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Water, the most important molecule on the Earth, possesses many essential and unique physical pro-

perties that are far from completely understood, partly due to serious difficulties in identifying the precise

microscopic structures of water. Hence, identifying the structures of water nanoclusters is a fundamental

and challenging issue for studies on the relationship between the macroscopic physical properties of

water and its microscopic structures. For large-scale simulations (at the level of nm and ns) of water

nanoclusters, a calculation method with simultaneous accuracy at the level of quantum chemistry and

efficiency at the level of an empirical potential method is in great demand. Herein, a machine-learning

(ML) water model was utilized to explore the microscopic structural features at different length scales for

water nanoclusters with a size up to several nm. The ML water model can be employed to efficiently

predict the structures of water nanoclusters with a similar accuracy to that of density functional theory

and with substantially lower computational resource demands. To validate the low-lying structure search

results with experimental spectral results, an ML water model combined with velocity autocorrelation

function analysis was used to simulate the vibrational spectra of water nanoclusters with up to thousands

of water molecules. By comparing the simulated and experimentally recorded vibrational spectra, the

atomic structures determined by a simulation based on the ML water model are all verified. To demon-

strate its ability to represent water’s structural evolution at large length and time scales, the ML water

model was employed to model the structural evolution during the crystal–liquid transition, and the phase

transition temperatures of water clusters with different sizes were precisely predicted. The ML water

model provides an efficient theoretical calculation tool for exploring the structures and physical properties

of water and their relationships, especially for clusters with relatively large sizes and processes with rela-

tively long durations.

Introduction

Water is the source of life and is crucial for the Earth’s overall
environment. The unique properties of water, such as the
maximum density at 277 K (ref. 1) and the anomalous high
proton mobility,2 determine numerous essential reactions and
processes in the lives, nature and industries. These anomalous
properties, which significantly differ from those of other

simple molecular systems, have attracted intensive attention
from researchers for several centuries1–5 but remain far from
being completely understood.

Many studies have focused on the unique local atomic
structures of water,5–14 namely hydrogen bonding networks,15

because of the relationships between the local structure and
the anomalous properties of water, as indicated by many pre-
vious studies using water nanoclusters as models. However,
the underlying mechanisms are still unclear, partly due to the
tremendous difficulties in directly identifying the precise
atomic structures of water nanoclusters with experimental
techniques.12–15

Hence, theoretical methods are widely utilized to explore
the atomic structure of water nanoclusters.16–19 Generally,
theoretical studies on the structure of water nanoclusters are
conducted in two steps: potential energy surface (PES)
searches and validation. The first step is to search for the
minima on the PES of water nanoclusters. The second step is
to simulate experimentally detectable characteristics (for
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example, vibrational features) of the searched structures; then,
the PES search results can be validated by comparing the
simulated and experimentally measured results.

For PES searches, the potential energy and its gradient of a
certain configuration should be calculated to determine the
search direction. This step is usually the most time-consuming
in the PES search step. In the validation step, the vibrational
features of the searched structure can be simulated with mole-
cular dynamics (MD) simulations and compared with the
infrared spectroscopy experiment results. For MD simulations,
the most time-consuming step is also the calculation of the
potential energy and its gradient (namely, atomic forces).

A water model, which is actually a mapping from the struc-
ture to the potential energy of water, is used in the calculation
of the potential energy and its gradient of water nanoclusters.
The accuracy and efficiency of the water model determine its
quality and feasibility in the research on water nanocluster
structures. Ab initio water models based on density functional
theory (DFT) or post-Harte-Fork (post-HF) calculations are able
to give an accurate description of the intramolecular and inter-
molecular interactions of water clusters.20,21 However, these
methods are quite time-consuming, especially for relatively
large clusters of more than 10 water molecules, owing to their
steep scaling behavior. Empirical water models such as
TIP4P22 were constructed based on simplified physical
models. Calculations with empirical water models are usually
much faster than ab initio water models but at the cost of accu-
racy and universality. For example, the TIP4P model should be
separately parameterized for condensed liquid water and ice.22

Moreover, some empirical water models, such as TIP4P, treat
water molecules as many-site rigid;22 that is, they are not “reac-
tive” and are not suitable for use in some important processes
involving bond breaking, such as proton transfer in water.
Thus, the efficiencies or accuracies of mainstream water
models severely hinder their performance in the simulation of
water clusters, especially for larger clusters within >100 atoms.
Hence, a water model with both high accuracy and low compu-
tational resource consumption is crucial for improving the
efficiency of simulations of large water clusters.

