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Calculations of Franck-Condon factors are crucial for interpreting vibronic spectra of molecules and
studying nonradiative processes. We have derived straightforwardly a more general analytical expression
for the calculation of the three-dimensional Franck-Condon overlap integrals on the basis of harmonic
oscillator approximation under the influence of mode mixing effects. This new analytical expression
was applied to study the photoelectron spectra of PO, . The theoretical spectrum obtained by employing
CCSD(T) values is in excellent agreement with the observed one. An ‘irregular spacing’ observed in the
experimental photoelectron spectrum of PO, is interpreted as contributing from a hot-band sequence
of the bending vibration w, and combination bands of the stretching vibration w; and the bending vibra-
tion w,. In addition, the equilibrium geometry parameters, r(O-P)=1.495%0.005A and /(0-P-
0)=119.5 +0.5°, of theX'A; state of PO;, are derived by employing an iterative Franck-Condon analysis
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1. Introduction

The distribution of relative intensities among the vibronic
bands in the electronic spectra of molecules is governed by the
Franck-Condon (FC) principle in the absence of vibronic coupling.
Along with the development of experimental high-resolution vib-
ronic spectroscopic techniques, the problem of analyzing the ob-
served spectra is receiving increased attention [1,2]. Assuming
that molecules retain their symmetry during the electronic transi-
tion, the normal coordinates of electronic states generally undergo
a distortion as well as a rotation. The rotation results in a mixing of
the normal coordinates and thereby the nonseparability of the
multidimensional Franck-Condon integrals. This mode mixing,
the Duschinsky effect [3], makes the calculation of multidimen-
sional Franck-Condon integrals a troublesome and difficult work.

To evaluate the multidimensional Franck-Condon integrals
quantitatively, a variety of theoretical methods [4-30] have been
developed in the past several decades. One of these is based on the
generating function approach of Sharp and Rosenstock [4] which is
an extension of the method introduced by Hutchisson [5] for the dia-
tomic case. This method has been further developed by Chen [6] and
improved by Ervin et al. [7] in their application to the naphthyl radi-
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cal. Very recently, Kikuchi et al. [8] derived a simpler form of the Sharp
and Rosenstock general formula and applied it to SO, in the harmonic
oscillator approximation. Another method based on the generating
function approach is due to Ruhoff [9] who derived recursion rela-
tions for the calculation of multidimensional FCFs by generalizing
Lerme’s [10] procedure for two-dimensional FC overlap integrals.
Also employing the generating function method, Islampour et al.
[11] derived a closed-form multidimensional harmonic oscillator
expression, where the FC overlap integrals were expressed as sums
of products of Hermite polynomials. An alternative procedure, utiliz-
ing the recursion relations of Doctorov et al. [12,13] has been em-
ployed for a variety of molecules such as phenol [14,15], anthracene
[16] and pyrazine [17]. In addition, two different methods for calcu-
lating the FC overlap integrals were developed by Faulkner and Rich-
ardson [18]. The central feature of their first method is a linear
transformation of the normal coordinates in both the ground and ex-
cited electronic states in order to effectively remove the Duschinsky
rotations. This was originally restricted to the case where either the
initial or final vibrational wave function is the ground state, but
Kulander later removed this restriction [19,20]. The second method
of Faulkner and Richardson is based on a perturbation expansion of
the vibrational wave functions of the excited electronic state in terms
of the ground electronic state vibrational wave functions. Finally,
Malmgqvist and Forsberg [21] have expressed the FC matrix as the
product of lower triangular and upper triangular matrices which
are calculated from recursion formulas. On the other hand, Lin et al.
[11,22-24] made a lot of contributions to calculations of
multidimensional FC integrals. They obtained a closed-form formula
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of four-dimensional FCintegrals on the basis of the contour integral of
Hermite polynomials, and derived the analytical expressions for the
calculation of the multidimensional Franck-Condon overlap integrals
by using an addition theorem of Hermite polynomials.

Recently, Chang et al. [25-27] developed a simple method to cal-
culate multidimensional FC integral of harmonic oscillators up to
four dimensions including the Duschinsky effects. Some useful ana-
lytic formulae of multidimensional FC integrals were obtained and
have been employed to study the photoelectron spectra of SO, and
H,0. However, the derived analytical expression for the calculation
of the three-dimensional Franck-Condon overlap integrals was re-
stricted to the case where either the initial or final vibrational wave
function is the ground state. Another shortcoming of Chang’s meth-
od is that they derived analytical expressions of multidimensional
FC integrals and coefficient parameters by algebraic methods. In
this work, we introduce the matrix expressions of some variables
and coefficient parameters in the FC overlap integrals. Here, a more
general analytical expression for the calculation of three-dimen-
sional FC overlap integrals, with the inclusion of mode-mixing ef-
fects, is derived on the basis of matrix manipulation, similar to
Chang’s techniques [25-27]. A series of coefficient matrix relations
between the coefficient parameters and the mode mixing transfor-
mation coefficients were found. Furthermore, the method for deter-
mining the coefficient parameter matrices was given by matrix
manipulations. In addition, our approach has the advantages of
being efficient and having no singular points [25]. Another advan-
tage of a more general analytical expression for the calculation of
the three-dimensional FC overlap integrals is that the FCF of any
transition can be computed independently, without the necessity
of storing FCFs for obtaining those of higher vibrational states as
in the popular and well-documented recurrence approach [12,13].
Accordingly, our method can be applied to any distorted-rotated
harmonic oscillators [25-30] and should be valuable in the studies
of vibronic spectroscopy and nonradiative processes of molecules.

