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Three-Dimensional Assignment of 
the Structures of Atomic Clusters: 
an Example of Au8M (M=Si, Ge, 
Sn) Anion Clusters
Yi-Rong Liu1, Teng Huang1, Yan-Bo Gai1, Yang Zhang1, Ya-Juan Feng1 & Wei Huang1,2

Identification of different isomer structures of atomic and molecular clusters has long been a 
challenging task in the field of cluster science. Here we present a three-dimensional (3D) assignment 
method, combining the energy (1D) and simulated (2D) spectra to assure the assignment of the 
global minimum structure. This method is more accurate and convenient than traditional methods, 
which only consider the total energy and first vertical detachment energies (VDEs) of anion clusters. 
There are two prerequisites when the 3D assignment method is ultilized. First, a reliable global 
minimum search algorithm is necessary to explore enough valleys on the potential energy surface. 
Second, trustworthy simulated spectra are necessary, that is to say, spectra that are in quantitative 
agreement. In this paper, we demonstrate the validity of the 3D assignment method using Au8M− 
(M = Si, Ge, Sn) systems. Results from this study indicate that the global minimum structures of 
Au8Ge− and Au8Sn− clusters are different from those described in previous studies.

Nanoclusters, including small groups of atoms or molecules, possess an intermediate size range between 
single atoms and condensed matter. Owing to the unique properties of the clusters in designing new 
types of nanofunctional materials, many efforts have been devoted to demonstrating that the properties 
of the clusters depend on their structure and composition1,2. Once low-lying structures are found, their 
properties can be calculated and compared with measured values to make precise structural assignments. 
Therefore, it is very important to determine the exact structure and composition of these nanoclusters3,4.

In the past two decades, various techniques have been used to investigate the structures of nanoclus-
ters, such as photoelectron spectroscopy5–10, ion mobility11,12, infrared multiphoton dissociation spec-
troscopy13,14, electron diffraction15, X-ray diffraction16, coulomb explosion17–19, and trapped ion electron 
diffraction20. All of these techniques are quite powerful for obtaining structural information when com-
bined with optimization algorithms and density functional theory (DFT) calculations. So far, the dif-
ferent types of algorithms have been developed to search the low-energy structure on the complicated 
potential energy surface (PES), such as genetic algorithms (GA)21, simulated annealing (SA)22, and basin 
hopping (BH)23–26. These experimental techniques and optimization algorithms are very useful for find-
ing the low-energy structure on PES. However, the assignment of cluster structures remain to be difficult, 
specifically identifying the structural and energetic close isomers27. Therefore, determining the different 
isomers and confirming which structure is the global minimal structure in low-lying structures is still a 
fundamental problem in atomic clusters.

The conventional method used to distinguish the global minimum from other isomers is to calculate 
their relative energies and compare the calculated vertical detachment energies (VDEs) with the experi-
mental value28. This methodology is not very effective at recognizing the lowest energy structure and the 
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energetically close isomers27 because the relative energy calculations depend on the method and basis set. 
The different method and basis set can lead to a change of energy order. On the other hand, normally 
the vertical detachment energy differences of different isomers, especially for the low energy isomers, 
are very small. Therefore, it is difficult to distinguish the lowest energy structure from different isomers 
only by the relative energy and VDE values. To more reliably identify the global minimum from all of 
the isomers, we present a three-dimensional (3D), including energy (1D) and density of state (DOS) 
(2D), assignment method for effectively analyzing different low-energy structures of anion clusters. The 
simulated DOS spectra are based on a generalized Koopmann’s theorem29. It can effectively simulate 
the photoelectron spectra obtained by experiment to make the structure assignment. We used Au8M− 
(M =  Si, Ge, Sn) as an example system to illustrate the validity of our method. We then compared the 
DOS spectra for the isomers of Au8M− (M =  Si, Ge, Sn) systems with previous studies, thereby providing 
considerable credence for the identified isomers of these clusters.