Aiming at exploring the structures of water nanoclusters, we
adopted a “data-driven” machine learning approach instead of
a traditional “physics-based” strategy to develop a reactive
water model that achieves ab initio accuracy with much lower
computational resource demands. This machine-learning (ML)
water model is based on a group of highly flexible functions in
the form of feedforward neural networks.23 The neural net-
works are trained with a database of the potential energies of
300 000 off-equilibrium water clusters containing 1–21 water
molecules, which were calculated at the ωB97XD/6-311** level.
The power of this ML water model is demonstrated by the suc-
cessful determination of the low-lying structures and
vibrational spectra of water nanoclusters containing up to
thousands of water molecules. Using the ML water model, the
structures of water nanoclusters of up to thousands of mole-
cules were predicted and validated with significantly improved
accuracy and efficiency compared to previous water models.

With the ML water model, the length and time scales of water
molecular simulation can be substantially extended. Many
important phenomena of water, such as evaporation, melting
and crystallization, can be inspected at the molecular level,
and the structural evolution and related physical properties of
water can be further revealed.

Methods
ML water model based on artificial neural networks

In ESI Fig. 1,† a schematic representation of the construction
and a flowchart of the ML water model are presented. Firstly,
the structural features are transformed to symmetry functions
Gi

2 and Gi
4 to extract the local chemical environment of each

atom. Secondly, the vectors for the local chemical environ-
ments of each atom were input into the atomic neural net-
works for hydrogen and oxygen elements. Generally, the ML
water model consists of two feedforward neural networks
trained to represent the “atomic potential energy” of hydrogen
and oxygen atoms in water clusters. Thirdly, each atomic
energy was obtained by atomic neural networks. Finally, the
atomic energies were summed up for the total energy of the
water clusters. The training and deployment of the ML water
model were based on the TensorFlow software library.24

Descriptor. One of the crucial issues for the development of
the ML water model is to construct a descriptor for the local
chemical environments of atoms to be fed into the neural net-
works. The original local chemical environments in the form
of Cartesian coordinates are not a suitable choice for the
descriptor because translation and rotation operation would
cause the Cartesian coordinates to vary; moreover, the atomic
potential energy should remain unchanged. Hence, the
descriptor should be invariant with respect to translations and
rotations.25,26 In addition, the descriptor should be highly sen-
sitive to represent the structural difference between the off-
equilibrium configurations in the training data. Several well-
known descriptors were tested for the accuracy of the predic-
tion of the potential energy and atomic forces. Symmetry func-
tions26 with the best performance were chosen in this
research. Symmetry functions Gi

2 and Gi
4 were used to extract

the features of the local chemical environment of each atom
from the Cartesian coordinates.

G2
i ¼

X
j=i

e�η rij�rsð Þ2fc rijð Þ

G4
i ¼ 21�ξ

X
j=i

X
k=i;j

1þ λ cos αijk
� �� �ξ

e�η r2ijþr2ikþr2jk

� �
fcðrijÞfcðrikÞfcðrjkÞ

� �

where rij is the distance between the ith and jth atoms, αijk is
the angle centered at the ith atom and formed with the jth and
kth atoms, and fc is the cutoff function. The parameters of the
symmetry functions can be chosen according to the local
chemical environment (such as the radial distribution func-
tion) of each element.
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Feedforward neural networks. The ML water model consists
of two feedforward neural networks that represent the “atomic
potential energy” of hydrogen and oxygen atoms. In the devel-
oped ML water model, each of the networks contains an input
layer, two hidden layers with 32 nodes, and an output layer.
The functional form of the neural networks is