In order to test the validity of this new analytical expression for-
mula, we calculated the photoelectron spectra of PO, ()zlAl) taking
into account the mode mixing and hot band effects. The PO, radical
is well known since it is easily generated by phosphorus-oxygen
reactions, and it is also an important intermediate in phosphorus
combustion chemistry [31-35]. The PO, spectrum of the X2A;
ground state has been extensively investigated by various high-res-
olution spectroscopic methods [36-43]. Kawaguchi et al. [36] ob-
tained an accurate ground state geometry and estimates of the
lowest vibrational frequencies from far-infrared laser magnetic res-
onance (LMR) and microwave spectroscopy. The most accurate val-
ues obtained for the P-O bond length and the O-P-0 bond angle are
1.4665 + 0.0041 A and 135.3 +0.8°, respectively. The estimated
vibrational frequencies for the symmetric stretch (w{) and bend
(w,) vibrational modes are 1090 and 377 cm™ !, respectively, from
the centrifugal distortion constants. Laser induced fluorescence
(LIF) and infrared absorption spectra observed by Hamilton and
co-workers [37] also give similar ground state vibrational frequen-
cies(w7=1117 cm 'and w, = 387 cm™!). Lei et al. [43] later reported
the laser fluorescence excitation spectra of PO, radicals in a jet-
cooled molecular beam and they estimated vibrational intervals of
1075.4(50)and 397.3(43) cm ™! for the w; and w,, vibrational modes.
A few ab initio studies of the X2A; ground state of PO, have been re-
ported in the literature [44-50]. In 1984, Lohr [44] performed sem-
inal calculations of gas phase PO and PO, and their anions at the UHF,
MP3 and CISD levels. Lohr and Boehm [45] later also calculated the
vibrational frequencies of the X2A; state at the UHF/6-31G + d level.
In 1989, Kabbadj and Lievin [46] calculated the equilibrium geome-
tries, vibrational frequencies and adiabatic excitation energies for
low-lying electronic states of PO, at the MCSCF and SCF levels
including only valence electrons and all electrons, respectively, with
small basis sets. In 1990, Jarrett-Spragne et al. [47] later reported the

structure and vibrational spectra of PO, at the UHF/6-31G* level. In
1996, Buenker and co-workers [48] calculated the equilibrium
geometry of the X2A; state by means of multireference single- and
double-excitation configuration interaction (MRD-CI) calculations
with a triple-zeta basis set plus two polarization d functions, as well
as Rydberg orbitals. In 2002, Francisco [49] predicted the spectral
and geometric parameters for PO, using the singles and doubles cou-
pled cluster method, including a perturbational correction for con-
nected triple excitations, CCSD(T), together with systematic
sequences of correlation consistent basis sets. Lee et al. [50] later
also carried out the geometry optimization and harmonic vibra-
tional frequency calculations on some low-lying electronic states
of PO, at the CIS, CASSCF, MP2, and RCCSD(T) levels with various
standard basis sets of at least valence triple-{ quality.

The corresponding negative ion (PO; ) is one of the possible an-
ionic species occurring in oxidations of phosphorous compounds
[51]. Research of the spectrum and dynamics of the PO, anion is,
however, comparatively scarce both theoretically and experimen-
tally. Spectroscopic studies of PO, have been limited to the solid
phase: Geometries and vibrational frequencies of PO, in a potas-
sium chloride crystal have been obtained from spectroscopic and
optically detected magnetic resonance studies by Francis and co-
workers [52]. Prior to 1996, the gas phase anion of OPO was not
known, although it has been generated as an impurity center in al-
kali halide crystals. In 1996, Xu et al. [ 53] reported the first gas phase
photoelectron spectrum (PES) of PO, anion. An electron affinity va-
lue of 3.42 +0.01 eV was reported from the experiments for PO,.
Additionally, they also determined the P-O bond length [r(O-
P)=1.50+0.01A] and the O-P-O bending angle (/(0O-P-
0)=120.0 £ 0.1°) for PO, by fitting simulated spectrum to experi-
mental. Nevertheless, they did not theoretically investigate how
the overlap of the hot bands with the cold ones results in the final
spectral pattern. On the other hand, Zhang et al. [54] calculated FCFs
for the photodetachment of PO, once again by using Sharp and
Rosenstock’s approach [4] taking into account the Duschinsky ef-
fect. They determined the P-O bond length (r(O-P)=1.504
+0.005 A) and the O-P-0 bending angle (£/(0-P-0)=119.0 + 0.2°)
by an iterative FC analysis on Xu and co-workers’ PES of PO, . How-
ever, Zhang et al. completely ignored hot bands in the FCF calcula-
tions due to their weak signals, albeit some were observed and
identified by Xu et al. [53]. Here we further investigate the
PO, (X2A,) — PO, (X'A") photodetachment process. In this study,
we simulated the PES of PO, including contributions from both
the ‘cold’ and ‘hot’ bands under the influence of the Duschinsky
mode mixing effect on the basis of a more general analytical expres-
sion for the calculation of the three-dimensional Franck-Condon
overlap integrals derived by us. In addition, an ‘irregular spacing’
[53] observed in the experimental photoelectron spectrum of PO,
is interpreted. Furthermore, employing the iterative Franck-Con-
don analysis procedure in the spectral simulation, the more reliable
equilibrium geometries of the X'A; state of PO, can be determined.

