形式语言与计算复杂性

第3章 Computability Theory 3.2 Decidability

黄文超

$\begin{array}{c} \texttt{https://faculty.ustc.edu.cn/huangwenchao} \\ \longrightarrow 教学课程 \longrightarrow 形式语言与计算复杂性 \end{array}$

(日) (문) (문) (문) (문)

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

3 Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

回顾: 问: Why introducing Turing machine? 答: Prove that some problem cannot be *solved algorithmically*, i.e., Hilbert's 10th problem

问: How? 答: Determine the *Decidability*

- 问: Why studying unsolvability?
- 答: 2 reasons
 - You realize that the *unsolvable* problem *must be simplified* or *altered* before you can find an algorithmic solution.
 - Culture: *stimulate* your *imagination* and help you gain an important *perspective* on computation

3 1 4 3 1

回顾: 问: Why introducing Turing machine? 答: Prove that some problem cannot be *solved algorithmically*, i.e., Hilbert's 10th problem

问: How?

答: Determine the Decidability

问: Why studying unsolvability? 答: 2 reasons

- You realize that the *unsolvable* problem *must be simplified* or *altered* before you can find an algorithmic solution.
- Culture: *stimulate* your *imagination* and help you gain an important *perspective* on computation

回顾: 问: Why introducing Turing machine? 答: Prove that some problem cannot be *solved algorithmically*, i.e., Hilbert's 10th problem

问: How?

- 答: Determine the Decidability
- 问: Why studying unsolvability?
- 答: 2 reasons
 - You realize that the *unsolvable* problem *must be simplified* or *altered* before you can find an algorithmic solution.
 - Culture: *stimulate* your *imagination* and help you gain an important *perspective* on computation

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

问: How to study the Decidability of *problems*? 答: Study the Decidability of the *languages*

问: Then?

答: Firstly, which are decidable?; Then, which are not?

问: Any examples of decidable language? 答: Let's *play* with *Regular language, context-free language*, ...

问: How to play? 答: Firstly, formally define the *problem*, i.e., the *language*. Then prove the language is decidable

- 问: How to study the Decidability of problems?
- 答: Study the Decidability of the *languages*
- 问: Then?
- 答: Firstly, which are decidable?; Then, which are not?
- 问: Any examples of decidable language? 答: Let's *play* with *Regular language, context-free language,* ...
- 问: How to play? 答: Firstly, formally define the *problem*, i.e., the *language*. Then prove the language is decidable

- 问: How to study the Decidability of problems?
- 答: Study the Decidability of the *languages*
- 问: Then?
- 答: Firstly, which are decidable?; Then, which are not?
- 问: Any examples of decidable language? 答: Let's *play* with *Regular language*, *context-free language*, ...
- 问: How to play? 答: Firstly, formally define the *problem*, i.e., the *language*. Then prove the language is decidable

- 问: How to study the Decidability of problems?
- 答: Study the Decidability of the *languages*
- 问: Then?
- 答: Firstly, which are decidable?; Then, which are not?
- 问: Any examples of decidable language?
- 答: Let's play with Regular language, context-free language, ...
- 问: How to play?

答: Firstly, formally define the *problem*, i.e., the *language*. Then prove the language is decidable

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

A B A A B A

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明思路 (Proof by Construction)

We simply need to present a TM M that decides A_{DFA} . $M = \text{``On input } \langle B, w \rangle$, where B is a DFA and w is a string:

- **1** Simulate B on input w.
- If the simulation ends in
 - an accept state: accept
 - a non-accepting state: reject

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

First, examine the input $\langle B, w \rangle$.

- Proper representation:
 - B is simply a list of its five components: Q, Σ , δ , q_0 , and F
- When M receives its input, M first determines whether it properly represents a DFA B and a string w.
 - If not, M rejects

イロト イヨト イヨト イヨト

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

First, examine the input $\langle B, w \rangle$.

- Proper representation:
 - B is simply a list of its five components: Q, Σ , δ , q_0 , and F

• When M receives its input, M first determines whether it properly represents a DFA B and a string w.

If not, M rejects

イロト 不得 トイヨト イヨト

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

First, examine the input $\langle B, w \rangle$.

- Proper representation:
 - B is simply a list of its five components: Q, Σ , δ , q_0 , and F
- When M receives its input, M first determines whether it properly represents a DFA B and a string w.
 - $\bullet~{\rm If}$ not, M rejects.

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

Then M carries out the *simulation* directly

- 4 個 ト 4 三 ト 4 三 ト

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

Then M carries out the *simulation* directly

• 思路: It *keeps track* of *B*' s current *state* and *B*' s current *position* in the *input* w by *writing* this information down on its *tape*.

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

Then M carries out the *simulation* directly

- Initially, B' s current state is q_0 and B' s current input position is the leftmost symbol of w.
- The states and position are *updated* according to the specified *transition function* δ .
- When M finishes processing the last symbol of w,
 - M accepts the input if B is in an accepting state
 - M rejects the input if B is in a nonaccepting state.

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

Then M carries out the *simulation* directly

- *Initially*, B' s current *state* is q_0 and B' s current *input position* is the *leftmost* symbol of w.
- The states and position are *updated* according to the specified *transition function* δ .
- When M finishes processing the last symbol of w,
 - M accepts the input if B is in an accepting state
 - M rejects the input if B is in a nonaccepting state.

