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Abstract: Based on the extended Huygens-Fresnel principle and second-
order moments of the Wigner distribution function (WDF), we have studied 
the relative root-mean-square (rms) angular width and the propagation 
factor of cosine-Gaussian-correlated Schell-model (CGSM) beams 
propagating in non-Kolmogorov turbulence. It has been found that the 
CGSM beam has advantage over the Gaussian Schell-model (GSM) beam 
for reducing the turbulence-induced degradation, and this advantage will be 
more obvious for the beams with larger parameter n  and spatial coherence 
δ  or under the condition of stronger fluctuation of turbulence. The CGSM 
beam with larger parameter n  or smaller spatial coherence δ  will be less 
affected by the turbulence. In addition, the effects of the slope-parameter 
α , inner and outer scale and the refractive-index structure constant of the 
non-Kolmogorov’s power spectrum on the propagation factor are also 
analyzed in detailed. 
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1. Introduction 

During the past several decades, partially coherent beams with conventional correlation 
functions (i.e., Gaussian correlated Schell-model functions) have been studied extensively 
due to their wide applications in free-space optical communications, remote sensing, optical 
imaging and optical trapping and so on [1–8]. More recently, since the sufficient condition for 
devising the genuine correlation function of a scalar or electromagnetic partially coherent 
beam was established by Gori and collaborators [9, 10], partially coherent beams with 
nonconventional correlation functions, whose degree of coherence is modulated by special 
correlation functions, have attracted a considerable amount of attention [11–35]. So far, a 
variety of special model sources have been introduced and studied both theoretically and 
experimentally, such as nonuniformly correlated (NUC) beam [11–16], multi-Gaussian 
Schell-model (MGSM) beam [17–22], Laguerre-Gaussian Schell-model (LGSM) and Bessel-
Gaussian Schell-mode (BGSM) beam [23–28], cosine-Gaussian Schell-model (CGSM) beam 
[30–34], special correlated partially coherent vector beam [35], etc. The experimental 
generation of such random beams can be realized by using the nematic spatial light modulator 
[16, 26–29, 32, 35]. More interestingly, it has been revealed that those beams with special 
correlation function exhibit extraordinary propagation characteristics and unique focusing 
properties, for instance, the NUC beam can display a peculiar self-focusing effect and a 
lateral shift the intensity maximum on propagation [11–14]; the MGSM beam can generate 
far fields with tunable flat profiles, whether circular or rectangular [17–20]; the BGSM beam, 
the LGSM beam and the CGSM beam are capable of generating far fields with ring-shaped 
intensity distributions [23, 24, 30]; the focused LGSM beam can generate a controllable 
optical cage by choosing suitable value of the spatial coherence near the focal plane [26]. 
Therefore, it is possible to generate prescribed far-field intensity distributions by choosing 
specified correlation properties for the source field. 

For a long time, studies on the propagation characteristics of laser beams in free-space or 
turbulent atmosphere are of vital importance due to their practical applications in optical 
communication and remote sensing [1, 2, 4–6]. The random fluctuations of the turbulence 
will affect inevitably the evolution properties of laser beams upon propagation. Thus, it is 
necessary and meaningful to find suitable ways to overcome or reduce the destructive effect 
of the atmospheric turbulence. It is well known that partially coherent beams are less affected 
by turbulence than fully coherent beams, while they will face fast spreading and low Signal to 
Noise Ratio (SNR) due to the strong fluctuation of the source for small spatial coherence [2, 
6, 36–39]. Another effective approach to reducing the negative influence of turbulence is to 
use the beams with special beam profile, phase or polarization [39–46]. In general, the 
propagation factor proposed by Siegman can be used for characterizing the beam quality 
factor of laser beams on propagation [47]. Up to now, much work has been carried out 
concerning the propagation factors of various beams with classical correlation functions 
through a turbulent atmosphere [41, 42, 48]. However, to the best of our knowledge, only few 
papers have been concerned on the propagation factors of the beams with special correlation 
functions in the turbulence [22, 25]. It has been shown that a LGSM or a MGSM beam has 
advantage over a GSM beam for reducing the turbulence-induced degradation [22, 25]. Thus 
it is meaningful for us to explore the statistical properties of the special correlated beams 
through the turbulent atmosphere. 