In the following section, we present a general formula of
Franck-Condon overlap integral for three-dimensional harmonic
oscillators. Then, Section 3 presents the results of equilibrium
structures, vibrational frequencies and spectral simulation. The
significance of the research findings is also discussed. Finally, Sec-
tion 4 draws the conclusions.

2. Theory

2.1. General analytic expression for three-dimensional Franck-Condon
integral

Upon an electronic transition, the wavefunction of three-
dimensional harmonic oscillators in the |v;v,v4) vibrational state
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of the initial electronic state and in the |v; v, v3) vibrational state of
the final electronic state can be expressed as, respectively,

/ ! 95/ 3 / ] / 1.
|vhvy05) = HN”ﬁH'%v( oc;Q,-) exp <7§aiQi2> (1)
i=1
and
3 «1 )
[D10203) = HNvIHui(\/OTiQi) exp <*j°‘iQi> (2)
i—1

where 7} and v, (i = 1,2,3) are vibrational quantum numbers, Hy (x)
and H, (x) are the Hermite polynomial, and the normalization
constant,

. 1/2 : 1,2

N, = <ﬂ> and N, = (52 ) 3)
i 2 iy;!\/ﬁ 2T

with o} = Y and o = @i (4)

h h

where o] and w; are the angular frequency of the ith mode for the
initial electronic state and the final electronic state, respectively. It
follows that the Franck-Condon vibrational overlap integral be-
tween |v1v2 v3) and |V} VLV4) states is

(010203 |VV,VG) = N/jo /: /: Hy, (/% Q})H,, (\/oT’ZQ’Z)
x Hy, (V3505 ) % Hy, (v Q1) H, (v32Q2)
x Hy, (V33Q3) x exp [~ (a7 + 9,07 + Q5
+01Q} + %03 + 103) /2]dQ,dQ,d0Q;s (5)

where

172
1 /04 0 0l3 07 06 O 6)

32 21/1+v2+1/3+v’ +U, n '7/2'1}3‘1}’]'11’2'1/3'

An exact expression of FC integral for the vibronic transition

[D1D2V3) — |VjVLVL), will be derived in detail. When the Duschinsky

effect must be taken into account, the normal coordinates Q' of the
initial state (Jvjv,v4)) are related to those Q of the final state (Jv1v,-

v3)) by
Q =JQ+K (7)

where J is a 3 x 3 constant orthogonal matrix and K is a three-
dimensional vector whose components are the changes in the nu-
clear equilibrium positions from the initial to final states. Upon
substituting Eq. (7) into Eq. (5), expanding, and regrouping, we
obtain

(010203|V) VLVL) =exp (—%K*F’K)N/jc /jc
< [y (VR )y (V505
Hiy (Vo505 Hoy (VETQ:) Hy (VERQ2) Hiy (VEQ:)

x exp[-QJQ —Q "W|dQ, dQ, dQ;
8)
where I is a 3 x 3 diagonal matrix of reduced frequency w/h, and

* indicates the Hermitian conjugate (which is, for a real matrix, the
transpose), and a column vector

W=JT K 9)

and a 3 x 3 symmetric matrix

1
JV=50°T1+T) (10)
The exponent factor in the integrand in Eq. (8) is quadratic in Q,
Completing the square is accomplished by use of the transformation
matrix V in the expression

Q=WX (11)

where V is chosen to satisfy the detV = 1 and yield the diagonal ma-
trix A, i.e.

VJV=A (12)

Substituting Eq. (11) into Eq. (8), and employing Eq. (12), we obtain

(010203|V} VLS ) = exp (—%K*F’K) exp(C"AC)N
S ()
X Hur Zazkxk + d ) X I‘IUr3 (Zagkxk + d;)
3
(ZaUX + d])Hn2 (ZGZJX + dz)
Jj=1
3
X H03 <Z(13]XJ + d3>

x exp(—X"AX)dX; dX, dXs (13)

where C=A"!(V'W)/2 is the three-dimensional column vector
whose components are

C= (V;X?’)f (i=1,2,3) (14)

and

X=X+C=V'Q+C (15)

