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Calculations of Franck–Condon factors are crucial for interpreting vibronic spectra of molecules and 
studying nonradiative processes. We have derived straightforwardly a more general analytical expression 
for the calcu lation of the three-dimensional Franck–Condon overlap integrals on the basis of harmonic 
oscilla tor approxima tion under the influence of mode mixing effects. This new analytical expression 
was applied to study the photoelectron spectra of PO �2 . The theoretical spectrum obtained by employing 
CCSD(T) values is in excellent agreement with the observed one. An ‘irregular spacing’ observed in the 
experimen tal photoelectron spectrum of PO �2 is interprete d as contributing from a hot-b and sequence 
of the bending vibration x2 and combination bands of the stretching vibration x1 and the bending vibra- 
tion x2. In addition, the equilibrium geometry parameters, r(O–P) = 1.495 ± 0.005 Å and \(O–P–
O) = 119.5 ± 0.5 �, of the eX1A1 state of PO �2 , are derived by employing an iterative Franck–Condon analysis 
proce dure in the spectral simulation. 

� 2013 Elsevier Inc. All rights reserved. 
1. Introduction cal . Ver y re ce ntl y, Ki ku chi et al . [8 ] de ri ved a si mp le r for m of th e Sha rp 
The distribut ion of relative intensities among the vibronic 
bands in the electronic spectra of molecule s is governed by the 
Franck–Condon (FC) principle in the absence of vibronic coupling. 
Along with the developmen t of experimental high-resolution vib- 
ronic spectroscopic techniques, the problem of analyzing the ob- 
served spectra is receiving increased attention [1,2]. Assuming 
that molecules retain their symmetry during the electronic transi- 
tion, the normal coordinates of electronic states generally undergo 
a distortion as well as a rotation. The rotation results in a mixing of 
the normal coordina tes and thereby the nonseparabi lity of the 
multidimen sional Franck–Condon integrals. This mode mixing, 
the Duschinsky effect [3], makes the calculation of multidimen- 
sional Franck–Condon integrals a troubleso me and difficult work. 

To eva lu at e th e mu lt id im ens io na l Fr an ck –Con do n in te gr al s
qu an ti ta ti ve ly , a va ri et y of th eo re ti ca l me tho ds [4 –30] ha ve be en 
de vel op ed in th e pa st se ve ra l de ca de s. On e of the se is ba se d on the 
ge ne ra ti ng fu nc ti on ap pr oa ch of Sh arp an d Ro se ns toc k [4 ] wh ic h is 
an ext en si on of the me th od in tr od uce d by Hu tch is so n [5 ] for the di a- 
to mi c ca se . Thi s me th od ha s bee n fu rt he r de vel op ed by Che n [6 ] and 
im pr ov ed by Erv in et al. [7 ] in th ei r app li cat io n to the na ph th yl ra di -
ll rights reserved. 
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and Ro se nst oc k ge ne ra l for mu la an d app li ed it to SO2 in the ha rm oni c
osc il la to r ap pr ox im at io n. An oth er me th od ba se d on th e ge ner at in g
fun ct io n app ro ac h is du e to Ru ho ff [9 ] wh o de ri ved re cu rs io n re la -
tio ns fo r the cal cu la ti on of mu lt id im en si on al FC Fs by ge ne ra li zi ng 
Ler me ’s [1 0] pr oc edu re for two -d im en si ona l FC ov er la p in te gra ls .
Al so em pl oy in g the ge ne ra ti ng fu nc tio n me tho d, Is la mp our et al .
[1 1] de ri ved a cl ose d- fo rm mu lt id im ens io nal har mo nic osc il la to r
exp re ss io n, wh er e the FC ove rl ap in te gr al s wer e exp re ss ed as su ms 
of pr od uc ts of He rm it e po ly no mi als . An al ter na ti ve pr oc ed ur e, ut il iz -
in g the re cur si on re la tio ns of Do ct or ov et al. [1 2, 13 ] ha s be en em -
pl oye d for a var ie ty of mo le cu le s su ch as ph en ol [1 4, 15 ], ant hra ce ne 
[1 6] an d py ra zin e [1 7]. In ad di ti on, two di ff er en t me tho ds fo r cal cu -
la ti ng the FC ov erl ap in te gra ls we re de ve lo pe d by Fa ul kn er an d Ri ch -
ard so n [1 8]. Th e ce nt ra l fe atu re of th eir first me tho d is a li ne ar
tra ns for ma tio n of the no rm al co or di na tes in bo th the gr ou nd and ex- 
cit ed el ect ro ni c st at es in or de r to ef fe ct iv el y re mo ve the Du sc hin sk y
ro ta tio ns . Th is wa s or ig in all y re st ri cte d to th e cas e wh er e ei th er the 
in it ia l or final vib ra tio na l wa ve fu nct io n is the gr oun d st at e, bu t
Kul an de r la ter re mo ved th is re st ri ct io n [1 9,2 0] . Th e se con d me th od
of Fa ul kn er and Ri cha rd so n is ba se d on a pe rt urb at io n ex pa nsi on of 
the vi br at io na l wa ve fun cti on s of th e ex ci ted el ect ro ni c st at e in te rm s
of th e gro un d el ect ro ni c st at e vi br ati on al wav e fun cti on s. Fi na ll y, 
Mal mq vis t an d Fo rs be rg [2 1] hav e ex pr es se d th e FC ma tri x as the 
pr odu ct of lo we r tri ang ula r an d up pe r tr ia ng ula r ma tr ic es whi ch 
are cal cu la te d fr om re cu rs io n for mu la s. On th e oth er ha nd , Li n et al .
[1 1, 22–24 ] ma de a lo t of co ntr ib uti on s to cal cul at io ns of 
mu lt id im ens io nal FC in te gr al s. Th ey obt ai ne d a clo se d- fo rm for mu la 
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of fou r- di me nsi ona l FC in te gr al s on th e ba si s of th e con to ur in teg ra l of
He rm it e po ly nom ia ls , and de ri ved the ana ly tic al exp re ss io ns for th e
ca lc ul ati on of the mu lt id im en si ona l Fr an ck–Co nd on ov er la p in te gr al s
by us in g an add it io n th eor em of He rm it e po ly nom ia ls .