Eatom ¼ f activationðf activationðGi �W 0 þ b0Þ �W 1 þ b1Þ �W 2

þ b2

where factivation is an activation function that improves the
feasibility of the model to represent the complicated full-
dimensional PES of a water cluster by introducing nonlinear
transformations. In this study, we used a hyperbolic tangent
function as the activation function. Gi is the local chemical
environment of atoms in the form of symmetry functions. W
and b are the weight matrix and bias matrix, respectively. The
weight and bias matrices were optimized with the Adam
optimization algorithm during model training to minimize the
mean squared error (MSE) between the predicted potential
energies and the referenced ab initio potential energies. The
loss function

P
i

Epredicted
i � Ereference

i

� �2
þL2 was used to evalu-

ate the difference between the predicted and referenced ener-
gies, where L2 is the L2 regularization term used to prevent
overfitting, which results in a low-quality prediction of poten-
tial energy gradients.

Reference dataset. The whole dataset contains ∼300 000
structures of (H2O)1–21 clusters and the corresponding poten-
tial energies and atomic forces calculated at the ωB97XD/6-
311** level. The cluster structures were generated with NVT
molecular dynamics and meta-dynamics simulations. 90% of
these data are used for training the machine learning
water model, while the remaining 10% are used for validating
the accuracy of the water model. The distributions of the
potential energies in the whole dataset are presented in
ESI Fig. 2.†

Geometry optimization on the PES

Nanocluster structures with global minima on the PES were
obtained by the previously established Basin-Hopping (BH)
method27–29 and the compressed sampling strategy30 coupled
with the ML water model.

MD simulations

In MD simulations, the atomic positions were propagated
using the velocity-Verlet algorithm, with a time step of 1 fs, in
an NVT ensemble. The forces used to update the atomic posi-
tions were calculated with the developed ML water model for
machine-learning molecular dynamics (MLMD) simulations
and with the ωB97XD/6-311** level, as implemented in
Gaussian 09 for AIMD simulations.

For vibrational spectrum simulations, the optimized low-
lying geometries were used as the starting structures for MD
simulations. Each trajectory was propagated for approximately
30 ps, and the last 20 ps were used for analysis.

For the phase transition simulation, 9 trajectories were pro-
pagated at 190–270 K for 30 ps, and the last 20 ps were used
for structure analysis (local tetrahedral order parameter) and
vibrational spectrum simulations.

Simulations of vibrational spectra

The vibrational spectra of water clusters were calculated using
the Fourier transform (FT) of the velocity autocorrelation func-
tion (VACF),

IIRðωÞ/
ð1
0
CVðtÞe�iωtdt

where CVðtÞ ¼ 1
N

XN
i¼1

við0Þ � vi tð Þh i, N is the total number of

atoms within the clusters and vi(t ) is the velocity of the ith
atom at time t. The VACF can be obtained from the MD simu-
lation trajectory at a specific temperature. With this approach,
the total vibrational spectrum can be divided into contri-
butions from each atom, and the origin of some vibrational
bands can be identified. The scale factors for the fundamental
frequencies calculated with the MLMD, AIMD and static
quantum chemistry calculations at the ωB97XD/6-311** level
were estimated by linear fitting with the previously reported
experimental fundamental frequencies of water.31

Structural identification of water

The liquid phase was distinguished from crystal ice by the
local tetrahedral order parameter method.32

qtðkÞ ¼ 1� 3
8

X3
i¼1

X4
j¼iþ1

cos θikj þ 1
3

� 	2

where θikjθikj is the angle between the central water molecule k
and two (i and j ) of the four closest neighbors.

Radii of water nanoclusters

The radii of the water nanoclusters were obtained by a pre-
viously reported ellipsoidal approximation.33,34

Results and discussion

The energies and atomic forces of ∼30 000 (H2O)n (n = 1–21)
cluster configurations in the test dataset are predicted to evalu-
ate the accuracy of the trained ML water model. The absolute
error distributions of (H2O)n (n = 1–21) are shown in ESI
Fig. 3–7.† Compared to the reference potential energies and
atomic forces calculated by quantum chemistry at the
ωB97XD/6-311** level, the mean absolute errors (MAEs) of the
energies and atomic forces predicted by the ML water model
are ∼2.0 meV per H2O and ∼170 meV Å−1, respectively (ESI
Fig. 3–7†). The errors are comparable to or smaller than the
intrinsic uncertainties from the exchange–correlation func-
tional of the DFT method.23 The MAE of the predicted atomic
forces of a single H2O molecule is less than 100 meV Å−1, as
shown in Fig. 1a. For larger clusters, the MAEs of atomic
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forces are approximately 200 meV Å−1. These test results con-
firmed not only the ability of the ML water model to predict
the potential energies of water molecules and clusters, but
also its power to estimate the potential energy gradients (or
atomic forces), although the potential energy gradients of
water clusters in the training dataset were not used in neural
network training.