In Eq. (13), the coefficients of Hermite polynomials are as follows:

a=r"%V, iea;=+oVy (i,j=1,2,3) (16a)
3

a=T"V, ie d,= Z\/Eggvjk (i,k=1,2,3) (16b)
j=1

d=-r1'?vC, ie d :Jf\/ac_,-(VC)i (i=1,2,3) (16¢)

d =-1"?(VC-K), ied; =—/(JVC-K), (i=1,2,3)(16d)

On the basis of expanding property of Hermite polynomials [55]:

3
Hv; (Zaijxj + d,) = Hvi (a,-1X1 + apXy + ai3Xs + d,)
Jj=1

”Z"”f’il Uiikiikﬂ( Vi ) (l),‘ — ki )
kii=0kp=0  ki3=0 ki ki
v; — kip — k;
x ( i i1 12>(a1 )k”(az) '2((13) i3
ki3
kiq +kin+k:
X Hy iy —kp—kis (di) x 2 i1 Kip TKi3
x (X4 )k“ (Xz)kiz (X3)k’3

where (Vi ’ v; — kq and (Vi— ki —
k] kz k3

Inserting Eq. (17) into (13), one obtains

(17)

k2> are coefficients.
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(010205 |V} VLV ) = exp(—ll(*r’l() exp(C*AC)N

3 [ v} o=k vi—Ki; =k, v , ’ , / /
i (Vi—kip ) [0 —kip — ki
Ty (,<<)( (T
=1 | kiy =0kiy=0  kiz=0 i 2 B
K, K. K. 7
(0h) % (€)% (@) Hy 10, ()]
3 [ Vi Vi—kinvi—kin —kip Vs v; —k: V; — ki —k;
i i il i il i2
X
1)HMPS <kn>< w (" )
=1 | kn=0kip=0  ki3=0
I I k;
%(@n) (@2)"* (a5)"* Ho, s -1, ()]

Z(k,1+kn) Z (kia+kiy ) Z (kiz+ki3)

x 2 i=1 2i=1

* /: /: ,/:(Xﬂ;(kﬁkh)(xz ;(k’#kd

(k,; +Kis )

X (X3) i=1 X exp(7X+AX)dX1 dXZ dX3

(18)

Up to this step, the three-dimensional vibrational overlap integral
in Eq. (5) has reduced to a product of one-dimensional Gaussian
integrals in Eq. (18). Gaussian integral can be evaluated by

/ e = CERR ) (19)

(2A)k A
where (2k — 1)!! is a double factorial. By means of the Gaussian
integral formula (19), then the final closed form of the overlap inte-
gral is obtained

(010203 |V} V5V ) =exp <—%K*F’K) exp(C*AC)N

Cy A
VUK 0y =Ky Ky vy kv —Kyy Ky vy vy —Ky,

DIDINDINDIPY >

Kj1=0kj;=0 Ki3=0 Ky =0Kkyp=0 Kk3=0 Kkj;=0k3»=0

,
VK31 =Kz vy vy —Kyqvi—kin—kia a vy—kp1Ua—Kay k2

x>
Kj3=0 ki1=0ki2=0 ki3=0 kp1=0kp=0 kp3=0
U3 U3—k3q03—k31—k3

X

K3=0Kk=0 K330

{11[ K v ) (v;—ldl <U§ -k, —k}z)
X / / /
i1 [ \ki kiy ki

X (a;l)k“ (azz)klz( ) : X HU' Ky —kip ki3 (d/)

; v; — ki v; — ki —kip
X
kit kiy ki

x(200)1" (202)*% (205)"% 5 Hy, i1, (00

y [Z?:l (ki ;Lkgl) *1] n (%)1/2 {E?:l(kizjk;z) *1] i

Y ka k) 1) knty)

(2A,) =1 (24;) =1

X A2

(n) 1/2>< {Z; (ki3 +Ki3) —1] n (n>1/z

(20)

with the constraints that Y7, (kn + k), Yr, (ko +K,) and
% | (ks +Kj;) are even. Furthermore, from Eq. (20) an exact for-

mula of calculating the three-dimensional overlap integral for the
vibronic transition |v; vy v3) < |000), is given explicitly as:

(010,203|000) = exp (—%K*F’K) exp(C*AC)N
U1 U1 —kiv1—kii=kiz Dy vp—kava—kpi—kpp U3 v3—k3

P3P > > > 2.

Ki1=0kp=0 Ki3=0 ky;=0kp=0 kp3=0 ks;=0ksp=0

X”a%’%z{ﬁ[x ( Ui> <Ui—kil> (Ui_kil _ki2>
k33=0 i=1 ki ki kis

« (2 )k,1 (zaz)k,z (2a; ) ki3 ><H”1 ,l—k,z—kg(di)]

[>or k1] (n)l/z [ kat]r <l>1/2 [23 k: _1]!1
3 A 3 A =173 "
>>

kip

Nl

(24,) =1

st

@) 7 (2)"

(21)

with the constraints E?:lk“, E?:lk,»z and Z?Zlklg all being even.