定理: Decidability of A_{DFA}

The language $A_{\rm DFA}$ is decidable, where

 $A_{\rm DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

证明 (Proof by Construction)

Then M carries out the $\ensuremath{\textit{simulation}}$ directly

- *Initially*, B' s current *state* is q_0 and B' s current *input position* is the *leftmost* symbol of w.
- The states and position are *updated* according to the specified *transition function* δ .
- When M finishes processing the last symbol of w,
 - $\bullet~M$ accepts the input if B is in an accepting state
 - *M* rejects the input if *B* is in a nonaccepting state.

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of $A_{\rm NFA}$

The language $A_{\rm NFA}$ is decidable, where

 $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of $A_{\rm NFA}$

The language $A_{\rm NFA}$ is decidable, where

 $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

证明: Proof by Construction

Present a TM N that decides $A_{\rm NFA}$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of $A_{\rm NFA}$

The language $A_{\rm NFA}$ is decidable, where

 $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

证明: Proof by Construction

Present a TM N that decides $A_{\rm NFA}$

- 方法 1: Operate like <u>M</u>
- 方法 2: New idea: *Have N use <u>M</u> as a subroutine*
 - N converts the NFA it receives as input to a DFA
 - Pass the DFA and w to \underline{M}

A B < A B </p>

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of $A_{\rm NFA}$

The language $A_{\rm NFA}$ is decidable, where

 $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

证明: Proof by Construction

Present a TM N that decides $A_{\rm NFA}$

- 方法 1: Operate like <u>M</u>
- 方法 2: New idea: *Have N use <u>M</u> as a subroutine*
 - N converts the NFA it receives as input to a DFA
 - Pass the DFA and w to \underline{M}

定理: Decidability of $A_{\rm NFA}$

The language $A_{\rm NFA}$ is decidable, where

 $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

证明: Proof by Construction

Present a TM N that decides $A_{
m NFA}$

- N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:
 - $\textcircled{O} \quad \text{Convert NFA } B \text{ to an equivalent DFA } C$
 - **2** Run TM \underline{M} on input $\langle C, w \rangle$
 - **③** If \underline{M} accepts, accept; otherwise, reject."

イロト 不得 トイヨト イヨト

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{REX}

The language A_{REX} is decidable, where

 $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \}$

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of A_{REX}

The language A_{REX} is decidable, where

 $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \}$

证明

The following TM P decides A_{REX}

- P= "On input $\langle R,w\rangle$, where R is a regular expression and w is a string:
 - O Convert regular expression \$R\$ to an equivalent NFA \$A\$
 - **2** Run TM <u>N</u> on input $\langle A, w \rangle$.
 - If \underline{N} accepts, accept; if \underline{N} rejects, reject."

★ ∃ ► < ∃ ►</p>

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of E_{DFA}

The language E_{DFA} is decidable, where

 $E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of E_{DFA}

The language $E_{\rm DFA}$ is decidable, where

 $E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

证明 (Proof by Construction)

Design a TM T

- $T=``On input <math display="inline">\langle A \rangle,$ where A is a DFA:
 - Mark the start state of A
 - Repeat until no new states get marked
 - Mark any state that has a transition coming into it from any state that is already marked.
 - If no accept state is marked, accept; otherwise, reject."

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

准备: Construct a DFA C

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

准备: Construct a DFA C

• The language of C is

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

准备: Construct a DFA C

• The language of C is

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

- Prove class of regular languages *closed* under complementation, union, and intersection. So *C* can be a DFA.
- DFA C can be constructed by a TM
- $L(C) = \emptyset$ iff L(A) = L(B)

イロト イヨト イヨト イヨト

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

准备: Construct a DFA C

• The language of C is

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

- Prove class of regular languages *closed* under complementation, union, and intersection. So *C* can be a DFA.
- DFA C can be constructed by a TM
- $L(C) = \emptyset$ iff L(A) = L(B)

イロト イヨト イヨト イヨト
1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

准备: Construct a DFA C

• The language of ${\cal C}$ is

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

- Prove class of regular languages *closed* under complementation, union, and intersection. So *C* can be a DFA.
- DFA C can be constructed by a TM

•
$$L(C) = \emptyset$$
 iff $L(A) = L(B)$

< □ > < □ > < □ > < □ > < □ > < □ >

1. Decidable Languages | Decidable Problems Concerning Regular Languages

定理: Decidability of EQ_{DFA}

The language EQ_{DFA} is decidable, where

 $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

证明 (Proof by Construction)

- F= "On input $\langle A,B\rangle \text{,}$ where A and B are DFAs:

 - **2** Run TM \underline{T} on input $\langle C \rangle$
 - \bigcirc If T accepts, accept. If T rejects, reject."

