writing down all strings of length 0, length
1, length 2, and so on

(1) is Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(1) Prove: The set of all Turing-machines is countable

Because each Turing machine M has an encoding into a string ⟨M⟩
The set of all strings Σ∗ is countable for any alphabet Σ

We may form a list of Σ∗ by writing down all strings of length 0, length
1, length 2, and so on

(1) is Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(1) Prove: The set of all Turing-machines is countable

Because each Turing machine M has an encoding into a string ⟨M⟩
The set of all strings Σ∗ is countable for any alphabet Σ

We may form a list of Σ∗ by writing down all strings of length 0, length
1, length 2, and so on

(1) is Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(1) Prove: The set of all Turing-machines is countable

Because each Turing machine M has an encoding into a string ⟨M⟩
The set of all strings Σ∗ is countable for any alphabet Σ

We may form a list of Σ∗ by writing down all strings of length 0, length
1, length 2, and so on

(1) is Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2.2) Prove Obligation: Each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2.2) Prove Obligation: Each language A ∈ L has a unique sequence in B
Prove: Let Σ∗ = {s1, s2, s3, . . . }:

The ith bit of that sequence (characteristic sequence of A, χA) is
a 1 if si ∈ A
a 0 if si ̸∈ A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2.2) Prove Obligation: Each language A ∈ L has a unique sequence in B
Prove: Let Σ∗ = {s1, s2, s3, . . . }:

The ith bit of that sequence (characteristic sequence of A, χA) is
a 1 if si ∈ A
a 0 if si ̸∈ A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2.2) Prove Obligation: Each language A ∈ L has a unique sequence in B
Prove: Let Σ∗ = {s1, s2, s3, . . . }: For simplicity, if Σ = {0, 1}

The ith bit of that sequence (characteristic sequence of A, χA) is
a 1 if si ∈ A
a 0 if si ̸∈ A

206 CHAPTER 4 / DECIDABILITY

n f(n)
1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .

...
...

x = 0.4641 . . .

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
Turing-recognizable, as we state in the following corollary.

COROLLARY 4.18

Some languages are not Turing-recognizable.

PROOF To show that the set of all Turing machines is countable, we first
observe that the set of all strings Σ∗ is countable for any alphabet Σ. With only
finitely many strings of each length, we may form a list of Σ∗ by writing down
all strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string 〈M〉. If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

To show that the set of all languages is uncountable, we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of 0s and 1s. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar
to the one we used in Theorem 4.17 to show thatR is uncountable.

Let L be the set of all languages over alphabet Σ. We show that L is un-
countable by giving a correspondence with B, thus showing that the two sets are
the same size. Let Σ∗ = {s1, s2, s3, . . .}. Each language A ∈ L has a unique
sequence in B. The ith bit of that sequence is a 1 if si ∈ A and is a 0 if si $∈ A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence χA would be

Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · } ;
A = { 0, 00, 01, 000, 001, · · · } ;

χA = 0 1 0 1 1 0 0 1 1 · · · .

The function f : L−→B, where f(A) equals the characteristic sequence of
A, is one-to-one and onto, and hence is a correspondence. Therefore, as B is
uncountable, L is uncountable as well.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
(2) Prove: The set of all languages, denoted as L over Σ, is uncountable

Let B be the set of all infinite binary sequences.
An infinite binary sequence is an unending sequence of 0s and 1s.

Prove:
(2.1) B is uncountable, similar to the Theorem
(2.2) Prove Obligation: There is a correspondence f : L → B,

i.e., each language A ∈ L has a unique sequence in B

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | The Diagonalization Method

推论
Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)
Proof by Contradiction:

1 The set of all Turing-machines is countable
2 The set of all languages is uncountable

Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 26 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 27 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

Construct a TM D using H

D= “On input ⟨M⟩, where M is a TM:
1 Run H on input ⟨M, ⟨M⟩⟩.
2 Output the opposite of what H outputs. That is, if H accepts, reject;

and if H rejects, accept.”
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

D(⟨M⟩) =
{

accept if M does not accept ⟨M⟩
reject if M accepts ⟨M⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

D(⟨M⟩) =
{

accept if M does not accept ⟨M⟩
reject if M accepts ⟨M⟩

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

D rejects ⟨D⟩ exactly when D accepts ⟨D⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