Finally, the Franck-Condon factors (FCFs) of three-dimensional
harmonic oscillators including the Duschinsky effect can be evalu-
ated by

FCFs = |(v10203]V) u'zug>\2 (22)

Eq. (20) is exact for harmonic systems, no approximation whatso-
ever having been introduced in its derivation. This expression
should be very useful for studying vibronic spectra and nonradiative
processes of molecules.

2.2. Calculation method of constant coefficient matrices and vectors

Above, the new analytic expression for three-dimensional
Franck-Condon integral is shown. Given the Duschinsky matrix J
and the vector K, we can find matrix elements of other coefficient
matrices and vectors such as the transformation matrix V, the diag-
onal matrix A and constant coefficient vector C. Firstly, from the
transformation relation (15), i.e. X =V~1Q + C, setting

1 B, B,
VIi=|0 1 B (23)
0 0 1

Then its inverse matrix can be found
1 -B; BiBs—B,

V=|0 1 —B; (24)
0 0 1

Here V satisfy detV=1, and yield the diagonal matrixA. On the
based of the matrix Eq. (12), i.e. V'J'V = A, the matrix equation is gi-
ven explicitly as

1 0 O07[Jyi Jiz Jis1[1 -Bi BiBs—B;
—-B; 1 0| ]y Jp Js||0 1 —Bs
BiB3—B, -Bs 1]|J3 J3 J3]1 10 O 1
A; 0 O
=0 A O
0 0 A

(25)
By the matrix Eq. (25), one obtain
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In addition, by Eq. (14) the coefficient vector C can be determined
from V,Aand W, i.e.

= (Zcxj,]K) /(2A1)

G =

G

i=1

<Z“Uz‘2ki - 2A131C1> /(24;)
=1

3
(ZagBK,- —2A1B,Cy — 2A;B5C,

)/(2/‘\3)

(27a)

(27b)

(27¢)

By means of Egs. (16a)-(16d), the coefficients of Hermite polynomi-
als are obtained:

a1 =01, i =—VB1, a3 =/ (BiBs — By) (28a)
a1 =0, ap=+0, a3=—VB; (28b)
a1 =0, a3 =0, a3 =03 (28¢)
&y = Vo, iy = /% (g — Buir) (29a)
i3 = /%4113 — BaJ1, + (BiBs — Ba)J14] (29Db)
Gy = V%21, G = V%2 = Bilar) (29¢)
Ay3 = /%3 — Baly, + (BiBs — B2l (29d)
Ay = /)31,y = /%5 (5 — Bis1) (29)
dy3 = /04133 — BaJ3, + (BiBs — Ba)J34] (29f)

dy = —/o1[Cy — B1Cy + (B1Bs — B)C3] (30a)
dy = —V0(C2 — B3Cs) (30b)

—/03C3 (30c)
dy = =/ {CiJ1; + Ca(J12 — BiJy1) + C3[(B1Bs — Ba)J

—BaJ1, + i3] — Ka} (31a)
dy = —/0,{CiJo1 + C2(J, — B1Jy1) + C3[(BiBs — B2 )

— BsJy, +J23] = K2} (31b)

~/25{CiJ3; + Col3; — BuJzy) + C[(BiBs — By)Js

— BaJ5; +J33] — K3} (31¢)

Furthermore, it can be easily proven that our formula (21) is iden-
tical to the formula (A4)-(A7) reported in Ref. [27] by Chang. Note
thatap; =0, as; =0 and as, = 0 in Eq. (28), so Eq. (21) is simplified as

(10203]000) = exp (—%K*F’K) exp(C"AC)N
U1 U1 =Ky —kii—kiz vz vy—kyp U3 Dy O _k”
(PIDID 3D 35 30 3 () Gy
k11=0k12=0  ki3=0  ky;=0ky3=0k33=0 12

<U17k117k12><l)2)(l)z*kzz)( )
X
k13 k22 k23 k33

x (2a17) (2a12)"12 (2a13)7 (2022)°2 (2053 (2033 )2
[

ki — 1)1 /2
x H“l*ku*klz*kn (dl)HUz*kzrkzz (dZ)HUr"B (d3) (21/;1)"“/2 <1T1>

(ki + Koz — 1)1 /TN 2 [kys + Kos + ko — 1]10 / T\ 72
A \By) gy s \Ay

(32)

with the constraints kq1, (k12 + k22) and kq3 + ky3 + k3 all being even.
Eq. (32) is completely consistent with Eqs. (A4)-(A7) reported in Ref.
[27]. Hence, we conclude that Eq. (20) obtained in this work is a

Table 1
Summary of some computed and experimental geometric parameters and vibrational frequencies (cm™') for the X2A; state of PO, obtained at different levels of theory.