1 Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of A_{CFG}

The language $A_{\rm CFG}$ is decidable, where

 $A_{\rm CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of A_{CFG}

The language $A_{\rm CFG}$ is decidable, where

 $A_{\rm CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

证明思路

可选方案:

- use G to go through all derivations to determine whether any is a derivation of w.
 - This idea *doesn'* t work, as *infinitely* many derivations *may* have to be *tried*
 - If G does not generate w, this algorithm would never halt.
- ensure that the algorithm tries only *finitely* many derivations
 - $\bullet\,$ Convert G into Chomsky normal form
 - any derivation of w has 2n-1 steps

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of A_{CFG}

The language $A_{\rm CFG}$ is decidable, where

 $A_{\rm CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

证明思路

可选方案:

- use G to go through all derivations to determine whether any is a derivation of w.
 - This idea *doesn' t work*, as *infinitely* many derivations *may* have to be *tried*
 - $\bullet~$ If G does not generate w, this algorithm would never halt.
- 2 ensure that the algorithm tries only *finitely* many derivations
 - $\bullet\,$ Convert G into Chomsky normal form
 - ${\ensuremath{\, \circ }}$ any derivation of w has 2n-1 steps

定理: Decidability of A_{CFG}

The language $A_{\rm CFG}$ is decidable, where

 $A_{\rm CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

证明 (Proof by Construction)

The TM S for $A_{\rm CFG}$ follows.

- S= "On input $\langle G,w\rangle,$ where G is a CFG and w is a string:
 - **(**) Convert G to an equivalent grammar in Chomsky normal form.
 - 2 List all derivations with 2n 1 steps, where n is the length of w; except if n = 0, then instead list all derivations with one step.
 - **③** If any of these derivations generate w, accept; if not, reject."

・ロン ・四 と ・ ヨ と ・

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

 $E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

可选方案:

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

证明思路

use TM \underline{S}

- It states that we can test whether a CFG generates some particular string *w*.
- ${\scriptstyle \bullet}\,$ The algorithm might try going through all possible $w'\,$ s, one by one
- ullet there are infinitely many w' s to try

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

证明思路

可选方案:

use TM \underline{S}

- It states that we can test whether a CFG generates some particular string $\boldsymbol{w}.$
- $\bullet\,$ The algorithm might try going through all possible $w'\,$ s, one by one
- there are *infinitely many* w' s to try

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

证明思路

可选方案:

use TM \underline{S}

- It states that we can test whether a CFG generates some particular string w.
- $\bullet\,$ The algorithm might try going through all possible $w'\,$ s, one by one

• there are *infinitely many* w' s to try

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

证明思路

可选方案:

use TM \underline{S}

- It states that we can test whether a CFG generates some particular string w.
- $\bullet\,$ The algorithm might try going through all possible $w'\,$ s, one by one
- there are *infinitely many* w' s to try

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

 $E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

证明思路

可选方案:

Propagate from terminal symbols

• First, the algorithm marks all the terminal symbols in the grammar

• Then, it scans all the rules of the grammar

• If it ever *finds* a *rule* that permits some *variable* to be *replaced by* some string of symbols, *all of which are already marked*, the algorithm knows that this *variable can be marked*, too

- E > - E >

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

$$E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

证明思路

可选方案:

Propagate from terminal symbols

- First, the algorithm marks all the terminal symbols in the grammar
- Then, it scans all the rules of the grammar
 - If it ever *finds* a *rule* that permits some *variable* to be *replaced by* some string of symbols, *all of which are already marked*, the algorithm knows that this *variable can be marked*, too

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

 $E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

证明思路

可选方案:

Propagate from terminal symbols

- First, the algorithm marks all the terminal symbols in the grammar
- Then, it scans all the rules of the grammar
 - If it ever *finds* a *rule* that permits some *variable* to be *replaced by* some string of symbols, *all of which are already marked*, the algorithm knows that this *variable can be marked*, too

A B b A B b

定理: Decidability of E_{CFG}

The language $E_{\rm CFG}$ is decidable, where

 $E_{\rm CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

证明 (Proof by Construction)

- R= "On input $\langle G\rangle,$ where G is a CFG:
 - **1** Mark all terminal symbols in G
 - 2 Repeat until no new variables get marked:
 - So Mark any variable A where G has a rule $A \to U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked
 - If the start variable is not marked, accept; otherwise, reject."

问题: Decidability of EQ_{CFG}

Is the language $EQ_{\rm CFG}$ decidable?

 $EQ_{\rm CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$

答: No!

问: Why not designing a TM similar to TM <u>F</u>? 答: The design of F depends on <u>closure property</u> under complementation or intersection

问: How to prove that EQ_{CFG} is not decidable? 答: See *Chap 3.3 Reducibility*.

问题: Decidability of EQ_{CFG}

Is the language $EQ_{\rm CFG}$ decidable?

 $EQ_{\rm CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$

答: No!

问: Why not designing a TM similar to TM <u>F</u>? 答: The design of F depends on <u>closure property</u> under complementation or intersection

问: How to prove that EQ_{CFG} is not decidable? 答: See *Chap 3.3 Reducibility*.

- 4 目 ト - 4 日 ト

问题: Decidability of EQ_{CFG}

Is the language $EQ_{\rm CFG}$ decidable?

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$

答: No!

问: Why not designing a TM similar to TM \underline{F} ?

答: The design of F depends on <u>closure property</u> under complementation or intersection

问: How to prove that EQ_{CFG} is not decidable? 答: See *Chap 3.3 Reducibility*.

问题: Decidability of EQ_{CFG}

Is the language $EQ_{\rm CFG}$ decidable?

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$

答: No!

问: Why not designing a TM similar to TM F?

