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The Fractional Fourier Transform of Hypergeometric-Gauss Beams
through the Hard Edge Aperture
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Abstract—Based on the Collins integral formula and Lohmann optical system, we expand the hard
edge aperture into complex Gauss function and derive an approximate analytic expression of intensity
distribution theoretically for Hypergeometric-Gauss beams through the fractional Fourier transform
(FRT) optical systems with hard edge aperture. The influences of FRT order, aperture size and other
optical parameters on the light intensity distribution of Hypergeometric-Gauss beams passing through
the FRT optical systems are discussed in detail. The results show that the FRT is an excellent beam-
shaping method.

1. INTRODUCTION

Hollow beams attract wide interest and research due to their important applications in optical
communication [1], laser optics [2], particle trapping [3], medical science [4], field atom and binary
optics [5]. Sodha et al. have studied the transmission characteristics of focusing and self-focused hollow
beam in different dielectrics [6]. There have been lots of research on its extensive applications since
Kotlyar et al. proposed a new paraxial hypergeometric beam [7], and especially they obtained it by using
another kind of solution of scalar Helmholtz equation, which has limited energy and can be produced
in the experiments [8].

On the other hand, the FRT is an extension of the conventional Fourier transform. Since 1993,
Ozaktas et al. have introduced the FRT into optics for the first time [9], which has been widely researched
in optics and shows that the FRT has important applications for image encryption [10, 11], beam
shaping [12], signal processing [13], etc.

This paper mainly studies the transmission properties of Hypergeometric-Gauss beams passing
through the FRT optical systems. Based on the Collins integral formula and Lohmann optical system,
the electric field analytic expressions of Hypergeometric-Gauss beams passing through the FRT optical
systems are derived theoretically. The influences of the FRT order, aperture size and other optical
parameters on the normalized intensity distribution are discussed in detail. For comparison, the
normalized intensity distributions of Hypergeometric-Gauss beams through the FRT optical systems
with hard edge aperture are also shown. The method used in this paper can be applied to the study on
transmission characteristics of other beams through the FRT optical systems with hard edge aperture.

2. THE FRACTIONAL FOURIER TRANSFORM OF HYPERGEOMETRIC-GAUSS
BEAMS

Lohmann [10] points out that the optical systems shown in Fig. 1 of the Lohmann I (as shown in
Fig. 1(a)) and Lohmann II (as shown in Fig. 1(b)) can be used to realize the FRT for beams, where f
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Figure 1. Two kinds of optical systems of FRT.

is the standard focal length. The lens focal lengths in Figs. 1(a) and 1(b) are f/ sin ϕ and f/ tan(ϕ/2),
respectively. Here ϕ = pπ/2 and p is the order of FRT. P1 and P2 are the input and output planes.
Other parameters are shown in Fig. 1.

The FRT transmission matrices for Lohmann I and Lohmann II optical systems can be expressed
as [14, 15]
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One can see from the results of Eqs. (1) and (2) that Lohmann I and Lohmann II optical systems
are identical in nature. Supposing an electric field E(x1, y1) of a bunch of fixed quasi monochromatic
laser beam, the expression of electric field from the lens to the output plane can be obtained according
to the Collins integral formula [16]
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Here x1, y1 and x2, y2 indicate the Cartesian coordinates of input plane and output plane,
respectively. λ is the wavelength. When p = 4k + 1, k is an arbitrary integer, and the FRT optical
systems reduces to the conventional Fourier transform optical systems. By setting x1 = r1 cos θ1,
y1 = r1 sin θ1, x2 = r2 cos θ2, y2 = r2 sin θ2 in Eq. (3), we can get the propagation equation for beams
through the FRT optical systems in the cylindrical coordinate system as follows:
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Here r1, θ1 and r2, θ2 denote the radial and azimuth angle coordinates in the input and FRT
planes, respectively. The analytical expression of Hypergeometric-Gauss beams z = 0 in the cylindrical
coordinate system takes the form as [7]
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where n, w represent the beam order and the beam waist radius, and γ is a real parameter. Eq. (5)
shows the hollow Gauss beam when γ = 0. The area of the dark region increases with the increase of
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the beam order. By substituting Eq. (5) into Eq. (4) and using the integral formula [17]∫ 2π
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Here Jv(x) denotes the first kind of Bessel function of order v, Γ(x) the gamma function, and 1F1(a, b, x)
the confluent hypergeometric function.