Recently, Chang et al. [25–27] develope d a simple method to cal- 
culate multidimen sional FC integral of harmonic oscillators up to 
four dimensions including the Duschinsky effects. Some useful ana- 
lytic formulae of multidimensiona l FC integrals were obtained and 
have been employed to study the photoelectr on spectra of SO 2 and
H2O. However , the derived analytical expression for the calculatio n
of the three-dimens ional Franck–Condon overlap integrals was re- 
stricted to the case where either the initial or final vibrational wave 
function is the ground state. Another shortcom ing of Chang’s meth- 
od is that they derived analytical expressions of multidimensiona l
FC integrals and coefficient parameters by algebraic methods . In 
this work, we introduce the matrix expressions of some variables 
and coefficient parameters in the FC overlap integrals. Here, a more 
general analytical expression for the calculatio n of three-dimen- 
sional FC overlap integrals, with the inclusion of mode-mixing ef- 
fects, is derived on the basis of matrix manipulation, similar to 
Chang’s techniques [25–27]. A series of coefficient matrix relations 
between the coefficient parameters and the mode mixing transfor- 
mation coefficients were found. Furthermore, the method for deter- 
mining the coefficient paramete r matrices was given by matrix 
manipulations . In addition, our approach has the advantages of 
being efficient and having no singular points [25]. Another advan- 
tage of a more general analytical expression for the calculation of 
the three-dimens ional FC overlap integrals is that the FCF of any 
transition can be computed independen tly, without the necessity 
of storing FCFs for obtaining those of higher vibration al states as 
in the popular and well-docum ented recurrence approach [12,13].
Accordingly , our method can be applied to any distorted–rotated
harmonic oscillators [25–30] and should be valuable in the studies 
of vibronic spectroscopy and nonradiative processes of molecules. 

In order to test the validity of this new analytical expression for- 
mula, we calculated the photoelectron spectra of PO �2 ðeX1A1Þ taking
into account the mode mixing and hot band effects. The PO 2 radical
is well known since it is easily generated by phosphorus–oxygen 
reactions, and it is also an important intermediate in phosphorus 
combustion chemistry [31–35]. The PO 2 spectrum of the eX2A1

ground state has been extensively investigated by various high-res- 
olution spectroscopic methods [36–43]. Kawaguchi et al. [36] ob-
tained an accurate ground state geometry and estimates of the 
lowest vibrational frequencies from far-infrared laser magnetic res- 
onance (LMR) and microwave spectroscop y. The most accurate val- 
ues obtained for the P–O bond length and the O–P–O bond angle are 
1.4665 ± 0.0041 Å and 135.3 ± 0.8 �, respectively . The estimated 
vibrational frequenc ies for the symmetr ic stretch (x1) and bend 
(x2) vibrational modes are 1090 and 377 cm �1, respectively, from 
the centrifugal distortion constant s. Laser induced fluorescence
(LIF) and infrared absorption spectra observed by Hamilton and 
co-workers [37] also give similar ground state vibrational frequen- 
cies (x1=1117 cm �1 andx2 = 387 cm �1). Lei et al. [43] later reported 
the laser fluorescence excitation spectra of PO 2 radicals in a jet- 
cooled molecula r beam and they estimated vibration al intervals of 
1075.4(50) and 397.3(43) cm �1 for the x1 and x2 vibrational modes. 
A few ab initio studies of the eX2A1 ground state of PO 2 have been re- 
ported in the literature [44–50]. In 1984, Lohr [44] performed sem- 
inal calculations of gas phase PO and PO 2 and their anions at the UHF, 
MP3 and CISD levels. Lohr and Boehm [45] later also calculated the 
vibrational frequencies of the eX2A1 state at the UHF/6-31 G + d level. 
In 1989, Kabbadj and Lievin [46] calculated the equilibriu m geome- 
tries, vibrational frequencies and adiabatic excitation energies for 
low-lying electronic states of PO 2 at the MCSCF and SCF levels 
including only valence electrons and all electrons, respectively , with 
small basis sets. In 1990, Jarrett-Spr agne et al. [47] later reported the 
structure and vibration al spectra of PO 2 at the UHF/6-31G ⁄ level. In 
1996, Buenker and co-workers [48] calculated the equilibriu m
geometry of the eX2A1 state by means of multireference single- and 
double-e xcitation configuration interaction (MRD-CI) calculations 
with a triple-zeta basis set plus two polarization d functions, as well 
as Rydberg orbitals. In 2002, Francisco [49] predicted the spectral 
and geometric parameters for PO 2 using the singles and doubles cou- 
pled cluster method, including a perturbational correction for con- 
nected triple excitations, CCSD(T), together with systematic 
sequence s of correlation consistent basis sets. Lee et al. [50] later
also carried out the geometry optimizati on and harmonic vibra- 
tional frequency calculations on some low-lying electronic states 
of PO 2 at the CIS, CASSCF, MP2, and RCCSD(T) levels with various 
standard basis sets of at least valence triple- f quality.