Just recently, a new kind of partially coherent sources of Schell type with cosine-Gaussian 
degree of coherence called CGSM beam was proposed in theory and generated in experiment 
[30–34]. It should be clearly pointed out that the cosine function is employed for modulating 
the source degree of coherence rather than the spectral density, which is quite different from 
the partially coherent cosine Gaussian beams [39]. Accordingly, the evolution of the spectral 
density and transverse spectral degree of coherence of the CGSM beam has been analyzed 
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both in free-space and in a turbulent atmosphere [30, 31, 33, 34]. The main purpose of this 
paper is to investigate the propagation factor of CGSM beam on its atmospheric propagation. 
In order to cover a wide scope of atmospheric conditions, the non-Kolmogorov atmospheric 
spectrum is employed. We have derived the explicit expressions for the propagation factors of 
the CGSM beam in the turbulence by use of the extended Huygens-Fresnel principle and the 
definition of the Wingner distribution function (WDF). The evolution properties of the 
propagation factor of the CGSM beams in the non-Kolmogorov turbulence are illustrated with 
numerical examples. Some interesting and useful results have been found. 

2. Second-order moments of CGSM beams in non-Kolmogorov turbulence 

The cross-spectral density (CSD) of the CGSM beam at the source plane can be expressed as 
[30, 31, 34] 

 ( ) ( ) ( ) 2

2

2 2

1 2 2 12 1
1 2 2

2
, exp cos exp

4 2
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W

π
σ δ δ
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where ( )1 1 1,x y≡r  and ( )2 2 2,x y≡r  are two arbitrary transverse position vectors, σ  and δ  

are the transverse beam width and the transverse coherence width of the CGSM beam, 
respectively. The source degree of coherence of the CGSM beam at 0z =  takes the following 
form [30, 34]: 

 ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )20

0 2 11 2 2 1
2 1 20 0

1 1 2 2

, 2
exp cos

2, ,

W n

W W

π
μ

δ δ
  − −

− = = −   
      

r rr r r r
r r

r r r r
(2) 

It is clear from Eq. (2) that the source degree of coherence of the CGSM beam reduces to 
that of the conventional GSM sources for 0n = , while for 0n ≠  the model is modulated by 
the cosine function. The index n  controls the number of oscillations of the source degree of 
coherence on the half-axis. The beam condition for the CGSM source is the same as that for 
the classic GSM source [30, 34] 

 
2

2

2 2

1 1 2

4

π
σ δ λ

+   (3) 

Within the validity of the paraxial approximation, the propagation of the CSD of partially 
coherent beams in a turbulent atmosphere can be studied with the help of the following 
generalized Huygens-Fresnel integral [25, 41, 42, 48] 
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where 2 /k π λ=  is wave number with λ  being the wavelength. In the above equation, we 
have used the following sum and difference vector notation 

 
( ) ( )1 2 1 2

1 2 1 2, , , ,
2 2d d
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= = − = = −

r r ρ ρ
r r r r ρ ρ ρ ρ  (5) 

where 1ρ , 2ρ  are two arbitrary points in the receiver plane, perpendicular to the direction of 
propagation of the beam. The CSD of the CGSM beam in the source plane can be expressed 
as follows 

 ( ) ( ) ( ) ( ) ( )
1 2, ,0 , ,0 , ,0

2 2
d d

dW W W  = = + − 
 
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For the convenience of operations, we use the coordinate transformation as 
' , d d d

z

k
→ = +r r r ρ κ . After some operations as shown in [41], on the basis of inverse Fourier 
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transform of the Dirac delta function and its property of even function, the CSD of the source 
of the CGSM beam can be expressed as follows 
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2 2
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where ( ),d dx dyκ κ≡κ  is the position vector in the spatial frequency domain. Similarly, Eq. 