The gradients of the PES are important for geometry
optimization, MD simulations and other molecular simu-
lations. Hence, the gradients of the covalent bonding energy
and intermolecular H-bonding energy of the ML water model
were compared with the ab initio values. The potential
energy profiles obtained using the ML water model and DFT
calculation at the ωB97XD/6-311** level are nearly identical,
as shown in Fig. 2a–c. Fig. 2a shows a plot of the potential

energy profiles of the O–H stretching vibrations of a single
H2O molecule. The O–H bond length predicted by both the
ML water model and quantum chemistry is 0.96 Å, only
0.01 Å shorter than the experimental value of 0.97 Å.35 The
potential energy profiles of the H–O–H bending vibration of
a single H2O molecule shown in Fig. 2b also exhibit good
agreement between the ML water model and the ab initio
results. The predicted H–O–H bond angle is ∼104.5°, in
good accordance with the experimental value of 105.1°.35

Fig. 2c presents the potential energy profiles of the H-bond
of the (H2O)2 dimer. The ML water model predicted a poten-
tial energy profile that was highly similar to that predicted
by quantum chemistry. For the ML water model, the length
of the H-bond of the (H2O)2 dimer is 2.1 Å, which is consist-
ent with the value calculated by quantum chemistry and the

Fig. 1 (a) The MAE of the force errors of (H2O)1,7,14,21, and (b) the comparisons of the energies of (H2O)1,7,14,21 clusters calculated using the ML
water model and ab initio calculations.
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experimentally measured results.36 The above simulation
results indicate that the ML water model can correctly rep-
resent the gradient of both the covalent bonding interactions
and H-bonding interactions of water. To assess the quality of
the vibrational spectrum simulated with MLMD, the
vibrational spectra of the H2O molecule at 20 K were calcu-
lated with the FT of the VACFs for the MLMD and AIMD
simulations. The spectra are shown in Fig. 2d, together with
the vibrational spectrum obtained using static quantum
chemistry calculations. For all the simulated vibrational
spectra, three pronounced peaks can be identified. The peak
located at ∼1530 cm−1 can be assigned to the H–O–H
bending vibrations. The peaks at approximately 3650 and
3770 cm−1 can be ascribed to symmetric and asymmetric
O–H stretching vibrations, respectively.37 Both the frequen-
cies and amplitudes calculated with MLMD simulations are
very close to those obtained by AIMD, confirming the quality
of the vibrational spectra simulated with MLMD.

As shown in ESI Fig. 8,† we compared the computational
efficiency for energies and forces of water clusters using the
ML water model, DFT and the empirical water model of TIP4P.
The calculation speed of the potential energies and the energy
gradients of the (H2O)10–60 clusters is significantly improved by

∼10 000 times compared to that of DFT, and is close to that of
TIP4P. All the calculation efficiency tests were carried out in a
node with an Intel(R) Xeon(R) Gold 6130 CPU (2.10 GHz).
Calculations were performed in 8 parallel processes if the mul-
tiprocessing mode is available.

Since the established ML water model is proven to be
capable of representing the potential energy and potential
energy gradient with DFT, the low-lying geometry configur-
ations of (H2O)n (n = 2–21) clusters were optimized via the ML
water model coupled with the BH algorithm. The optimization
results are shown in Fig. 3 and ESI Fig. 9–13,† with labels in
the form of “n–i”. In this notation, “n” denotes the number of
water molecules and the index “i” is used to index the isomers.
ΔEQM and ΔEML represent the relative potential energies calcu-
lated by quantum chemistry at the ωB97XD/6-311** level and
the developed ML water model, respectively. The lowest-energy
structures for (H2O)3–5 are the planar cyclic configurations
shown in Fig. 3. For (H2O)6–10, the lowest-energy structures
have predominantly three-dimensional configurations (ESI
Fig. 10†). For instance, the potential energy ordering for
(H2O)6 is trigonal prism < cage < ring, which is in agreement
with the CCSD(T) results.38 The lowest-energy structures pre-
dicted by the ML water model and ab initio calculations are