Results
To determine the global minima of the Au8M− (M =  Si, Ge, Sn) systems, we searched more than 200 
isomeric forms using the BH method23 Table 1 lists the relative energies of the top 5 isomers of Au8M− 
(M =  Si, Ge, Sn) systems at several levels of theory (see the table titles). All the coordinates of the 
top 5 low energy structures of the Au8M− (M =  Si, Ge, Sn) systems can be found in the Supporting 
Information. The first VDEs of each species are calculated at the PBE0/CRENBL (SO) level of theory 
(using the NWChem software package30) and compared with the experimental values obtained by Wang 
et al.31 in Table 1. The simulated spectra of the primary structures of the Au8M− (M =  Si, Ge, Sn) sys-
tems are depicted in Fig. 1. The top 5 lowest-energy structures of the Au8M− (M =  Si, Ge, Sn) systems, 
together with their simulated PES spectra, are depicted in Figure S1 in the Supporting Information. The 
experimental spectra of the Au8M− (M =  Si, Ge, Sn) systems are showed in Fig. 2a~c.

Table  1 shows that the results calculated from different theoretical levels lead to different energy 
values. Therefore, it is difficult for us to distinguish which isomer is the global minimum by their total 
energy and first VDEs. To accurately obtain the lowest energy structure, we compared their total energy 
and DOS spectra with the experimental results. The simulated spectrum of isomer 1 for the Au8Si− 
cluster agrees well with the experimental data (Fig.  2a) obtained by Wang, et al.31 and should be the 
lowest-energy structure by our calculation. Due to the spin-orbit effects included for the Au atom, our 

Relative energies (eV) VDE (eV)

isomer NWChem PBEPBE PBE1PBE B3LYP MP2 NWChem exptlb

Au8Si−

1 0.000 0.000 0.000 0.000 0.000 3.18 3.23 (3)

2 0.122 0.150 0.211 0.186 0.370 2.69

3 0.169 0.156 0.261 0.268 0.410 2.73

4 0.214 0.212 0.257 0.268 0.301 3.12

5 0.291 0.306 0.399 0.415 0.246 2.59

Au8Ge−

1 0.000 0.000 0.018 0.040 0.190 2.69 2.73 (4)

2 0.031 0.015 0.000 0.000 0.192 2.61

3 0.118 0.183 0.112 0.198 0.010 3.15

4 0.134 0.155 0.145 0.204 0.000 2.52

5 0.183 0.193 0.179 0.191 0.353 2.38

Au8Sn−

1 0.000 0.000 0.000 0.000 0.096 2.62 2.74 (4)

2 0.194 0.208 0.173 0.221 0.000 2.48

3 0.194 0.185 0.264 0.193 0.447 2.79

4 0.317 0.328 0.250 0.313 0.098 3.10

5 0.325 0.298 0.210 0.209 0.327 3.24

Table 1.  Relative Energies of Five Low-Lying Isomers of Au8M− (M = Si, Ge, Sn) at the PBE0/
CRENBL(SO) Level of Theory using NWChem Software Package (CRENBL basis set for Au with spin-
orbit effects included and CRENBL basis set for Si, Ge, and Sn), as well as PBEPBE/Def2-TZVPPD//
PBEPBE/SDD,PBE1PBE/Def2-TZVPPD//PBEPBE/SDD, B3LYP/Def2-TZVPPD//PBEPBE/SDD, 
and MP2/Def2-TZVPPD//PBEPBE/SDD Levels of Theory using the Gaussian 09 Software Package 
(revision D.02, Gaussian, Inc.)a. aIsomers are ranked according to their relative energies at five different 
levels of theory. The VDEs are computed at PBE0/CRENBL level using the NWChem software package 
and compared to the experimental values. Energies of the lowest-energy isomers are highlighted in bold. 
bReference 31.
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simulated spectrum is better than previous studies (Fig. 2d)31, which had not considered the spin-orbit 
effects for the Au atom. The experimental spectra (Fig.  2b,c) of Au8Ge− and Au8Sn− clusters are very 
similar to the literature31, which suggests that their primary structures should be similar with each other. 
Based on the comparison of the total energy and DOS spectra of isomers 1 and 2 for the Au8Sn− clus-
ter, we confirmed that the primary structure of Au8Sn− should be isomer 2. The simulated spectrum of 
isomer 2 agrees well with the experimental spectra (Fig. 2c) and suggests that isomer 2 is more likely to 
exist under real conditions. Comparing experimental and theoretical spectra for the Au8Ge− cluster31, 
the simulated spectrum of isomer 4 (Figure. S1i in the Supporting Information) together with isomer 
3 (Figure. S1h in the Supporting Information) has good agreement with the experimental spectrum 
(Fig. 2b). However, isomer 4 has a relatively higher energy than the other structures at several different 
theoretical levels (Table 1). Due to the similar experimental spectra of the Au8Ge− and Au8Sn− clusters, 
we believe that isomer 4 should be a primary structure of the Au8Ge− cluster. To further verify those 
structures analyzed by our method, the distributions of conformational populations were calculated at 
the MP2/ Def2-TZVPPD level of theory (using Gaussian09 software package, revision D.02, Gaussian, 
Inc.), and the results are summarized in Table 2. The conformational populations depending on temper-
ature can be found in Figure S2. The results show those primary structures of the Au8M− (M =  Si, Ge, 
Sn) system obtained by our method hold a high percentage in the range of 1 to 500 K. For the struc-
ture analysis, the contrast of multi-dimensional characters, including energy, PES, and infrared spectra, 
can more accurately distinguish the different isomer configurations and reduce the uncertainty of the 
structure assignment. Through structure searching, the global minimum structure of MN+1 usually can 
be found from one of the low-lying isomers of MN using our previous calculations32–34. Therefore, we 
have speculated that some low-lying isomers of the Au8Ge− and Au8Sn− systems may coexist under cer-
tain experimental conditions. Two possible evolution routes are presented in Fig. 3 for the Au8Ge− and 
Au8Sn− systems. The structure evolution routes provide us with another method to analyze the global 
minimum structure.