(4) can be expressed in the following alternative form 
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ρ ρ κH  in Eq. (8) represents the effect of the turbulence 

defined as 
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where ( )n κΦ  is the spatial power spectrum of the refractive-index fluctuations of the 

isotropic turbulent medium and κ  is the magnitude of two-dimensional spatial frequency. A 
generalized model for the power spectrum valid in non-Kolmogorov turbulence can be 
characterized as [34, 38, 44, 48–50] 
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where 0 02 / Lκ π=  with 0L  being the outer scale parameter and ( ) 0/m c lκ α=  with 0l  being 

the inner scale parameter, the parameter α  is the power-law exponent, and 
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with ( )Γ ⋅  being the Gamma function. The term 2
nC  in Eq. (10) is the generalized refractive-

index structure parameter with units 3m α− . With the power spectrum in Eq. (10) the integral 
in Eq. (9) becomes [34, 38, 44] 
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where 2 2 2
02 2 m mβ κ κ ακ= − +  and ( ),Γ ⋅ ⋅  denotes the incomplete Gamma function. 

It is well known that the WDF is the space domain and frequency domain function, which 
is especially suitable for the treatment of partially coherent beams, and the WDF can be 
expressed in terms of the CSD as follows [22, 25, 41, 42, 48] 

 ( ) ( ) ( )
2

2, ; , ; exp
2 d d d

k
h z W z ik d

π
∞ ∞

−∞ −∞

 = − ⋅ 
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where ( ),x yθ θ≡θ  denotes an angle which the vector of interest makes with the z-direction, 

xkθ  and xkθ  are the wave vector components along the x-axis and y-axis, respectively. 
Applying Eqs. (7), (8) and (13), we obtain the following expression for the WDF of the 

CGSM beam in turbulent atmosphere 
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The moments of order 1 2 1 2n n m m+ + +  the WDF for a laser beam is defined as [25, 41, 
42] 
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Substituting Eq. (14) into Eqs. (16) and (17), we obtain (after tedious integration) the 
following expressions for the second-order moments of WDF of the CGSM beam in a 
turbulent atmosphere 
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According to the definition of rms spatial and angular width of light beams [41], the rms 
spatial and angular width of CGSM beams in the turbulence can be expressed as 
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For comparison, the normalized rms angular width, which represents the relative angular 
spreading of the beams, can be expressed as 

 ( ) ( )
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1/212
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 (23) 

The propagation factor of a partially coherent beam in the turbulent atmosphere can be 
defined in terms of the second-order moments of WDF as follows [25, 41, 42, 47] 
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ρ θ ρ θ
(24) 

On substituting from Eqs. (18)–(20) into Eq. (24), we obtain the following explicit 
expression for the propagation factor of the CGSM beam in the turbulence 
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Under the condition of ( ) 0n κ =Φ , Eq. (25) reduces to the expression for the propagation 

factor of the CGSM beam in free space 

 ( )
2

2
2

1/2
2 4

1 1 2( ) nM z
σ π
δ

 
= + + 
 

 (26) 

We can see that the propagation factor of the CGSM beam in free space is independent of 
the propagation distance as expected [41, 42], and its value increases as the parameter n  
increases. In addition, Eq. (26) reduces to the propagation factor of a GSM beam in free space 
for 0n = , which is agreement with previous result of [36] 

 ( )2 2 1/22 1 4 /( )M z σ δ= +  (27) 

3. Numerical calculation results and analysis 

In this section, we will study the statistical properties of the CGSM beams on propagation in 
non-Kolmogorov turbulence based on the analytical formulas derived in the previous section. 
For the convenience of the following analysis, the calculation parameters of the source are 
chosen to be 2n = , 0.01mσ = , 0.02mδ = , 632.8nmλ = and of the turbulence are 

3.67α = , 0 1mL = , 0 0.001ml = , 2 15 310 mnC α− −= unless other variable parameters are 
specified in each figure. 

Figure 1 shows the normalized rms angular width of CGSM beams on propagation in non-
Kolmogorov turbulence for different values of parameter n  and spatial coherence δ , 
respectively. It can be seen that the relative rms angular width of the CGSM beams increases 
with the propagation distance in the turbulence, and it spreads slower for the beams with 
larger parameter n  or smaller spatial coherence, i.e., the relative angular spreading is less 
affected by the turbulence. 

 

Fig. 1. Normalized rms angular width of the CGSM beams on propagation in non-Kolmogorov 
turbulence for different values of (a) parameter n  with 0.02mδ =  and (b) spatial coherence 
δ  with 2n = , respectively. 