答: The design of F depends on <u>closure property</u> under complementation or intersection

问: How to prove that EQ_{CFG} is not decidable? 答: See *Chap 3.3 Reducibility*.

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

Every context-free language is decidable

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

定理

Every context-free language is decidable

证明

Let A be a CFL. Let G be a CFG for A.

Design a TM M_G that decides A. $M_G =$ "On input w:

- Run TM \underline{S} on input $\langle G, w \rangle$.
- If this machine accepts, accept; if it rejects, reject."

1. Decidable Languages | Decidable Problems Concerning Context-free Languages

1 Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Ondecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

2. Undecidability

问: What sorts of problems are *unsolvable* by computer? Are they esoteric (深奥), dwelling only in the minds of theoreticians? 答: No! *Even* some *ordinary problems* that people want to solve turn out to be computationally *unsolvable*.

问: Any examples?

答: The *general problem* of *software verification* is not solvable by computer.

- 问: So, why do we study undecidability?
- 答: 2 points
 - help you develop a *feeling* for the *types* of problems that are *unsolvable*
 - to learn techniques for *proving* unsolvability.

2. Undecidability

问: What sorts of problems are *unsolvable* by computer? Are they esoteric (深奥), dwelling only in the minds of theoreticians? 答: No! *Even* some *ordinary problems* that people want to solve turn out to be computationally *unsolvable*.

问: Any examples?

答: The *general problem* of *software verification* is not solvable by computer.

问: So, why do we study undecidability?

答: 2 points

- help you develop a *feeling* for the *types* of problems that are *unsolvable*
- to learn techniques for *proving* unsolvability.

问: Now, what is *first* undecidable problem to analyze? 答: A_{TM}

2. Undecidability

问: What sorts of problems are *unsolvable* by computer? Are they esoteric (深奥), dwelling only in the minds of theoreticians? 答: No! *Even* some *ordinary problems* that people want to solve turn out to be computationally *unsolvable*.

问: Any examples?

答: The *general problem* of *software verification* is not solvable by computer.

- 问: So, why do we study undecidability?
- 答: 2 points
 - help you develop a *feeling* for the *types* of problems that are *unsolvable*
 - to learn techniques for *proving* unsolvability.

2. Undecidability

问: What sorts of problems are *unsolvable* by computer? Are they esoteric (深奥), dwelling only in the minds of theoreticians? 答: No! *Even* some *ordinary problems* that people want to solve turn out to be computationally *unsolvable*.

问: Any examples?

答: The *general problem* of *software verification* is not solvable by computer.

- 问: So, why do we study undecidability?
- 答: 2 points
 - help you develop a *feeling* for the *types* of problems that are *unsolvable*
 - to learn techniques for *proving* unsolvability.

问: Now, what is *first* undecidable problem to analyze? 答: A_{TM}

黄文超 https://faculty.ustc.edu.cn/hua

2. Undecidability

The language $A_{\rm TM}$ is *recognizable* but *undecidable*, where

- 问: How to prove that $A_{\rm TM}$ is recognizable?
- 答: construct a Turing machine U:
- $\mathsf{U}=$ "On input $\langle M,w
 angle$, where M is a TM and w is a string:
 - $\textcircled{0} \hspace{0.1 in } {\rm Simulate} \hspace{0.1 in } M \hspace{0.1 in } {\rm on} \hspace{0.1 in } {\rm input} \hspace{0.1 in } w$
 - If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- 问: Why is A_{TM} undecidable?
- 答: M may loop on w
- 问: How to formally prove the undecidability?

2. Undecidability

The language $A_{\rm TM}$ is *recognizable* but *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

问: How to prove that A_{TM} is *recognizable*? 答: construct a Turing machine U:

- ${\sf U}=$ "On input $\langle M,w
 angle$, where M is a TM and w is a string:
 - $\textcircled{0} \hspace{0.1 in } {\rm Simulate} \hspace{0.1 in } M \hspace{0.1 in } {\rm on} \hspace{0.1 in } {\rm input} \hspace{0.1 in } w$
 - If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- 问: Why is A_{TM} undecidable?
- 答: M may loop on w
- 问: How to formally prove the undecidability?

2. Undecidability

The language $A_{\rm TM}$ is *recognizable* but *undecidable*, where

- 问: How to prove that $A_{\rm TM}$ is *recognizable*?
- 答: construct a Turing machine U:
- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - $\textcircled{0} \hspace{0.1 in } {\rm Simulate} \hspace{0.1 in } M \hspace{0.1 in } {\rm on} \hspace{0.1 in } {\rm input} \hspace{0.1 in } w$
 - If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- 问: Why is A_{TM} undecidable?
- 答: M may loop on w
- 问: How to formally prove the undecidability?

2. Undecidability

The language $A_{\rm TM}$ is *recognizable* but *undecidable*, where

- 问: How to prove that $A_{\rm TM}$ is *recognizable*?
- 答: construct a Turing machine U:
- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - Simulate M on input w
 - If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- 问: Why is $A_{\rm TM}$ undecidable?
- 答: M may loop on w

2. Undecidability

The language $A_{\rm TM}$ is *recognizable* but *undecidable*, where

- 问: How to prove that $A_{\rm TM}$ is *recognizable*?
- 答: construct a Turing machine U:
- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - $\textcircled{0} \hspace{0.1 in } {\rm Simulate} \hspace{0.1 in } M \hspace{0.1 in } {\rm on} \hspace{0.1 in } {\rm input} \hspace{0.1 in } w$
 - If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- 问: Why is $A_{\rm TM}$ undecidable?
- 答: M may loop on w
- 问: How to formally prove the undecidability?