The corresponding negative ion PO �2
� �

is one of the possible an- 
ionic species occurring in oxidations of phosphorous compound s
[51]. Research of the spectrum and dynamics of the PO �2 anion is, 
however , comparative ly scarce both theoretically and experime n- 
tally. Spectroscopic studies of PO �2 have been limited to the solid 
phase: Geometries and vibrational frequenc ies of PO �2 in a potas- 
sium chloride crystal have been obtained from spectroscopic and 
optically detected magnetic resonance studies by Francis and co- 
workers [52]. Prior to 1996, the gas phase anion of OPO was not 
known, although it has been generated as an impurity center in al- 
kali halide crystals. In 1996, Xu et al. [53] reported the first gas phase 
photoelectron spectrum (PES) of PO �2 anion. An electron affinity va- 
lue of 3.42 ± 0.01 eV was reported from the experime nts for PO 2.
Addition ally, they also determined the P–O bond length [r(O–
P)=1.50 ± 0.01 Å] and the O–P–O bending angle (\(O–P–
O)=120.0 ± 0.1 o) for PO �2 by fitting simulated spectrum to experi- 
mental. Nevertheles s, they did not theoreticall y investigate how 
the overlap of the hot bands with the cold ones results in the final
spectral pattern. On the other hand, Zhang et al. [54] calculated FCFs 
for the photodetach ment of PO �2 once again by using Sharp and 
Rosensto ck’s approach [4] taking into account the Duschinsky ef- 
fect. They determined the P–O bond length (r(O–P) = 1.504 
± 0.005 Å) and the O–P–O bending angle (\(O–P–O) = 119.0 ± 0.2 o)
by an iterative FC analysis on Xu and co-workers’ PES of PO �2 . How- 
ever, Zhang et al. completely ignored hot bands in the FCF calcula- 
tions due to their weak signals, albeit some were observed and 
identified by Xu et al. [53]. Here we further investigate the 
PO2ðeX2A1Þ � PO�2 ðeX1A1Þ photodetach ment process. In this study, 
we simulated the PES of PO �2 including contributi ons from both 
the ‘cold’ and ‘hot’ bands under the influence of the Duschinsk y
mode mixing effect on the basis of a more general analytical expres- 
sion for the calculation of the three-dimens ional Franck–Condon
overlap integrals derived by us. In addition, an ‘irregular spacing’ 
[53] observed in the experimental photoelectron spectrum of PO �2
is interpreted. Furthermore, employin g the iterative Franck–Con- 
don analysis procedure in the spectral simulation, the more reliable 
equilibriu m geometri es of the eX1A1 state of PO �2 can be determined. 

In the following section, we present a general formula of 
Franck–Condon overlap integral for three-dimensio nal harmonic 
oscillator s. Then, Section 3 presents the results of equilibrium 
structure s, vibrational frequencies and spectral simulation. The 
significance of the research findings is also discussed. Finally, Sec- 
tion 4 draws the conclusio ns. 
2. Theory 

2.1. General analytic expression for three-dimension al Franck–Condon 
integral

Upon an electroni c transition, the wavefunction of three- 
dimensio nal harmonic oscillator s in the jt01t02t03i vibration al state 
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of the initial electronic state and in the jt1t2t3i vibrational state of 
the final electronic state can be expressed as, respectively ,
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where v 0i and vi (i = 1, 2, 3) are vibration al quantum numbers, Ht0
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ð4Þ

where x0i and xi are the angular frequency of the ith mode for the 
initial electronic state and the final electronic state, respec tively. It 
follows that the Franck–Condon vibrational overlap integral be- 
tween jt1t2 t3i and jt01t02t03i states is 
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An exact expression of FC integral for the vibronic transit ion 
jt1t2t3i  jt01t02t03i, will be derived in detail. When the Duschinsky 
effect must be taken into account, the normal coordinates Q0 of the 
initial state jt01t02t03i

� �
are related to those Q of the final state (jt1t2-

t3i) by 

Q 0 ¼ JQ þ K ð7Þ

where J is a 3 � 3 constan t orthogonal matrix and K is a three- 
dimensi onal vector whose component s are the changes in the nu- 
clear equilibrium positions from the initial to final states. Upon 
substitu ting Eq. (7) into Eq. (5), expanding, and regroup ing, we 
obtain
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where C0 is a 3 � 3 diagonal matrix of reduced frequen cy x0i=�h, and 
+ indicate s the Hermitian conjugate (which is, for a real matrix, the 
transpos e), and a column vector 

W ¼ JþC0 K ð9Þ
and a 3 � 3 symmetric matrix 

J0 ¼ 1
2
ðJþC0Jþ CÞ ð10Þ

The exponent factor in the integrand in Eq. (8) is quadr atic in Q.
Compl eting the square is accomplis hed by use of the transfo rmation 
matrix V in the expression 

Q ¼ VX0 ð11Þ

where V is chosen to satisfy the det V = 1 and yield the diagonal ma- 
trix A, i.e. 