Method 1(0-P) (A) £(0-P-0) () w1 (a1) ; (a1) 3 (by)
B2PLYP/aug-cc-pVDZ 1.519 133.82 985.0 367.2 1270.1
B2PLYP/aug-cc-pVIZ 1.4863 134.13 1046.1 384.1 13320
CCSD(T)/aug—cc—pVDZd 1.5230 134.02 977.8 364.9 1241.2
CCSD(T)/aug-cc-pVTZ4 1.4854 134.64 1054.8 383.4 1326.1
CCSD(T)/aug-cc-pvQza 1.4745 134.83 1072.3 390.4 13485
CCSD(T)/aug-cc-pV5Z 1.4686 135.25 1081.2 3916 1362.2
MRD-CI/TZ + 2d + R? 1.464 135.14 1052 389 1338
B3LYP/6-311 + G (2(1,];))b 1.4762 134.2861 1059.4 381.9 1305.1
B3LYP/6-311+G (d,p)° 1.4851 133.6917 1049.1 375.7 1285.6
CCSD/6-311 +G (Zd,p)b 1.4686 135.1822 1089.0 402.7 1345.9
QCISD(T)/6-311 + G (2d.,p)° 1.4723 135.0226 1069.3 399.1 1326.2
MP2/6-311 + G (2d,p)° 1.4806 136.7967 1076.2 398.5 1477.4
MP2/6-311 + G (3df)* 1.478 136.6 1085 403 1486
CCSD(T )(FC)/cc pvDZ4 1.515 133.5 1002 371 1283
CCSD(T)(FC)/cc-pVTZe 1.482 134.6 1066 387 1342
CCSD(T)(FC)/cc- pVQZd 1.473 1349 1076 391 1353
Expt. (LMR, microwave)® 1.4665 + 0.0041 1353+0.8 1090 377

Expt. (LIF)f 1117420 387420

Expt. (LMR LF) 1076 +12 397+12

Expt. (PES)" 1070 380

Expt. (DL)! 1327.53

¢ Ref. [48].

b Ref. [54].

¢ Ref. [50].

4 Ref. [49].

€ Ref. [36].

f Ref. [37].

& Ref. [43].

" Ref. [53].

I Ref. [40].
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Summary of some computed and experimental geometric parameters and vibrational frequencies (cm™!) for the X'A; state of PO, obtained at different levels of theory.

Method

r(P-0) (A)

£(0-P-0) (°)

w (ar)

w3 (a1)

w3 (by)

B2PLYP/aug-cc-PVDZ
B3LYP/cc-pVQZ
CCSD(T)/aug-cc-pvVDZ®
CCSD(T)/aug-cc-pVTZ®
CCSD(T)/aug-cc-pvVQZP®
CCSD(T)/aug-cc-pV5Z
QCISD(T)(FC)/cc-pVQZ
B3LYP/6-311 + G (2d,p)?
B3LYP/6-311G (2d,p)?
QCISD(T)(FC)/6-311 + G (2d,p)?
CCSD(T)(FC)/6-311 + G (2d,p)?
CCSD(T)/cc-pvDZP
CCSD(T)/cc-pVTZ®
CCSD(T)/cc-pVQZ®

Expt. (IR)

Expt. (PES)?

IFCA

1.5570
1.5077
1.5606
1.5190
1.5080
1.5024
1.5078
1.5108
1.5082
1.5068
1.5038
1.548

1.514

1.506

1.50+0.01
1.495 +0.005

117.86
118.53
118.04
118.67
118.90
119.23
118.83
119.09
118.7187
119.3108
119.4375
117.9
118.8
118.9

120+0.1
119.5+0.5

966.8
1064.8
969.9
1045.2
1060.3
956.4
1064.3
1042.7
1062.9
1059.71
1075.4
1008
1068
1072

422.1
461.8
4229
447.6
454.0
446.3
461.0
449.2
463.9
461.8
467.7
459

463

463

520

1089.7
1210.2
1095.6
1191.4
12115
1113.0
1220.6
1187.3
1212.7
1207.8
1225.8
1155

1227

1227

1198.6

2 Ref. [54].
b Ref. [49].
¢ Ref. [51].
d Ref. [53].

general analytical expression for calculation of three-dimensional
Franck-Condon integral, while the formula reported in Ref. [27]
by Chang which is equivalent to Eq. (32) is only one kind of especial
cases for calculations of three-dimensional Franck-Condon integral
which can be obtained very easily from above Eq. (20).

3. Example for an application
3.1. Equilibrium structures and vibrational frequencies

Employing the Gaussian09 suite of programs [56], geometry
optimization and harmonic vibrational frequency calculations were
carried out on the X2A, states of the neutral molecule PO,, and X'A;
state of the negative ion PO, by using the density functional theory
(B2PLYP functional) and the coupled cluster singles and doubles
with perturbative triples [CCSD(T)] method with different basis sets
up to aug-cc-pV5Z. Closed and open shell molecules were com-
puted by restricted and unrestricted methods, respectively. Com-
puted results obtained from the present investigation are
summarized in Tables 1 and 2 together with available calculated
and experimental data for comparison. The bending vibration is de-
noted w,, according to the convention for triatomic molecules.