1 Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Ondecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

问: How to prove the undecidability of a language? 答: Use the technique called Diagonalization (对角论证法)

问: The origin of Diagonalization?

答: Discovered by mathematician Georg Cantor in 1873

- used in the problem of *measuring* the *sizes* of *infinite sets*
 - i.e., how to compare the relative size of 2 infinite sets?
- Idea: two finite sets have the *same size* if the elements of one set can be *paired* with the elements of the other set.
- 问: How to prove the undecidability of a language?
- 答: Use the technique called Diagonalization (对角论证法)
- 问: The origin of Diagonalization?
- 答: Discovered by mathematician Georg Cantor in 1873
 - used in the problem of *measuring* the *sizes* of *infinite sets*
 - i.e., how to compare the relative size of 2 infinite sets?
 - Idea: two finite sets have the *same size* if the elements of one set can be *paired* with the elements of the other set.

2. Undecidability | The Diagonalization Method

定义: one-to-one, onto, same size, correspondence

Assume that we have sets A and B and a function f from A to B. Say that f is

- *one-to-one*, or *injective*: $f(a) \neq f(b)$ whenever $a \neq b$
- onto, or surjective: for every $b \in B$, there is an $a \in A$ such that f(a) = b
- correspondence, or bijective: both one-to-one and onto

Say that A and B have the same size if there is a correspondence function $f: A \rightarrow B$.

例: same size

Let \mathcal{N} be the set of natural numbers $\{1, 2, 3, ...\}$ Let \mathcal{E} be the set of even natural numbers $\{2, 4, 6, ...\}$ \mathcal{N} and \mathcal{E} have the same size

2. Undecidability | The Diagonalization Method

定义: one-to-one, onto, same size, correspondence

Assume that we have sets A and B and a function f from A to B. Say that f is

- *one-to-one*, or *injective*: $f(a) \neq f(b)$ whenever $a \neq b$
- onto, or surjective: for every $b \in B$, there is an $a \in A$ such that f(a) = b
- correspondence, or bijective: both one-to-one and onto

Say that A and B have the same size if there is a correspondence function $f: A \rightarrow B$.

例: same size

Let \mathcal{N} be the set of natural numbers $\{1, 2, 3, ...\}$ Let \mathcal{E} be the set of even natural numbers $\{2, 4, 6, ...\}$ \mathcal{N} and \mathcal{E} have the same size

2. Undecidability | The Diagonalization Method

定义: countable

A set A is countable if either it is *finite or* it has the *same size* as \mathcal{N}

Let $Q = \{ \frac{m}{n} \mid m, n \in \mathcal{N} \}$, Q is *countable*

< ロト < 同ト < ヨト < ヨト

2. Undecidability | The Diagonalization Method

定义: countable

A set A is countable if either it is *finite or* it has the *same size* as \mathcal{N}

例

Let $Q = \{ \frac{m}{n} \mid m, n \in \mathcal{N} \}$, Q is *countable*

2. Undecidability | The Diagonalization Method

定理: uncountable of $\mathcal R$

 ${\cal R}$ is uncountable,

where ${\cal R}$ is the set of real numbers, e.g., $\pi=3.14\ldots,\,\sqrt{2}=1.414\ldots$

2. Undecidability | The Diagonalization Method

定理: uncountable of \mathcal{R}

 ${\cal R}$ is uncountable,

where ${\cal R}$ is the set of real numbers, e.g., $\pi=3.14\ldots$, $\sqrt{2}=1.414\ldots$

2. Undecidability | The Diagonalization Method

定理: uncountable of $\mathcal R$

 ${\mathcal R}$ is uncountable,

where \mathcal{R} is the set of real numbers, e.g., $\pi = 3.14\ldots$, $\sqrt{2} = 1.414\ldots$

证明: (Proof by Contradiction)

• Suppose that a correspondence f existed between ${\mathcal N}$ and ${\mathcal R}$

2. Undecidability | The Diagonalization Method

定理: uncountable of $\mathcal R$

 ${\mathcal R}$ is uncountable,

where \mathcal{R} is the set of real numbers, e.g., $\pi = 3.14\ldots$, $\sqrt{2} = 1.414\ldots$

- \bullet Suppose that a correspondence f existed between $\mathcal N$ and $\mathcal R$
- Find an x in \mathcal{R} that is not paired with anything in \mathcal{N}

2. Undecidability | The Diagonalization Method

定理: uncountable of $\mathcal R$

 ${\mathcal R}$ is uncountable,

where \mathcal{R} is the set of real numbers, e.g., $\pi = 3.14\ldots$, $\sqrt{2} = 1.414\ldots$

- Suppose that a correspondence f existed between ${\cal N}$ and ${\cal R}$
- In other words, ensure that $x \neq f(n)$ for any n

2. Undecidability | The Diagonalization Method

定理: uncountable of ${\mathcal R}$

 ${\mathcal R}$ is uncountable,

where $\mathcal R$ is the set of real numbers, e.g., $\pi=3.14\ldots,\,\sqrt{2}=1.414\ldots$