The analytic expressions of output field Ep (r2, θ2) can be attained through the integral operation
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Normally, the lens in the FRT optical systems is limited. Therefore, the condition of aperture
should be considered. For the FRT optical systems of Lohmann I, beam propagation is divided into two
processes. The first process is in the free space transmission from P1 to the lens, the second process is
from lens to P2, where a circular aperture is placed in the front of the lens. Consequently, the expression
of the electric field of beams through the FRT optical systems can be written as [16]
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Here a is the aperture radius. The window function of the hard edge aperture can be represented
by a two-dimensional matrix function
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Hence, Eq. (10) can be converted into
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The aperture function can be expanded as the sum of complex Gaussian functions with finite
numbers [18]
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Ah and Bh are the expansion coefficient and Gauss coefficient [18, 19]. It is worth noting that
Eq. (14) is only an approximate expression of the function of hard edge aperture. This expansion
method has been proved reliable and efficient. The simulation accuracy improves as the expansion order
N increases. For a circular hard aperture, N = 10 assures a very good description of the diffracted
beam [20].
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By substituting Eq. (5) and Eq. (13) into Eq. (12) and using the integral formula Eq. (6) and Eq. (7),
the approximate analytic expression of the electric field for Hypergeometric-Gauss beams, which passes
through the FRT optical systems with hard edge aperture, can be derived by the integral operation
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Here δ denotes the truncation parameter. The intensity distribution on axis can be obtained in the
condition of r2 = 0 in Eq. (16). The electric field analytic expressions of Hypergeometric-Gauss beams,
passing through the FRT optical systems without and with hard edge aperture, are given by Eq. (8)
and Eq. (14), respectively, which provide a convenient and important method to study the FRT of
Hypergeometric-Gauss beams.

3. NUMERICAL RESULTS

Based on the analytic expressions we have numerically investigated the transmission properties of the
Hypergeometric-Gauss beams through the FRT optical systems with the hard edge aperture. The
parameters are w = 1 mm, λ = 632.8 nm, f = 400 mm. In Fig. 2, the influences of FRT order p and the
beam order n on the intensity distribution of Hypergeometric-Gauss beams are studied.

(a)

(b)

Figure 2. The normalized intensity distribution of Hypergeometric-Gauss beams through the FRT
optical systems. w = 1 mm, n = 3, λ = 632.8 nm, f = 400 mm, (a) n = 3; (b) p = 0.8.
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In Fig. 2, we set γ = 0, and the normalized intensity distribution is greatly affected by the FRT
order and beam order. From Fig. 2(a), it can be found that when 0 < p < 1, the hollow size between
the symmetrical double-peaks decreases gradually with an increasing order p of FRT, and eventually
becomes the central peak. Meanwhile, the maximum light intensity position will change from axial
external to axis; however, as 1 < p < 2, the central peak gradually becomes symmetrical double-peaks,
and the maximum light intensity position changes from axis to axial external. From Fig. 2(b), it is easy
to see that the intensity distribution of Hypergeometric-Gauss beams is quasi-Gauss distribution as
n = 0. The central peak gradually becomes symmetrical double-peaks with an increasing beam order n,
and the hollow size increases with an increasing beam order. There is an excellent agreement between
the above results and the transmission characteristics of FRT for the hollow Gauss beams [21].

The intensity distribution on axis can be obtained by making r2 = 0 in Eq. (16). The change
situation of intensity distribution on axis of Hypergeometric-Gauss beams, along with the FRT order p
in the condition of different hard edge aperture truncation parameters δ, is shown in Fig. 3. The values
of other parameters are the same as in Fig. 2.