Fig. 2 (a) The PES of a single H2O molecule with one hydrogen atom pulled along the O–H bond. (b) The PES of a single H2O molecule with a
changing value of ∠HOH. (c) The PES of a (H2O)2 dimer with one water molecule pulled along the H-bond. (d) The vibrational spectra of a H2O
molecule calculated via MLMD simulation coupled with the FT of VACFs compared with the AIMD simulation coupled with the FT of VACFs and the
quantum chemistry spectrum calculated at the ωB97XD/6-311** level.
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both the prism isomer 6-1. The second-lowest-energy structure
(isomer 6-2) is a cage structure. The ΔEQM and ΔEML values of
isomer 6-2 are both approximately 0.07 eV higher than those
of isomer 6-1. The third-lowest-energy structure is isomer 6-3,
with a cyclic structure, and its ΔEQM and ΔEML values are
approximately 0.35 eV and 0.47 eV higher than those of isomer
6-1, respectively. For (H2O)11–18, the lowest-energy structures
consist of two cage-like structures, as shown in ESI Fig. 11 and
12.† For instance, the lowest-energy structure of (H2O)14
(isomer 14-1) consists of a cube and a pentagonal prism
sharing one face. The second-lowest-energy structure is isomer
14-2, with a cage-like structure consisting of circular quadran-
gles and pentagons, and the ΔEQM and ΔEML values of isomer
14-2 are approximately 0.43 eV and 0.42 eV higher than those

of isomer 14-1, respectively. The rest of the low-lying structure
is isomer 14-3, consisting of a distorted cube and a pentagonal
prism sharing one face, and the ΔEQM and ΔEML values of
isomer 14-3 are approximately 0.77 eV and 0.73 eV higher than
those of isomer 14-1, respectively. For (H2O)19–21, the predomi-
nant lowest-energy structures are high-dimensional cages con-
sisting of circular quadrangles and pentagons (ESI Fig. 13†).
As shown in Fig. 3, the lowest-energy structure of (H2O)21 is a
high-dimensional cage (isomer 21-1). Similarly, the second-
lowest-energy structure is also a high-dimensional cage, and
the ΔEQM and ΔEML values of isomer 21-2 are approximately
0.77 eV and 0.73 eV higher than those of isomer 21-1, respect-
ively. The above analysis leads to a conclusion that the lowest-
energy geometries and energy ordering for (H2O)n clusters cal-

Fig. 3 The low-lying geometry configurations of (H2O)n (n = 2–7, 14, 21) calculated via the ML water model and quantum chemistry, as well as the
relative energies (in eV).
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culated by the ML water model are in agreement with the
high-level quantum chemistry results.

To validate the above low-lying structure search results, the
ML water model combined with velocity autocorrelation func-
tion analysis was used to simulate the vibrational spectra of
(H2O)n clusters (Fig. 4). The comparisons of the radial distri-
bution functions (RDFs) of gOH calculated via the MLMD and
AIMD simulations are shown in Fig. 4a, which show perfect
consistency in the range of 1.6–1.8 Å, indicative of similar
local structure relaxation.

The vibrational spectra of (H2O)8,9 clusters calculated by
MLMD simulations coupled with the FT of the VACFs are com-
pared with the AIMD and experimental results,39 as shown in
Fig. 4b. Three vibrational features in the range of
3000–3800 cm−1 in the experimental spectra are well repro-
duced by the MLMD and AIMD simulations. The complex
vibrational features in the range of 1500–2000 cm−1 in the
AIMD spectra and MLMD spectra are also similar. The agree-
ment between the predicted vibrational spectra and the experi-
mental results provides experimental support for the lowest-
energy structures predicted by the ML water model coupled
with the BH search.