证明: (Proof by Contradiction)
Suppose that H is a decider for ATM, where

H(⟨M, w⟩) =
{

accept if M accepts w

reject if M does not accept w

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

D rejects ⟨D⟩ exactly when D accepts ⟨D⟩

Contradiction. Proved.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 28 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

分析: Diagonalization:

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

分析: Diagonalization:

208 CHAPTER 4 / DECIDABILITY

Let’s review the steps of this proof. Assume that a TM H decides ATM. UseH
to build a TM D that takes an input 〈M〉, where D accepts its input 〈M〉 exactly
when M does not accept its input 〈M〉. Finally, run D on itself. Thus, the
machines take the following actions, with the last line being the contradiction.

• H accepts 〈M,w〉 exactly when M accepts w.

• D rejects 〈M〉 exactly when M accepts 〈M〉.

• D rejects 〈D〉 exactly when D accepts 〈D〉.

Where is the diagonalization in the proof of Theorem 4.11? It becomes ap-
parent when you examine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, M1, M2, . . . , and all their descriptions across the
columns, 〈M1〉, 〈M2〉, The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept
· · ·

...
...

FIGURE 4.19

Entry i, j is accept if Mi accepts 〈Mj〉

In the following figure, the entries are the results of running H on inputs
corresponding to Figure 4.19. So if M3 does not accept input 〈M2〉, the entry
for row M3 and column 〈M2〉 is reject becauseH rejects input 〈M3, 〈M2〉〉.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject

· · ·

M4 accept accept reject reject
...

...

FIGURE 4.20

Entry i, j is the value of H on input 〈Mi, 〈Mj〉〉

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

图: Entry i, j is accept if Mi accepts ⟨Mj⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

分析: Diagonalization:

208 CHAPTER 4 / DECIDABILITY

Let’s review the steps of this proof. Assume that a TM H decides ATM. UseH
to build a TM D that takes an input 〈M〉, where D accepts its input 〈M〉 exactly
when M does not accept its input 〈M〉. Finally, run D on itself. Thus, the
machines take the following actions, with the last line being the contradiction.

• H accepts 〈M,w〉 exactly when M accepts w.

• D rejects 〈M〉 exactly when M accepts 〈M〉.

• D rejects 〈D〉 exactly when D accepts 〈D〉.

Where is the diagonalization in the proof of Theorem 4.11? It becomes ap-
parent when you examine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, M1, M2, . . . , and all their descriptions across the
columns, 〈M1〉, 〈M2〉, The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept
· · ·

...
...

FIGURE 4.19

Entry i, j is accept if Mi accepts 〈Mj〉

In the following figure, the entries are the results of running H on inputs
corresponding to Figure 4.19. So if M3 does not accept input 〈M2〉, the entry
for row M3 and column 〈M2〉 is reject becauseH rejects input 〈M3, 〈M2〉〉.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject

· · ·

M4 accept accept reject reject
...

...

FIGURE 4.20

Entry i, j is the value of H on input 〈Mi, 〈Mj〉〉

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

图: Entry i, j is the value of H on input ⟨Mi, ⟨Mj⟩⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

分析: Diagonalization: D computes the opposite of the diagonal entries

4.2 UNDECIDABILITY 209

In the following figure, we added D to Figure 4.20. By our assumption,H is
a TM and so is D. Therefore, it must occur on the list M1, M2, . . . of all TMs.
Note that D computes the opposite of the diagonal entries. The contradiction
occurs at the point of the question mark where the entry must be the opposite
of itself.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉 · · ·
M1 accept reject accept reject accept

M2 accept accept accept accept accept
M3 reject reject reject reject

· · ·
reject

· · ·

M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?

...
...

. . .

FIGURE 4.21

If D is in the figure, a contradiction occurs at “?”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section, we exhibited a language—namely, ATM—that is un-
decidable. Now we exhibit a language that isn’t even Turing-recognizable.
Note that ATM will not suffice for this purpose because we showed that ATM

is Turing-recognizable (page 202). The following theorem shows that if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are not in the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement
are Turing-recognizable.