- Suppose that a correspondence f existed between ${\mathcal N}$ and ${\mathcal R}$
- Let the *nth fractional digit* of x be anything different from the *nth fractional digit* of f(n)

n	f(n)	
1	3. <u>1</u> 4159	
2	55.5 <u>5</u> 555	
3	0.12 <u>3</u> 45	$x = 0.4641 \dots$
4	0.500 <u>0</u> 0	
	_	
:	:	(日) (四) (1)

2. Undecidability | The Diagonalization Method

定理: uncountable of \mathcal{R}

 ${\mathcal R}$ is uncountable,

where \mathcal{R} is the set of real numbers, e.g., $\pi = 3.14\ldots$, $\sqrt{2} = 1.414\ldots$

- Suppose that a correspondence f existed between ${\mathcal N}$ and ${\mathcal R}$
- So x is different from any f(n)

2. Undecidability | The Diagonalization Method

定理: uncountable of R

 ${\mathcal R}$ is uncountable,

where \mathcal{R} is the set of real numbers, e.g., $\pi = 3.14\ldots$, $\sqrt{2} = 1.414\ldots$

- Suppose that a correspondence f existed between ${\mathcal N}$ and ${\mathcal R}$
- So x is different from any f(n)
- Contradiction

2. Undecidability | The Diagonalization Method

Some languages are not Turing-recognizable.

- (日)

3 1 4 3 1

2. Undecidability | The Diagonalization Method

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

∃ ► < ∃ ►

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

• Suppose that every language are Turing-recognizable

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

- Suppose that every language are Turing-recognizable
- The set of *all Turing-machines* has at least the *same size* with the set of *all languages*

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

- Suppose that every language are Turing-recognizable
- The set of *all Turing-machines* has at least the *same size* with the set of *all languages*
- Proof by Contradiction:
 - The set of all Turing-machines is countable
 - The set of all languages is uncountable

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(1) Prove: The set of all Turing-machines is countable

- Because each *Turing machine* M has an *encoding* into a *string* (M)
 The set of all *strings* Σ* is *countable* for any alphabet Σ
 We may form a list of Σ* by writing down all strings of length 0, lengt 1, length 2, and so on
- (1) is Proved

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(1) Prove: The set of all Turing-machines is countable

 $\bullet\,$ Because each ${\it Turing\ machine\ }M$ has an ${\it encoding\ }{\it into\ a\ string\ }\langle M\rangle$

• The set of all strings Σ^* is countable for any alphabet Σ

We may form a list of Σ* by writing down all strings of length 0, length
 1, length 2, and so on

• (1) is Proved

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(1) Prove: The set of all Turing-machines is countable

- Because each Turing machine M has an encoding into a string $\langle M \rangle$
- The set of all strings Σ^* is countable for any alphabet Σ
 - We may form a list of Σ^* by writing down all strings of length 0, length 1, length 2, and so on

• (1) is Proved

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(1) Prove: The set of all Turing-machines is countable

- Because each Turing machine M has an encoding into a string $\langle M \rangle$
- The set of all strings Σ^* is countable for any alphabet Σ
 - We may form a list of Σ^* by writing down all strings of length 0, length 1, length 2, and so on

(1) is Proved

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

• Let \mathcal{B} be the set of all *infinite binary sequences*.

An *infinite binary sequence* is an unending sequence of 0s and 1s

• Prove:

- (2.1) B is uncountable, similar to the <u>Theorem</u>
- (2.2) Prove Obligation: There is a correspondence $f:\mathcal{L} o\mathcal{B}$
 - * i.e., each language $A\in\mathcal{L}$ has a unique sequence in \mathcal{B}

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

• Let \mathcal{B} be the set of all *infinite binary sequences*.

• An infinite binary sequence is an unending sequence of 0s and 1s.

• Prove:

- (2.1) B is uncountable, similar to the <u>Theorem</u>
- $_{0}$ (2.2) *Prove Obligation*: There is a correspondence $f:\mathcal{L}
 ightarrow\mathcal{B}$
 -) i.e., each language $A\in \mathcal{L}$ has a unique sequence in \mathcal{B}

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

- Let \mathcal{B} be the set of all *infinite binary sequences*.
 - An *infinite binary sequence* is an unending sequence of 0s and 1s.
- Prove:
 - ▶ (2.1) B is uncountable, similar to the <u>Theorem</u>
 - (2.2) Prove Obligation: There is a correspondence $f: \mathcal{L} \to \mathcal{B}$
 - i.e., each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

- Let \mathcal{B} be the set of all *infinite binary sequences*.
 - An infinite binary sequence is an unending sequence of 0s and 1s.
- Prove:
 - (2.1) B is uncountable, similar to the <u>Theorem</u>
 - (2.2) Prove Obligation: There is a correspondence $f:\mathcal{L}
 ightarrow\mathcal{B}$
 - $\bullet\,$ i.e., each language $A\in\mathcal{L}$ has a unique sequence in $\mathcal B$