From Table 1, for the state X2A; of PO, the computed bond lengths
and angles obtained at different levels of calculation seem to be
highly consistent. For r(O-P)and £(O-P-0), the largest deviations be-
tween calculated and experimental bond lengths and angles are less
than 0.0565 A and 1.5°, respectively (see Table 1). Based on the ab ini-
tio techniques at the CCSD(T)/aug-cc-pV5Z level, the estimated values
are 1.4686 A and 135.25° for r(O-P) and £(0-P-0). The differences
between calculated and experimental values are only 0.002 A and
0.05° for r(O-P) and Z(O-P-0), respectively. The theoretical
vibrational frequencies at all levels match reasonably well with the
observed data. This suggests that the use of the ab initioforce con-
stants in the proposed iterative FC analysis scheme should give reli-
able parameters of PO, in the X1A; state. Both the optimized
geometric parameters and the vibrational frequencies calculated at
CCSD(T)/aug-cc-pV5Z level gave the better agreement with the corre-
sponding available experimental values, and were therefore utilized
in subsequent iterative FC analyses and spectral simulation.

For the state X'A; of PO,, the computed bond lengths and an-
gles obtained at different levels of calculation seem to be highly
consistent. However, the computed bond lengths and angles of

100

Simulated spectrum at 300 K

80 - (a)

40 -

0,n,0) - (0,0,0
100 - 10'51'37'(';"5«'1'3'2'1(')“"’)(”) (C)

T T T T T T T 1 (1n,0)-(0,00
76543210(")(’)

80 ' (2,n,0) - (0,0,0)
Simulated spectrum of
PO, (X'A)-PO, (X'A)

with 2 FWHM of 30 em™
at 300 K

T 1,0 0,0l
10211020
0% o1

-20

T T
1.2 1.4 1.6 1.8
Electron Kinetic Energy (eV)

Fig. 1. X2A; — X'A; photodetachment spectrum of PO, at a Boltzmann vibrational
temperature of 300 K. (a) The spectrum from the present calculations (top trace,
FWHM =200 cm '), and (b) the experimental photodetachment spectrum from Ref.
[53] (top right), and (c) the simulated photodetachment spectrum with their
vibrational assignments (bottom trace, FWHM =30 cm!).
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the XA, state appear to be sensitive to the basis sets. From Table 2,
it can be seen that the computed bond angles converge towards
larger values while bond lengths towards smaller ones when the
basis sets are improved from aug-cc-pVDZ to aug-cc-pV5Z. Because
no experimental geometric parameters were obtained for
comparison, it is expected that the geometrical parameters ac-
quired at the higher levels with large basis sets should be more
reliable. The estimated values based on the ab initio techniques
at the CCSD(T)/aug-cc-pV5Z level, are 1.5024 A and 119.23° for
r(0-P), and /(O-P-0), respectively. Regarding the computed
vibrational frequencies, for the state X'A; of PO;, the values ob-
tained at the various levels are reasonably consistent. For the bend-
ing mode ,, and asymmetrical stretching mode s, the
differences between estimated at the CCSD(T)/aug-cc-pV5Z level
and experimental ones are 74 cm~! and 85 cm™!, respectively. Dis-
crepancies between experimental values and computed ones are
mainly due to anharmonicity effect not to be included in the theo-
retical calculations. The CCSD(T)/aug-cc-pV5Z results are the best
overall agreement to the corresponding available experimental
and other theoretical values, and were therefore utilized in subse-
quent iterative FC analyses and spectral simulations.

Computed FCfactors at 300 K
100

80
60 1
40 1

20

o i I ‘l |
0.8

14 1.6

|. in ‘:I |
1.2

1.0

6 1 (1 ,n,0) = (05150)

L1 1 | ‘ ‘ |
0.6 0.8 1.0 1.2 14 1.6

(1,",0) = (1 ,0,0)

0.6 0.8 1.0 1.2 14 1.6

3.2. Franck-Condon simulations

The Duschinsky matrix and displacement vector between the
ground states of PO, and PO, calculated at the CCSD(T)/aug-cc-
pV5Z theory level are as follows:

097 -020 0 ~0.27
J=|020 097 o0 |, K=| o083 (33)
0 0  0.997 0

where K is in units of amu'?A. Examination of J, which describes
the mixing of normal modes, reveals that each one of the two a;
modes of PO, , maps onto a linear combination of the two a; modes
of PO,. Note that each column in J is normalized, the sum of the
squares of the mixing coefficients adding up to unity within round-
ing errors. Eq. (33) shows that there is some, albeit not large
(J12 = —0.2, J51 = 0.2), Duschinsky effect between w;(a;) and w-(a;)
vibrational modes, whereas ws(b;) is uncoupled from w;(a;) and
w>(ay) due to different symmetry. K is a measure of the change in
equilibrium geometry upon detachment along each normal mode
of the negative ion. The normal coordinate displacements from

10 4
(0,n,0) = (0,1,0)

0 I | |

61 (0,0,0) - (0,2,0)

(z,n’o) = (0,1 ,0)

0 S B : : ;
0.6 0.8 1.0 1.2 14 1.6

Electron Kinetic Energy (eV)

Fig. 2. The computed relative intensities with a Boltzmann vibrational temperature of 300 K (top left), and the computed relative intensities of some major ‘hot’ band series
with their vibrational assignments (in order to show more clearly the relatively weak ‘hot’ band series, the y-axes for individual ‘hot’ bands have different scales from that at

top left).
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the anion to the neutral are AQ; = —0.27, AQ- = 0.83, which corre-
spond to a bond length decrease and a bond angle increase, respec-
tively. Meanwhile, one can observe that AQ, is about three times of
AQ;, stemming from the large change of the bending angle, and
therefore a long progression of the bending vibration (w;) transi-
tions is expected.