PROOF Wehave two directions to prove. First, ifA is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

图: Entry i, j is the value of H on input ⟨Mi, ⟨Mj⟩⟩

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | An Undecidable Language

定理: Undecidability of ATM Recall

The language ATM is undecidable, where
ATM = {⟨M, w⟩ | M is a TM and M accepts w}

分析: Diagonalization: D computes the opposite of the diagonal entries

4.2 UNDECIDABILITY 209

In the following figure, we added D to Figure 4.20. By our assumption,H is
a TM and so is D. Therefore, it must occur on the list M1, M2, . . . of all TMs.
Note that D computes the opposite of the diagonal entries. The contradiction
occurs at the point of the question mark where the entry must be the opposite
of itself.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉 · · ·
M1 accept reject accept reject accept

M2 accept accept accept accept accept
M3 reject reject reject reject

· · ·
reject

· · ·

M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?

...
...

. . .

FIGURE 4.21

If D is in the figure, a contradiction occurs at “?”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section, we exhibited a language—namely, ATM—that is un-
decidable. Now we exhibit a language that isn’t even Turing-recognizable.
Note that ATM will not suffice for this purpose because we showed that ATM

is Turing-recognizable (page 202). The following theorem shows that if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are not in the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement
are Turing-recognizable.

PROOF Wehave two directions to prove. First, ifA is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

图: Entry i, j is the value of H on input ⟨Mi, ⟨Mj⟩⟩

If D is in the figure, a contradiction occurs at “?”
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 29 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
Outline

1 Introduction

2 Decidable Languages
Decidable Problems Concerning Regular Languages
Decidable Problems Concerning Context-free Languages

3 Undecidability
The Diagonalization Method
An Undecidable Language
A Turing-unrecognizable Language

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 30 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

问: Besides undecidable, is there a language even not Turing-recognizable?
答: Yes

问: How to prove it?
答: Define co-Turing-recognizable first.

定义: co-Turing-recognizable
A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language

问: Then?
答: Show a Theorem (加下页), and then prove by using the Theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 31 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

问: Besides undecidable, is there a language even not Turing-recognizable?
答: Yes

问: How to prove it?
答: Define co-Turing-recognizable first.

定义: co-Turing-recognizable
A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language

问: Then?
答: Show a Theorem (加下页), and then prove by using the Theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 31 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

问: Besides undecidable, is there a language even not Turing-recognizable?
答: Yes

问: How to prove it?
答: Define co-Turing-recognizable first.

定义: co-Turing-recognizable
A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language

问: Then?
答: Show a Theorem (加下页), and then prove by using the Theorem

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 31 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 1: If A is decidable
Let M be the decider for A

If w ∈ A, M accepts w, so A is Turing-recognizable

If w ∈ A, i.e., w ̸∈ A, M rejects A, so A is co-Turing-recognizable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 1: If A is decidable
Let M be the decider for A

If w ∈ A, M accepts w, so A is Turing-recognizable

If w ∈ A, i.e., w ̸∈ A, M rejects A, so A is co-Turing-recognizable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 1: If A is decidable
Let M be the decider for A

If w ∈ A, M accepts w, so A is Turing-recognizable

If w ∈ A, i.e., w ̸∈ A, M rejects A, so A is co-Turing-recognizable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable
Let M1 be the recognizer for A
Let M2 be the recognizer for A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable
Let M1 be the recognizer for A
Let M2 be the recognizer for A
Construct the TM M :

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable
Let M1 be the recognizer for A
Let M2 be the recognizer for A
Construct the TM M :
M = “On input w:

1 Run both M1 and M2 on input w in parallel
2 If M1 accepts, accept; if M2 accepts, reject.”

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 32 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

推论
ATM is not Turing-recognizable

证明: (Proof by Contradiction)
ATM is Turing-recognizable
If ATM is Turing-recognizable

ATM is co-Turing-recognizable
ATM is decidable
Contradiction. Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 33 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

推论
ATM is not Turing-recognizable

证明: (Proof by Contradiction)
ATM is Turing-recognizable
If ATM is Turing-recognizable

ATM is co-Turing-recognizable
ATM is decidable
Contradiction. Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 33 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

定理
A language is decidable, iff it is Turing-recognizable and
co-Turing-recognizable.