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

- Let \mathcal{B} be the set of all *infinite binary sequences*.
 - An infinite binary sequence is an unending sequence of 0s and 1s.
- Prove:
 - (2.1) \mathcal{B} is uncountable, similar to the <u>Theorem</u>
 - (2.2) *Prove Obligation*: There is a correspondence $f : \mathcal{L} \to \mathcal{B}$

i.e., each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

- Let \mathcal{B} be the set of all *infinite binary sequences*.
 - An infinite binary sequence is an unending sequence of 0s and 1s.
- Prove:
 - (2.1) \mathcal{B} is uncountable, similar to the <u>Theorem</u>
 - (2.2) *Prove Obligation*: There is a correspondence $f : \mathcal{L} \to \mathcal{B}$,

• i.e., each language $A \in \mathcal{L}$ has a unique sequence in $\mathcal B$

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2.2) Prove Obligation: Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2.2) Prove Obligation: Each language A ∈ L has a unique sequence in B
Prove: Let Σ* = {s₁, s₂, s₃,...}:
The *i*th bit of that sequence (*characteristic sequence* of A, χ_A) is

a 1 if s_i ∈ A
a 0 if s_i ∉ A

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2.2) Prove Obligation: Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B} Prove: Let $\Sigma^* = \{s_1, s_2, s_3, \dots\}$:

• The *i*th bit of that sequence (*characteristic sequence* of A, χ_A) is

• a 1 if
$$s_i \in A$$

• a 0 if $s_i \notin A$

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2.2) Prove Obligation: Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B} Prove: Let $\Sigma^* = \{s_1, s_2, s_3, \dots\}$: For simplicity, if $\Sigma = \{0, 1\}$

• The *i*th bit of that sequence (*characteristic sequence* of A, χ_A) is

- a 1 if $s_i \in A$
- a 0 if $s_i \notin A$

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

(2) Prove: The set of all languages, denoted as \mathcal{L} over Σ , is uncountable

• Let \mathcal{B} be the set of all *infinite binary sequences*.

An *infinite binary sequence* is an unending sequence of 0s and 1s

• Prove:

- (2.1) B is uncountable, similar to the <u>Theorem</u>
- (2.2) *Prove Obligation*: There is a correspondence $f : \mathcal{L} \to \mathcal{B}$,
 - i.e., each language $A \in \mathcal{L}$ has a unique sequence in $\mathcal B$

2. Undecidability | The Diagonalization Method

推论

Some languages are not Turing-recognizable.

证明: (Proof by Contradiction)

- Proof by Contradiction:
 - 1 The set of all Turing-machines is countable
 - 2 The set of all languages is uncountable

Proved

1 Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$
2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} 【Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for A_{TM} , where $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} 【Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for A_{TM} , where

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- $\bullet~{\sf Construct}$ a TM $D~{\sf using}~H$
- D= "On *input* $\langle M \rangle$, where M is a TM:
 - Run *H* on input $\langle M, \langle M \rangle \rangle$.
 - Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for A_{TM} , where $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$ $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$

★掃▶ ★ 注▶ ★ 注▶ - 注

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} \blacksquare

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for A_{TM} , where $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for A_{TM} , where $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

 $D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$

D rejects $\langle D \rangle$ exactly when D accepts $\langle D \rangle$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

证明: (Proof by Contradiction)

• Suppose that H is a decider for $A_{\rm TM}$, where

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

 $D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$

D rejects $\langle D
angle$ exactly when D accepts $\langle D
angle$

Contradiction. Proved.

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} 【Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

分析: Diagonalization:

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

分析: Diagonalization:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					
M_4	accept	accept			
:					
:					

 \mathbb{E} : Entry *i*, *j* is accept if M_i accepts $\langle M_j \rangle$

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

分析: Diagonalization:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:		:			
•			•		

 \mathbb{E} : Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall)

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

分析: Diagonalization: D computes the opposite of the diagonal entries

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	• • •
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
÷		÷			·		
D	reject	reject	accept	accept		?	
÷		÷					·

 \mathbb{S} : Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

2. Undecidability | An Undecidable Language

定理: Undecidability of A_{TM} (Recall

The language $A_{\rm TM}$ is *undecidable*, where

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

分析: Diagonalization: D computes the opposite of the diagonal entries

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	• • •
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
÷		:			·		
D	reject	reject	accept	accept		?	
÷		:					·

 \mathbb{E} : Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

If D is in the figure, a *contradiction* occurs at "?", $a \in A$, $a \in A$, a \in A, a

形式语言与计算复杂性

1 Introduction

Decidable Languages

- Decidable Problems Concerning Regular Languages
- Decidable Problems Concerning Context-free Languages

Undecidability

- The Diagonalization Method
- An Undecidable Language
- A Turing-unrecognizable Language

问: Besides undecidable, is there a language *even not Turing-recognizable*? 答: Yes

问: How to prove it? 答: Define *co-Turing-recognizable* first.

定义: co-Turing-recognizable

A language is *co-Turing-recognizable* if it is the *complement* of a *Turing-recognizable* language

问: Then? 答: Show a Theorem (加下页), and then prove by using the Theorem 问: Besides undecidable, is there a language *even not Turing-recognizable*? 答: Yes

- 问: How to prove it?
- 答: Define co-Turing-recognizable first.

定义: co-Turing-recognizable

A language is *co-Turing-recognizable* if it is the *complement* of a *Turing-recognizable* language

问: Then? 答: Show a Theorem (加下页), and then prove by using the Theorem 问: Besides undecidable, is there a language *even not Turing-recognizable*? 答: Yes

- 问: How to prove it?
- 答: Define co-Turing-recognizable first.