Using data obtained from the CCSD(T)/aug-cc-pV5Z calcula-
tions, the photodetachment spectrum of PO, has also been simu-
lated at a Boltzmann vibrational temperature of 300 K, as shown
in Fig. 1a, with experimental one (from Ref. [53]) shown in
Fig. 1b. This simulation has employed a FWHM of 220 cm™!, be-
cause an experimental resolution of 25 meV (about 220 cm™!)
was given in Ref. [53]. It was seen the vibrational structure simu-
lated with a FWHM of 220 cm™! as shown in Fig. 1a matches very
well with the 266 nm laser experimental spectrum of Ref. [53] in
Fig. 1b.

Simulated photoelectron spectra of the PO,(X2A;) — PO, (X'A;)
photodetachment with a FWHM of 30cm~' and a Boltzmann
vibrational temperature of 300 K are shown in Fig. 1c. Vibrational
assignments for the symmetric stretching w; and bending w;
modes of the neutral molecule PO, are also provided in Fig. 1c,
respectively, with the labels (0,n,0) - (0,0,0), (1,n,0) - (0,0,0)
and (2,n,0) - (0,0,0) corresponding to the (w1, ®,,0) - (0,0,0) tran-
sition. The computed relative intensities of the major ‘hot’ bands
are identified and their assignments are given in Fig. 1c, with the
label 2;corresponding to the (0,1,0) - (0,2,0), 2! (n=0,...,10)
corresponding to the (0,n,0) - (0,1,0) and ]3)2’]1 (n=0,...,3) corre-
sponding to the (1,n,0) - (0,1,0) transitions. From the harmonic
calculation, it was found that the FCFs for transitions involving
the asymmetric stretching mode 5 are negligibly small and there-
fore the w3 mode is not included in the assignments.

Since it is not uncommon for vibrationally ‘hot’ anions to be
produced in the anion source used in a typical photodetachment
experiment as that of Ref. [53], the computed relative intensities
of the major ‘hot’ band series and their assignments obtained at
a Boltzmann vibrational temperature of 300 K are given in Fig. 2.
Calculations of relative intensities for hot bands provide detailed
insights into the PES of PO, . Xu et al. [53] experimentally identified
only one hot band peak ‘a’ (i.e., 2%), but did not observe other tran-
sitions (e.g., 29,19 and 2}, etc.). Fig. 2 demonstrates that the signal
of 29 is too weak to be detectable because of its small relative
intensity, as are the other missing bands (not shown).

Our finding is important in the assignment of the experimental
PES of PO, . Xu and co-workers [53] found that the peaks G and H
(see Fig. 1b), which are separated by only 330 cm™!, have irregular
w- spacing, and interpreted that there might be more than one ac-
tive vibrational mode. Nevertheless, the present study shows that
hot bands also contribute to the ‘irregular spacing’ with some ex-
tent. From Fig. 2, it was found that the relative intensities for tran-
sitions 27 and 28 are far larger than 29 and are almost equal to the
combination bands 1523 and 1)23, respectively. The peak G consists
of 251423 and 2]. The peak H consists of 21525 and 25. As a result,
the peaks G and H are separated by only 330 cm™! in the experi-
mental PES of PO, .

The variations of geometries of the molecule between the elec-
tronic states using the iterative FC analysis method [6] would yield
better matches between the simulated and observed spectra than
that obtained with the ab initio geometries. Since the experimental
geometry of the X2A,; state of PO, is available, the IFCA method
was carried out on the X'A; state of PO, . By fitting simulated spec-
trum to experimental, the best IFCA bond length r(O-P) and bond
angle £(O-P-0) obtained for the ground state X'A; state of PO;,
employing the CCSD(T)/aug-cc-pV5Z force constants, are
1.495 +0.005 A and 119.5 + 0.5°, respectively. This result is consis-
tent with the results obtained by Xu et al. and ab initio and DFT cal-
culations (see Table 2).

4. Conclusion

We derived a general formula of the three-dimensional Franck-
Condon overlap integrals for three-dimensional harmonic oscilla-
tors by expanding Hermite polynomials and solving Gaussian inte-
grals. Furthermore, the PES of PO, was elucidated in detail and the
role of Duschinsky effects and hot bands were clarified. In the case
of the photoelectron spectrum of the PO,(X2A;) - PO;(X'A;)
detachment, it seems that the harmonic model is reasonably ade-
quate. The rather reliable bond length r(O-P) and bond angle
/(0-P-0) were obtained, through the IFCA procedure. Based on
the sensitivity of the relative intensities on the variation of the
bond length and bond angle, the uncertainties in the r(OP) and
Z(OPO) are probably around +0.005 A and +0.5°, respectively.
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