推论
ATM is not Turing-recognizable

证明: (Proof by Contradiction)
ATM is Turing-recognizable
If ATM is Turing-recognizable

ATM is co-Turing-recognizable
ATM is decidable
Contradiction. Proved

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 33 / 36

https://faculty.ustc.edu.cn/huangwenchao

3.2 Decidability
2. Undecidability | A Turing-unrecognizable Language

总结
定义:

one-to-one, onto, same size, correspondence
countable , co-Turing-recognizable

定理:
uncountable of R
decidable ≡ Turing-recognizable ∧ co-Turing-recognizable

推论:
Some languages are not Turing-recognizable

Decidable:
ADFA, ANFA, AREX, EDFA, EQDFA
ACFG, ECFG, every context-free language

Recognizable: ATM
Undecidable: EQCFG (Not proved yet), ATM

Turing-unrecognizable: ATM

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 34 / 36

https://faculty.ustc.edu.cn/huangwenchao

作业

210 CHAPTER 4 / DECIDABILITY

For the other direction, if both A and A are Turing-recognizable, we let M1

be the recognizer for A and M2 be the recognizer for A. The following Turing
machine M is a decider for A.

M = “On input w:
1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept ; if M2 accepts, reject .”

Running the two machines in parallel means thatM has two tapes, one for simu-
latingM1 and the other for simulatingM2. In this case,M takes turns simulating
one step of each machine, which continues until one of them accepts.

Now we show that M decides A. Every string w is either in A or A. There-
fore, either M1 or M2 must accept w. Because M halts whenever M1 or M2

accepts, M always halts and so it is a decider. Furthermore, it accepts all strings
in A and rejects all strings not in A. So M is a decider for A, and thus A is
decidable.

COROLLARY 4.23

ATM is not Turing-recognizable.

PROOF We know thatATM is Turing-recognizable. IfATM also were Turing-
recognizable, ATM would be decidable. Theorem 4.11 tells us that ATM is not
decidable, so ATM must not be Turing-recognizable.

EXERCISES

A4.1 Answer all parts for the following DFA M and give reasons for your answers.

a. Is 〈M, 0100〉 ∈ ADFA?

b. Is 〈M, 011〉 ∈ ADFA?

c. Is 〈M〉 ∈ ADFA?

d. Is 〈M, 0100〉 ∈ AREX?

e. Is 〈M〉 ∈ EDFA?

f. Is 〈M,M〉 ∈ EQDFA?

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

PROBLEMS 211

4.2 Consider the problem of determining whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

4.3 Let ALLDFA = {〈A〉|A is a DFA and L(A) = Σ∗}. Show that ALLDFA is decidable.

4.4 Let AεCFG = {〈G〉| G is a CFG that generates ε}. Show that AεCFG is decidable.
A4.5 Let ETM = {〈M〉| M is a TM and L(M) = ∅}. Show that ETM, the complement of

ETM, is Turing-recognizable.

4.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. We describe the
functions f : X−→Y and g : X−→Y in the following tables. Answer each part
and give a reason for each negative answer.

n f(n)
1 6
2 7
3 6
4 7
5 6

n g(n)
1 10
2 9
3 8
4 7
5 6

Aa. Is f one-to-one?

b. Is f onto?

c. Is f a correspondence?

Ad. Is g one-to-one?

e. Is g onto?

f. Is g a correspondence?

4.7 Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable
using a proof by diagonalization.

4.8 Let T = {(i, j, k)| i, j, k ∈ N}. Show that T is countable.

4.9 Review the way that we define sets to be the same size inDefinition 4.12 (page 203).
Show that “is the same size” is an equivalence relation.

PROBLEMS

A4.10 Let INFINITEDFA = {〈A〉| A is a DFA and L(A) is an infinite language}. Show
that INFINITEDFA is decidable.

4.11 Let INFINITEPDA = {〈M〉| M is a PDA and L(M) is an infinite language}. Show
that INFINITEPDA is decidable.

A4.12 Let A = {〈M〉| M is a DFA that doesn’t accept any string containing an odd num-
ber of 1s}. Show that A is decidable.

4.13 Let A = {〈R,S〉| R and S are regular expressions and L(R) ⊆ L(S)}. Show that
A is decidable.

A4.14 Let Σ = {0,1}. Show that the problem of determining whether a CFG generates
some string in 1∗ is decidable. In other words, show that

{〈G〉| G is a CFG over {0,1} and 1∗ ∩ L(G))= ∅}

is a decidable language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 35 / 36

https://faculty.ustc.edu.cn/huangwenchao

作业

PROBLEMS 211

4.2 Consider the problem of determining whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

4.3 Let ALLDFA = {〈A〉|A is a DFA and L(A) = Σ∗}. Show that ALLDFA is decidable.

4.4 Let AεCFG = {〈G〉| G is a CFG that generates ε}. Show that AεCFG is decidable.
A4.5 Let ETM = {〈M〉| M is a TM and L(M) = ∅}. Show that ETM, the complement of

ETM, is Turing-recognizable.