VþJ0V ¼ A ð12Þ

Substitu ting Eq. (11) into Eq. (8), and employi ng Eq. (12), we obtain 
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where C = A�1(V+W)/2 is the three-dim ensional column vector 
whose components are 

Ci ¼
ðVþWÞi

2Ai
ði ¼ 1;2;3Þ ð14Þ

and
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In Eq. (13), the coefficients of Hermite polynomi als are as follows: 
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On the basis of expanding property of Hermite polynom ials [55]:
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are coefficients. 

Insertin g Eq. (17) into (13), one obtains 
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Up to this step, the three-dim ensional vibrational overlap integr al 
in Eq. (5) has reduced to a product of one-dimen sional Gauss ian 
integrals in Eq. (18). Gauss ian integral can be evaluated by Z 1
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where (2k � 1)!! is a double factorial. By means of the Gauss ian 
integral formula (19), then the final closed form of the overlap inte- 
gral is obtained 
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i
�k0i1�k0i2�k0i3

d0i
� �

�
ti

ki1

 !
ti�ki1

ki2

 !
ti�ki1�ki2

ki3

 !

�ð2ai1Þki1 ð2ai2Þki2 ð2ai3Þki3 �Hti�ki1�ki2�ki3
ðdiÞ

i
�
P3

i¼1 ki1þk0i1
� �

�1
h i

!!

ð2A1Þ
1
2

X3

i¼1

ðki1þk0i1Þ

p
A1

	 
1=2
P3

i¼1ðki2þk0i2Þ�1
h i

!!

ð2A2Þ
1
2

X3

i¼1

ðki2þk0i2Þ

� p
A2

	 
1=2

�
P3

i¼1 ki3þk0i3
� �

�1
h i

!!

ð2A3Þ
1
2

X3

i¼1

ki3þk0i3ð Þ

p
A3

	 
1=2

9>>>>>=>>>>>;
ð20Þ

with the constraints that 
P3

i¼1 ðki1 þ k0i1Þ;
P3

i¼1ðki2 þ k0i2Þ andP3
i¼1 ðki3 þ k0i3Þ are even. Furthermor e, from Eq. (20) an exact for- 
mula of calculating the three-dimen sional overlap integral for the 
vibronic transition jt1t2t3i  j000i, is given explicitly as: 

ht1t2t3j000i¼exp �1
2

KþC0K
	 


expðCþACÞN

�
Xt1

k11¼0

Xt1�k11

k12¼0

Xt1�k11�k12

k13¼0

Xt2

k21¼0

Xt2�k21

k22¼0

Xt2�k21�k22

k23¼0

Xt3

k31¼0

Xt3�k31

k32¼0

�
Xt3�k31�k32

k33¼0
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�
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ki1

 !
ti�ki1

ki2

 !
ti�ki1�ki2

ki3

 !"(

� 2ai1Þki1 ð2ai2Þki2 ð2ai3Þki3�Hti�ki1�ki2�ki3
ðdiÞ

� i

�

P3

i¼1
ki1�1

� 
!!

ð2A1Þ

1
2

X3

i¼1

ki1

p
A1

� �1=2
P3

i¼1
ki2�1

� 
!!

ð2A2Þ

1
2

X3

i¼1

ki2

p
A2

� �1=2 P3
i¼1ki3�1

h i
!!

ð2A3Þ
1
2

X3

i¼1

ki3

p
A3

� �1=2

9>>>>>>>>>=>>>>>>>>>;
ð21Þ

with the constrain ts 
P3

i¼1ki1;
P3

i¼1ki2 and
P3

i¼1ki3 all being even. 
Finally, the Franck–Condon factors (FCFs) of three-dimensio nal 

harmonic oscillators including the Duschinsky effect can be evalu- 
ated by 

FCFs ¼ t1t2t3jt01t02t03
� ��� ��2 ð22Þ

Eq. (20) is exact for harmonic systems , no approxim ation whatso- 
ever having been introduced in its derivatio n. This expression 
should be very useful for studying vibronic spectra and nonradiati ve 
processe s of molecul es. 

2.2. Calculatio n method of constant coefficient matrices and vectors 

Above, the new analytic expression for three-dimensio nal 
Franck–Condon integral is shown. Given the Duschinsky matrix J
and the vector K, we can find matrix elements of other coefficient
matrices and vectors such as the transformat ion matrix V, the diag- 
onal matrix A and constant coefficient vector C. Firstly, from the 
transformat ion relation (15), i.e. X = V�1Q + C, setting 

V�1 ¼
1 B1 B2

0 1 B3

0 0 1

264
375 ð23Þ

Then its inverse matrix can be found 

V ¼
1 �B1 B1B3 � B2

0 1 �B3

0 0 1

264
375 ð24Þ

Here V satisfy det V = 1, and yield the diagonal matrix A. On the 
based of the matrix Eq. (12), i.e. V+J0V = A, the matrix equation is gi- 
ven explicitly as 

1 0 0

�B1 1 0

B1B3 � B2 �B3 1

264
375 J011 J012 J013

J021 J022 J023

J031 J032 J033

264
375 1 �B1 B1B3 � B2

0 1 �B3

0 0 1

264
375

¼
A1 0 0

0 A2 0

0 0 A3

264
375

ð25Þ

By the matrix Eq. (25), one obtain 
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A1 ¼ J011 ð26aÞ
B1 ¼ J012=J011 ð26bÞ
B2 ¼ J013=J011 ð26cÞ
A2 ¼ J022 � J0212 =J011 ð26dÞ

B3 ¼ J013 � J012J013=J011

� �
= J022 � J0212 =J011

� �
ð26eÞ

A3 ¼ J033 � J0213 =J011 � J013 � J012J013=J011

� �2
= J022 � J0212 =J011

� �
ð26fÞ

In addition, by Eq. (14) the coefficient vector C can be determine d
from V, A and W, i.e. 