Next, the vibrational spectra simulated with MLMD were
further used to explore the structure of larger water clusters.
The molecular densities of larger (H2O)n (n = 32, 48 and 113)

clusters were calculated by MLMD trajectories, as shown in
Fig. 5a. The radii of the (H2O)n (n = 32, 48 and 113) clusters are
approximately 6, 8 and 12 Å, respectively, and the water mole-
cules in the core and surface of clusters were separated, as
shown in Fig. 5a.

The comparisons of the vibrational spectra of (H2O)n (n =
32, 48 and 113) calculated using the MLMD simulations and
the experimental spectra40,41 are shown in Fig. 5b. The experi-
mental spectra40,41 of (H2O)n (n = 32, 48 and 113) are well
reproduced by the MLMD simulations. Based on the compari-
sons of the vibrational spectra calculated using the MLMD
simulations and the experimental spectra, the predominant
features at approximately 3400 cm−1 can be ascribed to the
typical amorphous behavior, such as that of liquid water.40

However, the dominating vibrational absorptions at around
3200 cm−1 of the crystalline structure12 are not observed. The
results predicted by MLMD simulations are consistent with
the previous experimental results40,41 for (H2O)n (n = 32, 48
and 113).

Furthermore, the vibrational features of core and surface
water molecules in clusters were calculated by the MLMD
method. For instance, the broad features of the (H2O)32 cluster
in the range of 2800–3600 cm−1 can be ascribed to the O–H
stretching vibrations of the core water molecules. The sharp
vibrational features in the range of 3600–3800 cm−1 can be

Fig. 4 (a) Comparisons of the radial distribution functions of the lowest-energy structures of (H2O)8,9 calculated by MLMD and AIMD simulations.
(b) Vibrational spectra of the lowest-energy structures of (H2O)8,9 calculated by MLMD simulation coupled with the FT of the VACFs compared with
the AIMD and experimental results.39
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attributed to the O–H stretching vibrations of surface mole-
cules with dangling H or dangling O atoms. Similar to (H2O)32,
the contributions of the core and surface water molecules of
the (H2O)48,113 clusters are well identified.

To demonstrate its universality, the ML water model was
employed to simulate the crystal–liquid transition of water dro-
plets, a focus of studies on water.42–46 Three water nano-
clusters consisting of 275, 475 and 900 water molecules were
chosen as their crystalline structures have been well character-
ized experimentally.40 Using MD simulations coupled with the
ML water model, three nanoclusters consisting of 275, 475 and
900 water molecules were applied to model the crystal–amor-

phous transition of water nanoclusters. The temperature
dependence of the structural evolution for the (H2O)475 nano-
cluster was taken to estimate the phase transition (Fig. 6a).
The local tetrahedral ordering parameter qt was used to dis-
tinguish between different phases of water.32 The water mole-
cules in the (H2O)475 nanocluster with qt above 0.95 are
regarded as crystal molecules and are represented by blue
lines in Fig. 6a. It is obvious that the (H2O)475 nanoclusters at
100 K are dominated by tetrahedrally configured water mole-
cules. As the temperature increases to 230 K, the number of
crystal molecules significantly decreases with an increasing
number of disordered molecules. When the temperature

Fig. 5 (a) Molecular densities of (H2O)n (n = 32, 48 and 113). (b) Vibrational spectra of (H2O)n (n = 32, 48 and 113) calculated by MLMD simulation
coupled with the FT of the VACFs compared with the experimental spectra.40,41
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reaches 300 K, disordered molecules dominate in the water
nanocluster. Based on the above results, it is important to note
that the structural evolution from a tetrahedrally coordinated
structure to a disordered structure is a direct examination of
the crystal–liquid phase transition. The curves of the tempera-
ture dependence of the potential energy for the (H2O)275,
(H2O)475, and (H2O)900 nanoclusters were taken to reveal the
relationship between the melting temperature and nanocluster
radius (ESI Fig. 14†). The melting temperatures of (H2O)275,
(H2O)475 and (H2O)900 nanoclusters determined using poten-
tial energies vs. the temperature curves are 220, 230 and 240 K,
respectively. The dependence of the melting temperature on
the particle radius can be described by the Gibbs–Thomson
equation determined by experiments42,43 and simulations.44,45