The change situation of the intensity on axis of Hypergeometric-Gauss beams through the FRT
optical systems with hard edge aperture is periodical as shown in Fig. 3, and the period is 2. The light
intensity has a maximum when p = 2n + 1 and has a minimum as p = 2n. In addition, the minimum is
uniform for different δ.

The change situation of the intensity distribution on axis of Hypergeometric-Gauss beams through
the FRT optical systems with hard edge aperture along with the beam order n, the real variable γ in
the condition of ideal condition, and truncation parameter δ = 1 is shown in Fig. 4. The values of other
parameters are the same as in Fig. 3.

Figure 3. The intensity distributions on axis of Hypergeometric-Gauss beams through the FRT optical
systems with different sizes of hard edge aperture with w = 1 mm, n = 3, λ = 632.8 nm, f = 400 mm,
γ = 0.

The change situation of the intensity on axis of Hypergeometric-Gauss beams through the FRT
optical systems with hard edge aperture is periodical for different beam orders and real variables as
shown in Fig. 4, and the period is 2. From Figs. 4(a)–4(b), the light intensity increases with the
increase of beam order in the ideal condition, and the intensity attenuates obviously and decreases with
the increase of beam order for the diffraction and limit of hard edge aperture as δ = 1. In Figs. 4(d)
and 4(c), the light intensity increases with increasing γ when δ = 1, and the intensity decreases with
increasing γ under the ideal condition. On the other hand, the light intensity has a maximum when
p = 2n + 1 and has a minimum as p = 2n in Figs. 4(a) and 4(b). In addition, the minimum is uniform
for different beam orders n. Nevertheless, the maximum and minimum intensities on axis shift to the
left owing to the effect of real variable γ in Figs. 4(c) and 4(d).

In Fig. 5, by using Eqs. (14)–(16), we numerically calculate the normalized intensity distribution of
Hypergeometric-Gauss beams through the FRT optical systems with hard edge aperture (the blue solid
lines shown in Fig. 5). Here, the truncation parameter δ = 0.5, and other parameters are the same as
in Fig. 2. Moreover, the red dotted lines in Fig. 5 are the results of numerical calculation of the integral
formula (11) used by MATLAB.
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(a) (b)

(c) (d)

Figure 4. The intensity distribution on optical axis of Hypergeometric-Gauss beams (with different
beam orders and real variables) through the FRT optical systems with hard edge aperture with
w = 1mm, n = 3, λ = 632.8 nm, f = 400 mm. (a), (c) δ = ∞; (b), (d) δ = 1.

(a)

(b)

(e)

(f)
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(c)

(d)

(g)

(h)

Figure 5. The normalized intensity distribution of Hypergeometric-Gauss beams through the FRT
optical systems with hard edge aperture with w = 1 mm, n = 3, λ = 632.8 nm, f = 400 mm, γ = 0,
δ = 0.5.

One can see from Fig. 5 that the normalized intensity of Hypergeometric-Gauss beams is greatly
affected by the FRT order. Figs. 5(e)–(h) show that the approximate analytic Eq. (14) and direct
integral formula (10) can obtain almost coincident calculation results, in addition to some deviations as
smaller FRT order (p < 0.3). Consequently, the approximate solution method used in this paper can
also be effective to research transmission characteristics of Hypergeometric-Gauss beams through the
FRT optical systems with hard edge aperture.

4. CONCLUSION

Based on the Collins integral formula and Lohmann optical system, the analytic expressions of electric
field and normalized intensity distribution of Hypergeometric-Gauss beams through the FRT optical
systems with and without hard edge aperture are derived theoretically. Numerical results show that
the intensity distribution of Hypergeometric-Gauss beams is related to not only the FRT order p, but
also the beam order n, real variables γ and the aperture truncation parameter δ. The normalized
intensity distribution obtained by approximate analytical method and numerical integral method are
also given. The results have a certain reference value for the study on the transmission characteristics of
beam through the FRT optical system with hard edge aperture, beam shaping and optical information
transmission.
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