C1 ¼
X3

i¼1

a0iJi1Ki

 !
=ð2A1Þ ð27aÞ

C2 ¼
X3

i¼1

a0iJi2Ki � 2A1B1C1

 !
=ð2A2Þ ð27bÞ

C3 ¼
X3

i¼1

a0iJi3Ki � 2A1B2C1 � 2A2B3C2

 !
=ð2A3Þ ð27cÞ

By means of Eqs. (16a)–(16d), the coefficients of Hermite polynomi- 
als are obtained :

a11 ¼
ffiffiffiffiffi
a1
p

; a12 ¼ �
ffiffiffiffiffi
a1
p

B1; a13 ¼
ffiffiffiffiffi
a1
p
ðB1B3 � B2Þ ð28aÞ

a21 ¼ 0; a22 ¼
ffiffiffiffiffi
a2
p

; a23 ¼ �
ffiffiffiffiffi
a2
p

B3 ð28bÞ
a31 ¼ 0; a32 ¼ 0; a33 ¼

ffiffiffiffiffi
a3
p

ð28cÞ

a011 ¼
ffiffiffiffiffi
a01

p
J11; a012 ¼

ffiffiffiffiffi
a01

p
ðJ12 � B1J11Þ ð29aÞ

a013 ¼
ffiffiffiffiffi
a01

p
½J13 � B3J12 þ ðB1B3 � B2ÞJ11� ð29bÞ

a021 ¼
ffiffiffiffiffi
a02

p
J21; a022 ¼

ffiffiffiffiffi
a02

p
ðJ22 � B1J21Þ ð29cÞ

a023 ¼
ffiffiffiffiffi
a02

p
½J23 � B3J22 þ ðB1B3 � B2ÞJ21� ð29dÞ

a031 ¼
ffiffiffiffiffi
a03

p
J31; a032 ¼

ffiffiffiffiffi
a03

p
ðJ32 � B1J31Þ ð29eÞ

a033 ¼
ffiffiffiffiffi
a03

p
½J33 � B3J32 þ ðB1B3 � B2ÞJ31� ð29fÞ
Table 1
Summary of some compute d and experimental geometric parameters and vibrational freq

Method r(O–P) (Å) \(O–P–O

B2PLYP/aug-cc-pVDZ 1.519 133.82 
B2PLYP/aug-cc-pVTZ 1.4863 134.13 
CCSD(T)/aug-cc-pVDZd 1.5230 134.02 
CCSD(T)/aug-cc-pVTZd 1.4854 134.64 
CCSD(T)/aug-cc-pVQZd 1.4745 134.83 
CCSD(T)/aug-cc-pV5Z 1.4686 135.25 
MRD-CI/TZ + 2d + Ra 1.464 135.14 
B3LYP/6-311 + G (2d,p)b 1.4762 134.2861
B3LYP/6-311 + G (d,p)b 1.4851 133.6917
CCSD/6-311 + G (2d,p)b 1.4686 135.1822
QCISD(T)/6-311 + G (2d,p)b 1.4723 135.0226
MP2/6-311 + G (2d,p)b 1.4806 136.7967
MP2/6-311 + G (3df)c 1.478 136.6 
CCSD(T)(FC)/cc-pVDZd 1.515 133.5 
CCSD(T)(FC)/cc-pVTZd 1.482 134.6 
CCSD(T)(FC)/cc-pVQZd 1.473 134.9 
Expt. (LMR, microwave)e 1.4665 ± 0.0041 135.3 ± 0
Expt. (LIF)f

Expt. (LMR LF)g

Expt. (PES)h

Expt. (DL)i

a Ref. [48].
b Ref. [54].
c Ref. [50].
d Ref. [49].
e Ref. [36].
f Ref. [37].
g Ref. [43].
h Ref. [53].
i Ref. [40].
d1 ¼ �
ffiffiffiffiffi
a1
p
½C1 � B1C2 þ ðB1B3 � B2ÞC3� ð30aÞ

d2 ¼ �
ffiffiffiffiffi
a2
p
ðC2 � B3C3Þ ð30bÞ

d3 ¼ �
ffiffiffiffiffi
a3
p

C3 ð30cÞ

d01 ¼ �
ffiffiffiffiffi
a01

p
fC1J11 þ C2ðJ12 � B1J11Þ þ C3½ðB1B3 � B2ÞJ11

� B3J12 þ J13� � K1g ð31aÞ

d02 ¼ �
ffiffiffiffiffi
a02

p
fC1J21 þ C2ðJ22 � B1J21Þ þ C3½ðB1B3 � B2ÞJ21

� B3J22 þ J23� � K2g ð31bÞ

d03 ¼ �
ffiffiffiffiffi
a03

p
fC1J31 þ C2ðJ32 � B1J31Þ þ C3½ðB1B3 � B2ÞJ31

� B3J32 þ J33� � K3g ð31cÞ

Furtherm ore, it can be easily proven that our formula (21) is iden- 
tical to the formula (A4)-(A7) reported in Ref. [27] by Chang. Note 
that a21 = 0, a31 = 0 and a32 = 0 in Eq. (28), so Eq. (21) is simplified as 

ht1t2t3j000i ¼ exp �1
2

KþC0K
	 


expðCþACÞN

�
Xt1

k11¼0

Xt1�k11

k12¼0

Xt1�k11�k12

k13¼0

Xt2

k22¼0

Xt2�k22

k23¼0

Xt3

k33¼0

t1

k11

	 

t1 � k11

k12

	 
�

�
t1 � k11 � k12

k13

	 
 t2

k22

	 

t2 � k22

k23

	 
 t3

k33

	 