定义: co-Turing-recognizable

A language is *co-Turing-recognizable* if it is the *complement* of a *Turing-recognizable* language

问: Then?

答: Show a Theorem (加下页), and then prove by using the Theorem

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 1: If A is decidable

Let ${\cal M}$ be the decider for ${\cal A}$

- If $w \in A$, M accepts w, so A is Turing-recognizable
- If $w \in \overline{A}$, i.e., $w \notin A$, M rejects A, so A is co-Turing-recognizable

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 1: If A is decidable

Let ${\cal M}$ be the decider for ${\cal A}$

• If $w \in A$, M accepts w, so A is Turing-recognizable

• If $w \in \overline{A}$, i.e., $w \notin A$, M rejects A, so A is co-Turing-recognizable

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 1: If A is decidable

Let ${\cal M}$ be the decider for ${\cal A}$

- If $w \in A$, M accepts w, so A is Turing-recognizable
- If $w \in \overline{A}$, i.e., $w \notin A$, M rejects A, so A is co-Turing-recognizable

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable

Let M_1 be the recognizer for ALet M_2 be the recognizer for \overline{A}

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable

Let M_1 be the recognizer for ALet M_2 be the recognizer for \overline{A} Construct the TM M:

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

证明 2: If A is Turing-recognizable and co-Turing-recognizable

Let M_1 be the recognizer for ALet M_2 be the recognizer for \overline{A} Construct the TM M:

M = "On input w:

 $\textcircled{\ } \textbf{Run both } M_1 \textbf{ and } M_2 \textbf{ on input } w \textbf{ in parallel}$

2 If M_1 accepts, accept; if M_2 accepts, reject."

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

推论

 $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable

证明: (Proof by Contradiction)

- $A_{\rm TM}$ is Turing-recognizable
- If $\overline{A_{\mathrm{TM}}}$ is Turing-recognizable
 - $A_{\rm TM}$ is co-Turing-recognizable
 - $A_{\rm TM}$ is decidable
 - Contradiction. Proved

4 3 > 4 3

< 1 k

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

 $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable

证明: (Proof by Contradiction)

- $A_{\rm TM}$ is Turing-recognizable
- If $\overline{A_{\mathrm{TM}}}$ is Turing-recognizable
 - $A_{\rm TM}$ is co-Turing-recognizable
 - $A_{\rm TM}$ is decidable
 - Contradiction. Proved

< 1 k

2. Undecidability | A Turing-unrecognizable Language

定理

A language is *decidable*, iff it is Turing-recognizable and co-Turing-recognizable.

 $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable

证明: (Proof by Contradiction)

- $A_{\rm TM}$ is Turing-recognizable
- If $\overline{A_{\rm TM}}$ is Turing-recognizable
 - $A_{\rm TM}$ is co-Turing-recognizable
 - $A_{\rm TM}$ is decidable
 - Contradiction. Proved

< 1 k

2. Undecidability | A Turing-unrecognizable Language

总结

- 定义:
 - one-to-one, onto, same size, correspondence
 - countable , co-Turing-recognizable
- 定理:
 - <u>uncountable of R</u>
 - decidable \equiv Turing-recognizable \land co-Turing-recognizable
- 推论:
 - Some languages are not Turing-recognizable
- Decidable:
 - $\underline{A}_{\text{DFA}}$, $\underline{A}_{\text{NFA}}$, $\underline{A}_{\text{REX}}$, $\underline{E}_{\text{DFA}}$, $\underline{E}Q_{\text{DFA}}$
 - $A_{\rm CFG}$, $E_{\rm CFG}$, every context-free language
- Recognizable: $\underline{A_{\mathrm{TM}}}$
- Undecidable: $\underline{EQ_{\mathrm{CFG}}}$ (Not proved yet), $\underline{A_{\mathrm{TM}}}$
- Turing-unrecognizable: $\overline{A_{\mathrm{TM}}}$

4.1 Answer all parts for the following DFA *M* and give reasons for your answers.

- a. Is $\langle M, 0100 \rangle \in A_{DFA}$?d. Is $\langle M, 0100 \rangle \in A_{REX}$?b. Is $\langle M, 011 \rangle \in A_{DFA}$?e. Is $\langle M \rangle \in E_{DFA}$?c. Is $\langle M \rangle \in A_{DFA}$?f. Is $\langle M, M \rangle \in EQ_{DFA}$?
- **4.3** Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \Sigma^* \}$. Show that ALL_{DFA} is decidable.

4.6 Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. We describe the functions $f: X \longrightarrow Y$ and $q: X \longrightarrow Y$ in the following tables. Answer each part and give a reason for each negative answer.

n	f(n)	n	g(n)
1	6	1	10
2	7	2	9
3	6	3	8
4	7	4	7
5	6	5	6

۸

^A a.	Is f one-to-one?	^A d.	Is g one-to-one?
b.	Is f onto?	e.	Is g onto?

c. Is *f* a correspondence?

f. Is *q* a correspondence?

< 日 > < 同 > < 回 > < 回 > < 回 > <

4.7 Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Show that \mathcal{B} is uncountable using a proof by diagonalization.