4.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. We describe the
functions f : X−→Y and g : X−→Y in the following tables. Answer each part
and give a reason for each negative answer.

n f(n)
1 6
2 7
3 6
4 7
5 6

n g(n)
1 10
2 9
3 8
4 7
5 6

Aa. Is f one-to-one?

b. Is f onto?

c. Is f a correspondence?

Ad. Is g one-to-one?

e. Is g onto?

f. Is g a correspondence?

4.7 Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable
using a proof by diagonalization.

4.8 Let T = {(i, j, k)| i, j, k ∈ N}. Show that T is countable.

4.9 Review the way that we define sets to be the same size inDefinition 4.12 (page 203).
Show that “is the same size” is an equivalence relation.

PROBLEMS

A4.10 Let INFINITEDFA = {〈A〉| A is a DFA and L(A) is an infinite language}. Show
that INFINITEDFA is decidable.

4.11 Let INFINITEPDA = {〈M〉| M is a PDA and L(M) is an infinite language}. Show
that INFINITEPDA is decidable.

A4.12 Let A = {〈M〉| M is a DFA that doesn’t accept any string containing an odd num-
ber of 1s}. Show that A is decidable.

4.13 Let A = {〈R,S〉| R and S are regular expressions and L(R) ⊆ L(S)}. Show that
A is decidable.

A4.14 Let Σ = {0,1}. Show that the problem of determining whether a CFG generates
some string in 1∗ is decidable. In other words, show that

{〈G〉| G is a CFG over {0,1} and 1∗ ∩ L(G))= ∅}

is a decidable language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

PROBLEMS 211

4.2 Consider the problem of determining whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

4.3 Let ALLDFA = {〈A〉|A is a DFA and L(A) = Σ∗}. Show that ALLDFA is decidable.

4.4 Let AεCFG = {〈G〉| G is a CFG that generates ε}. Show that AεCFG is decidable.
A4.5 Let ETM = {〈M〉| M is a TM and L(M) = ∅}. Show that ETM, the complement of

ETM, is Turing-recognizable.

4.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. We describe the
functions f : X−→Y and g : X−→Y in the following tables. Answer each part
and give a reason for each negative answer.

n f(n)
1 6
2 7
3 6
4 7
5 6

n g(n)
1 10
2 9
3 8
4 7
5 6

Aa. Is f one-to-one?

b. Is f onto?

c. Is f a correspondence?

Ad. Is g one-to-one?

e. Is g onto?

f. Is g a correspondence?

4.7 Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable
using a proof by diagonalization.

4.8 Let T = {(i, j, k)| i, j, k ∈ N}. Show that T is countable.

4.9 Review the way that we define sets to be the same size inDefinition 4.12 (page 203).
Show that “is the same size” is an equivalence relation.

PROBLEMS

A4.10 Let INFINITEDFA = {〈A〉| A is a DFA and L(A) is an infinite language}. Show
that INFINITEDFA is decidable.

4.11 Let INFINITEPDA = {〈M〉| M is a PDA and L(M) is an infinite language}. Show
that INFINITEPDA is decidable.

A4.12 Let A = {〈M〉| M is a DFA that doesn’t accept any string containing an odd num-
ber of 1s}. Show that A is decidable.

4.13 Let A = {〈R,S〉| R and S are regular expressions and L(R) ⊆ L(S)}. Show that
A is decidable.

A4.14 Let Σ = {0,1}. Show that the problem of determining whether a CFG generates
some string in 1∗ is decidable. In other words, show that

{〈G〉| G is a CFG over {0,1} and 1∗ ∩ L(G))= ∅}

is a decidable language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式语言与计算复杂性形式语言与计算复杂性 36 / 36

https://faculty.ustc.edu.cn/huangwenchao

	Introduction
	Decidable Languages
	Decidable Problems Concerning Regular Languages
	Decidable Problems Concerning Context-free Languages

	Undecidability
	The Diagonalization Method
	An Undecidable Language
	A Turing-unrecognizable Language