� ð2a11Þk11 ð2a12Þk12 ð2a13Þk13 ð2a22Þk22 ð2a23Þk23 ð2a33Þk33

� Ht1�k11�k12�k13 ðd1ÞHt2�k22�k23 ðd2ÞHt3�k33 ðd3Þ
½k11 � 1�!!
ð2A1Þk11=2

p
A1

	 
1=2

� ½k12 þ k22 � 1�!!
ð2A2Þðk12þk22Þ=2

p
A2

	 
1=2 ½k13 þ k23 þ k23 � 1�!!
ð2A3Þðk13þk23þk23Þ=2

p
A3

	 
1=2
)
ð32Þ

with the constraints k11, (k12 + k22) and k13 + k23 + k23 all being even. 
Eq. (32) is complet ely consiste nt with Eqs. (A4)-(A7) reported in Ref. 
[27]. Hence, we conclu de that Eq. (20) obtained in this work is a
ue ncies (cm�1) for the eX2A1 state of PO 2 obtained at different levels of theory. 

) (�) x1 (a1) x2 (a1) x3 (b2)

985.0 367.2 1270.1 
1046.1 384.1 1332.0 
977.8 364.9 1241.2 
1054.8 383.4 1326.1 
1072.3 390.4 1348.5 
1081.2 391.6 1362.2 
1052 389 1338 

 1059.4 381.9 1305.1 
 1049.1 375.7 1285.6 
 1089.0 402.7 1345.9 
 1069.3 399.1 1326.2 
 1076.2 398.5 1477.4 

1085 403 1486 
1002 371 1283 
1066 387 1342 
1076 391 1353 

.8 1090 377 
1117 ± 20 387 ± 20 
1076 ± 12 397 ± 12 
1070 380 

1327.53



Table 2
Summary of some computed and experimental geometric parameters and vibrational frequencies (cm�1) for the eX1A1 state of PO �2 obtained at different levels of theory. 

Method r(P–O) (Å) \(O–P–O) (�) x1 (a1) x2 (a1) x3 (b2)

B2PLYP/aug-cc-PVDZ 1.5570 117.86 966.8 422.1 1089.7 
B3LYP/cc-pVQZ 1.5077 118.53 1064.8 461.8 1210.2 
CCSD(T)/aug-cc-pVDZb 1.5606 118.04 969.9 422.9 1095.6 
CCSD(T)/aug-cc-pVTZb 1.5190 118.67 1045.2 447.6 1191.4 
CCSD(T)/aug-cc-pVQZb 1.5080 118.90 1060.3 454.0 1211.5 
CCSD(T)/aug-cc-pV5Z 1.5024 119.23 956.4 446.3 1113.0 
QCISD(T)(FC)/cc-pVQZ 1.5078 118.83 1064.3 461.0 1220.6 
B3LYP/6-311 + G (2d,p)a 1.5108 119.09 1042.7 449.2 1187.3 
B3LYP/6-311G (2d,p)a 1.5082 118.7187 1062.9 463.9 1212.7 
QCISD(T)(FC)/6-311 + G (2d,p)a 1.5068 119.3108 1059.71 461.8 1207.8 
CCSD(T)(FC)/6-311 + G (2d,p)a 1.5038 119.4375 1075.4 467.7 1225.8 
CCSD(T)/cc-pVDZb 1.548 117.9 1008 459 1155 
CCSD(T)/cc-pVTZb 1.514 118.8 1068 463 1227 
CCSD(T)/cc-pVQZb 1.506 118.9 1072 463 1227 
Expt. (IR)c 1198.6 
Expt. (PES)d 1.50 ± 0.01 120 ± 0.1 520 
IFCA 1.495 ± 0.005 119.5 ± 0.5 

a Ref. [54].
b Ref. [49].
c Ref. [51].
d Ref. [53].
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general analytic al expression for calculatio n of three-dimen sional 
Franck–Condon integral, while the formula reported in Ref. [27]
by Chang which is equiva lent to Eq. (32) is only one kind of especial 
cases for calculatio ns of three-dim ensional Franck–Condon integr al 
which can be obtained very easily from above Eq. (20).
Fig. 1. eX2A1 � eX1A1 photodetachment spectrum of PO �2 at a Boltzmann vibrational 
temperature of 300 K. (a) The spectrum from the present calculations (top trace, 
FWHM = 200 cm �1), and (b) the experimental photodetachment spectrum from Ref. 
[53] (top right), and (c) the simulated photodetachment spectrum with their 
vibrational assignments (bottom trace, FWHM = 30 cm �1).
3. Example for an application 

3.1. Equilibrium structures and vibrational frequencies 

Employing the Gaussian 09 suite of programs [56], geometry 
optimization and harmonic vibrational frequenc y calculations were 
carried out on the eX2A1 states of the neutral molecule PO 2, and eX1A1

state of the negative ion PO �2 by using the density functiona l theory 
(B2PLYP functiona l) and the coupled cluster singles and doubles 
with perturbative triples [CCSD(T)] method with different basis sets 
up to aug-cc-p V5Z. Closed and open shell molecules were com- 
puted by restricted and unrestricted methods , respectively. Com- 
puted results obtained from the present investigatio n are 
summarized in Tables 1 and 2 together with available calculated 
and experimental data for comparison. The bending vibration is de- 
noted x2, accordin g to the convention for triatomic molecules. 