We find that the melting temperatures predicted by the ML
water model match well with those from experiments,42,43 with
an extraordinarily better accuracy than those from simulations
with the TIP4P water model44 and the mW water model45

(Fig. 6b).
The structural evolution characteristics during the crystal–

amorphous transition of the (H2O)475 nanocluster were further
validated by comparing the MLMD predicted vibrational
spectra with the experimental spectra of the (H2O)475 nano-
cluster40 and bulk water12 (Fig. 6c). In the experimental
spectra of the (H2O)475 nanocluster at about 100 K,40 there are
four pronounced features. The shoulder at approximately
3100 cm−1 can be ascribed to an ice-like structure.12 The domi-
nant peaks at approximately 3200 and 3300 cm−1 are typical of

four-coordinated structures and can be ascribed to the crystal-
line structure and distorted tetrahedral structure, respect-
ively.40 The peaks at approximately 3400–3650 cm−1 are associ-
ated with water molecules whose coordinated number is
smaller than that of the tetrahedral configurations.12 We find
that all four predominant features in the above experimental
spectrum were well represented in the MLMD predicted
spectra at 100 K, confirming that the structural characteristics
of (H2O)475 nanoclusters at 100 K were dominated by tetra-
hedral configurations. In addition, the experimental spectrum
of bulk water at 303 K (ref. 12) consists of only one broad
feature at approximately 3350 cm−1, which is also present in
the MLMD predicted spectrum of the (H2O)475 nanocluster at
300 K, implying the amorphous structure of the (H2O)475 nano-
cluster at 300 K. However, it was important to determine the
structure of the (H2O)475 nanocluster at the melting tempera-
ture. To this end, the vibrational spectra of the (H2O)475 nano-
clusters at 230 K were calculated by MLMD simulations
coupled with the FT of the VACFs. The configuration analysis
suggests that there is a mixture of tetrahedral and amorphous
stacking at the melting temperature. By comparing the MLMD
simulated vibrational spectra and the experimental IR spectra,
the coexistence of vibrational features from normal tetra-
hedral, distorted tetrahedral and amorphous configurations
can be observed. These results indicate that the melting of ice
nanoclusters is a process in which the tetrahedral structures
are distorted, and this structural evolution can be tracked with
IR spectroscopy techniques.

Fig. 6 (a) Temperature dependence of the structural evolution for the (H2O)475 nanocluster. (b) Temperature–radius phase diagram simulated with
the Gibbs–Thomson equation and parameters from previous experiments42,43 and simulations.44,45 (c) Temperature dependence of the vibrational
spectra of the (H2O)475 nanocluster calculated by MLMD simulation coupled with the FT of the VACFs compared with the experimental IR spectra of
the (H2O)475 nanocluster at 100 K (ref. 40) and bulk water at 303 K.12
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Conclusions

To explore the microscopic structures and physical properties
of water nanoclusters and their relationships with high accu-
racy and efficiency, an ML water model based on multiple feed-
forward neural networks was developed to provide rapid pre-
dictions of the potential energies and energy gradients of
water nanoclusters. The ML water model is proven to be able
to represent the potential fields and potential field gradients
of water nanoclusters at DFT accuracy but with a substantially
lower computational resource and time demands. Coupled
with the BH global optimization technique and VACF analysis,
the ML water model successfully predicted the atomic struc-
tures and vibrational spectra of water nanoclusters with up to
thousands of water molecules, and they are in good agreement
with previous DFT studies and experimental measurements.
Vibrational spectral simulations also elucidated the core–shell-
like structures of (H2O)32–113 nanoclusters. The universality
and scalability of the ML water model were demonstrated by
modeling the liquid phase and crystal phase of water nano-
clusters or bulk water. The structural evolution during the
phase transition (from a tetrahedral coordination structure to
an amorphous structure) could be precisely described with the
ML water model. The applications of the ML water model can
be further extended by coupling it with other molecular simu-
lation techniques, providing a powerful theoretical calculation
tool for predicting the structures and physical properties of
water nanoclusters and their relationships. In conclusion, by
introducing the ML water model with high performance both
in accuracy and efficiency, the structural features of water
nanoclusters can be well predicted and validated, based on
which the structure–property relationship of water can be
further theoretically studied.
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