Discussion
In this study, we have presented a three-dimensional structural assignment method based on ener-
gies and DOS spectra to distinguish different isomers. The method first involves exploring the PES 
using an optimization algorithm and obtaining sufficient isomers. Secondly, the DOS spectra of the low 
energy structures were simulated based on a generalized Koopmann’s theorem. The three-dimensional 

Figure 1. The simulated photoelectron spectra of Au8M− (M = Si, Ge, Sn). The insets show the 
corresponding structures. The dopant atoms are shown in color (Si in blue, Ge in red, and Sn in black).
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characteristics of cluster structure can be seen as the fingerprint of different isomers. This method will 
be more effective to determine which structures exist under real conditions. Applying the method to the 
Au8M− (M =  Si, Ge, Sn) systems, we found that the primary structures of Au8Ge− and Au8Sn− cluster 
are different from previous studies. The three-dimensional structure assignment method is simple and 
effective for different types of clusters to distinguish their structures.

Methods
The basin hopping (BH) algorithm combined with density functional theory has been used to search 
the potential energy surface (PES). Generalized gradient approximation in the Perdue-Burke-Ernzerhof 
(PBE) functional and the double-numerical polarized (DNP) basis set with effective core potentials 
(ECPs), implemented in the DMol3 code35, were chosen for structure optimization of the Au8M− (M =  Si, 
Ge, Sn) system. More than 200 possible structures were produced by the BH method for the Au8M− 
(M =  Si, Ge, Sn) systems. The top 5 isomers were chosen based on their relative energies. The top 5 
isomers were re-optimized using the functional PBEPBE and a scalar relativistic effective core potential 
Stuttgart/Dresden (SDD) basis set for all of elements in the Gaussian 09 software package (revision D.02, 
Gaussian, Inc.). The DOS spectra for all candidate isomers were calculated using PBE0 functional and 
CRENBL basis set for Si, Ge, and Sn, CRENBL basis set for Au with spin-orbit effects included in the 
NWChem software package30.

The DOS spectra were calculated using the following steps: (i) calculate the first vertical detachment 
energies (VDEs) of anion clusters, which was defined as the energy difference between the optimized 
anion isomer and the neutral at the corresponding anion geometry, (ii) add the binding energies of 

Figure 2. The experimental (left) and simulated (right) photoelectron spectra of Au8M− (M = Si, Ge, 
Sn). with the permission ref. 31. Copyright 2009 American Chemical Society.
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deeper orbitals of the anion cluster to the first VDEs to approximate the higher binding energy detach-
ment features, and (iii) fit each peak with a 35-meV-wide Gaussian curve. Each peak can be seen as a 
molecular orbital. Therefore, we can obtain the approximate electronic structures of the anion cluster 
using this method. Because each anion cluster has a unique electronic structure, we can easily distinguish 
the difference of each isomer by their DOS spectra. This method is very effective for anion clusters, and 
we used this method to study the pure Au or doped-Au anion clusters in previous studies33,34,36–40.
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