Fr om Ta bl e 1, fo r th e st ate eX2A1 of PO 2, the com pu ted bo nd le ng ths 
an d an gl es ob ta in ed at di ffe re nt le vel s of cal cu la ti on se em to be 
hi ghl y co nsi st en t. Fo r r(O–P) an d\(O–P–O), the la rg es t de vi ati on s be- 
tw ee n cal cu la te d an d ex pe ri me nta l bo nd le ng ths and ang le s ar e le ss 
th an 0. 05 65 Å an d 1.5 �, re sp ect iv el y (see Ta ble 1). Ba se d on the ab in i- 
ti o te ch ni qu es at th e CC SD(T)/au g-c c- pV 5Z le vel , the est im at ed va lu es 
ar e 1. 468 6 Å an d 13 5. 25 � fo r r(O–P) and \(O–P–O). The di ff er en ce s
be tw een ca lc ul ate d an d exp er im en tal val ue s ar e on ly 0. 00 2 Å and 
0. 05 � for r(O–P) and \(O–P–O), re sp ec ti ve ly . The the or et ic al 
vi bra ti ona l fr equ enc ie s at al l le ve ls ma tc h re as on ab ly we ll wit h th e
ob se rv ed da ta . Th is su gge st s th at th e use of the ab in it io for ce co n- 
st ant s in the pr opo se d it era ti ve FC an al ys is sc he me sh ou ld giv e re li -
ab le pa ra me te rs of PO �2 in the eX1A1 st at e. Bo th th e opt im iz ed 
ge om et ri c pa ra me te rs an d the vi br ati on al fre qu en cie s ca lc ul ate d at 
CC SD (T)/au g- cc -p V5Z le vel ga ve th e be tte r ag re em ent wi th th e cor re -
sp on di ng av ail abl e ex pe ri me nt al val ue s, and we re the re fo re uti li ze d
in su bs equ ent it era ti ve FC an al ys es and sp ect ra l si mu la tio n. 

For the state eX1A1 of PO �2 , the computed bond lengths and an- 
gles obtained at different levels of calculation seem to be highly 
consistent. However, the computed bond lengths and angles of 
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the eX1A1 state appear to be sensitive to the basis sets. From Table 2,
it can be seen that the computed bond angles converge towards 
larger values while bond lengths towards smaller ones when the 
basis sets are improved from aug-cc-pVDZ to aug-cc-pV5Z. Because 
no experimental geometric parameters were obtained for 
comparison, it is expected that the geometrical parameters ac- 
quired at the higher levels with large basis sets should be more 
reliable. The estimated values based on the ab initio techniqu es 
at the CCSD(T)/aug-cc-pV5Z level, are 1.5024 Å and 119.23 � for
r(O–P), and \(O–P–O), respectively . Regarding the computed 
vibrational frequencies, for the state eX1A1 of PO �2 , the values ob- 
tained at the various levels are reasonably consisten t. For the bend- 
ing mode x2, and asymmetrical stretching mode x3, the 
differences between estimated at the CCSD(T)/aug-cc-pV5Z level 
and experime ntal ones are 74 cm �1 and 85 cm �1, respectively. Dis- 
crepancies between experimental values and computed ones are 
mainly due to anharmonicity effect not to be included in the theo- 
retical calculatio ns. The CCSD(T)/aug-cc-pV5Z results are the best 
overall agreement to the correspondi ng available experime ntal 
and other theoretical values, and were therefore utilized in subse- 
quent iterative FC analyses and spectral simulatio ns. 
Fig. 2. The computed relative intensities with a Boltzmann vibrational temperature of 30
with their vibrational assignments (in order to show more clearly the relatively weak ‘ho
top left).
3.2. Franck–Condon simulations 

The Duschinsk y matrix and displacemen t vector between the 
ground states of PO �2 and PO 2 calculated at the CCSD(T)/aug-cc- 
pV5Z theory level are as follows: 

J ¼
0:97 �0:20 0
0:20 0:97 0

0 0 0:997

264
375; K ¼

�0:27 
0:83 

0

264
375 ð33Þ

where K is in units of amu 1/2Å. Examinat ion of J, which describes 
the mixing of normal modes, reveals that each one of the two a1

modes of PO �2 , maps onto a linear combina tion of the two a1 modes
of PO 2. Note that each column in J is normaliz ed, the sum of the 
squares of the mixing coefficients adding up to unity within round- 
ing errors. Eq. (33) shows that there is some, albeit not large 
(J12 = �0.2, J21 = 0.2), Duschin sky effect between x1(a1) and x2(a1)
vibrat ional modes, whereas x3(b2) is uncoupled from x1(a1) and 
x2(a1) due to differe nt symmetry . K is a measure of the change in 
equilibrium geometry upon detachm ent along each normal mode 
of the negative ion. The normal coordinat e displace ments from 
0 K (top left), and the computed relative intensities of some major ‘hot’ band series 
t’ band series, the y-axes for individual ‘hot’ bands have different scales from that at 
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the anion to the neutral are DQ1 = �0.27, DQ2 = 0.83, which corre- 
spond to a bond length decrease and a bond angle increase, respec- 
tively. Meanwhi le, one can observe that DQ2 is about three times of 
DQ1, stemmin g from the large chang e of the bending angle, and 
therefore a long progressio n of the bending vibration (x2) transi- 
tions is expected. 

Using data obtained from the CCSD(T)/aug-cc-pV5Z calcula- 
tions, the photodetach ment spectrum of PO �2 has also been simu- 
lated at a Boltzmann vibrational temperat ure of 300 K, as shown 
in Fig. 1a, with experimental one (from Ref. [53]) shown in 
Fig. 1b. This simulation has employed a FWHM of 220 cm �1, be- 
cause an experimental resolution of 25 meV (about 220 cm �1)
was given in Ref. [53]. It was seen the vibrational structure simu- 
lated with a FWHM of 220 cm �1 as shown in Fig. 1a matches very 
well with the 266 nm laser experimental spectrum of Ref. [53] in
Fig. 1b.

Simulated photoelectron spectra of the PO 2ðeX2A1Þ � PO�2 ðeX1A1Þ
photodetach ment with a FWHM of 30 cm �1 and a Boltzmann 
vibrational temperat ure of 300 K are shown in Fig. 1c. Vibrational 
assignment s for the symmetric stretching x1 and bending x2

modes of the neutral molecule PO 2 are also provided in Fig. 1c,
respectively , with the labels (0,n,0) – (0,0, 0), (1,n,0) – (0,0, 0)
and (2,n,0) – (0,0, 0) corresponding to the (x1,x2,0) – (0,0, 0) tran- 
sition. The computed relative intensities of the major ‘hot’ bands 
are identified and their assignment s are given in Fig. 1c, with the 
label 21

2correspondi ng to the (0,1, 0) – (0,2, 0), 2n
1 ðn ¼ 0; . . . ;10Þ

correspondi ng to the (0,n,0) – (0,1, 0) and 11
02n

1 ðn ¼ 0; . . . ;3Þ corre-
sponding to the (1,n,0) – (0,1, 0) transitions. From the harmonic 
calculation, it was found that the FCFs for transitions involving 
the asymmetric stretching mode x3 are negligibly small and there- 
fore the x3 mode is not included in the assignment s. 

Since it is not uncommon for vibration ally ‘hot’ anions to be 
produced in the anion source used in a typical photodetachm ent 
experiment as that of Ref. [53], the computed relative intensities 
of the major ‘hot’ band series and their assignment s obtained at 
a Boltzmann vibrational temperat ure of 300 K are given in Fig. 2.
Calculations of relative intensities for hot bands provide detailed 
insights into the PES of PO �2 . Xu et al. [53] experimental ly identified
only one hot band peak ‘a’ (i.e., 20

1Þ, but did not observe other tran- 
sitions (e.g., 20

2;1
0
1 and 21

2, etc.). Fig. 2 demonstrat es that the signal 
of 20

2 is too weak to be detectable because of its small relative 
intensity, as are the other missing bands (not shown).

Our finding is important in the assignment of the experimental 
PES of PO �2 . Xu and co-workers [53] found that the peaks G and H
(see Fig. 1b), which are separated by only 330 cm �1, have irregular 
x2 spacing, and interpreted that there might be more than one ac- 
tive vibrational mode. Nevertheless, the present study shows that 
hot bands also contribute to the ‘irregular spacing’ with some ex- 
tent. From Fig. 2, it was found that the relative intensities for tran- 
sitions 27

1 and 28
1 are far larger than 20

1 and are almost equal to the 
combination bands 11

023
0 and 11

024
0, respectively. The peak G consists 

of 26
011

023
0 and 27

1. The peak H consists of 27
011

024
0 and 28

1. As a result, 
the peaks G and H are separated by only 330 cm �1 in the experi- 
mental PES of PO �2 .

The variations of geometries of the molecule between the elec- 
tronic states using the iterative FC analysis method [6] would yield 
better matches between the simulated and observed spectra than 
that obtained with the ab initio geometries. Since the experimental 
geometry of the eX2A1 state of PO 2 is available, the IFCA method 
was carried out on the eX1A1 state of PO �2 . By fitting simulated spec- 
trum to experimental , the best IFCA bond length r(O–P) and bond 
angle \(O–P–O) obtained for the ground state eX1A1 state of PO �2 ,
employing the CCSD(T)/aug-cc-pV5Z force constants, are 
1.495 ± 0.005 Å and 119.5 ± 0.5 �, respectively. This result is consis- 
tent with the results obtained by Xu et al. and ab initio and DFT cal- 
culations (see Table 2).
4. Conclusion 

We derived a general formula of the three-dimens ional Franck–
Condon overlap integrals for three-dimens ional harmonic oscilla- 
tors by expanding Hermite polynomials and solving Gaussian inte- 
grals. Furthermore, the PES of PO �2 was elucidated in detail and the 
role of Duschinsk y effects and hot bands were clarified. In the case 
of the photoelectron spectrum of the PO 2ðeX2A1Þ – PO �2 ðeX1A1Þ
detachment , it seems that the harmonic model is reasonably ade- 
quate. The rather reliable bond length r(O–P) and bond angle 
\(O-P–O) were obtained, through the IFCA procedure. Based on 
the sensitivity of the relative intensities on the variation of the 
bond length and bond angle, the uncertainties in the r(OP) and 
\(OPO) are probably around ±0.005 Å and ±0.5�, respectivel y. 
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