Figure 2 shows the normalized propagation factor of CGSM beams versus the propagation 
distance in non-Kolmogorov turbulence for different values of parameter n  and spatial 
coherence δ , respectively. For comparison, the case of GSM beam ( 0n = ) is also shown 
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under the same conditions. One clearly sees that the normalized propagation factor of the 
CGSM beams increases monotonically as the propagation distance increases in the presence 
of atmospheric turbulence, which means that the beam quality is degraded by the turbulence. 
This behavior is quite different from that in free space, where the propagation factor is 
independent of the propagation distance. Furthermore, for very small spatial coherence δ , 
there is almost no distinct difference between the normalized propagation factor of the CGSM 
beams with different parameter n  and the GSM beam. However, as the spatial coherence 
increases, the difference becomes more apparent. The normalized propagation factor of the 
CGSM beams with larger parameter n  increases much slower than that of the CGSM beams 
with smaller parameter n  or the GSM beam on propagation, which means that the CGSM 
beams with larger parameter n  are less affected by the turbulence. We also find from Fig. 3 
that normalized propagation factor spreads more rapidly for the CGSM beams with larger 
spatial coherence or smaller beam waist width. Figure 4 shows the dependence of the 
normalized propagation factor of the CGSM beams for several values of parameter n  on 
spatial coherence δ  at propagation distance 5kmz =  in the turbulence. As shown in Fig. 4, 
the normalized propagation factor of the CGSM beams for all values of parameter n  
increases with the increase of spatial coherence and then tends to a definite value when the 
spatial coherence is very large, for this case, the CGSM beam turns into the coherent 
Gaussian beam. The normalized propagation factor of the CGSM beams increases more 
slowly than that of the GSM beam, and this tendency becomes more obvious for the CGSM 
beams with larger parameter n . 

 

Fig. 2. Normalized propagation factor of CGSM beams versus the propagation distance in non-
Kolmogorov turbulence for several values of parameter n  and spatial coherence δ , 
respectively. 
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Fig. 3. Normalized propagation factor of CGSM beams with parameter 2n =  versus the 
propagation distance in non-Kolmogorov turbulence for different values of (a) spatial 
coherence δ  with 0.01mσ =  and (b) beam waist width σ  with 0.02mδ = , respectively. 

 

Fig. 4. The dependence of the normalized propagation factor of the CGSM beams for several 
values of parameter n  on spatial coherence δ  at propagation distance 5kmz =  in non-
Kolmogorov turbulence. 

We will now analyze the effects of the turbulence on the propagation factor of CGSM 
beams. We calculate in Fig. 5 the normalized propagation factor of the CGSM beams for 
several values of parameter n  on propagation in non-Kolmogorov turbulence with different 

structure constant 2
nC , respectively. One finds from Fig. 5 that, in weak turbulence (i.e., small 

structure constant), there is little difference between the normalized propagation factor of the 
CGSM beams and that of the GSM beam. However, as the structure constant increases, the 
difference becomes apparent and the advantage of the CGSM beams over the GSM beam for 
overcoming the negative effect of the turbulence is gradually revealed. Figure 6 shows the 
normalized propagation factor of the CGSM beam on propagation in non-Kolmogorov 
turbulence for different slope-parameter α , inner scale 0l , outer scale 0L  and structure 

constant 2
nC , respectively. It can be seen that the normalized propagation factor of the CGSM 

beam spreads more rapidly in the turbulence with smaller inner scale, larger outer scale and 
larger structure constant, this indicates that the beam is more affected by the turbulence under 
this conditions. Figure 7 shows the dependence of the normalized propagation factor of the 
CGSM beams for several values of parameter n  and spatial coherence δ  on slope-parameter 
α  at propagation distance 5kmz =  in non-Kolmogorov turbulence. As is shown in Fig. 7, 
the dependence of the normalized propagation factor of the CGSM beams on slope-parameter 
α  is non-monotonic, it will first increase quickly as α  increases until it reaches the 
maximum point (about at 3.067α = ), then it decreases gradually with the further increasing 
of α . We may explain that there exists a singular point and the beam quality is degraded the 
most at this point. In addition, the CGSM beams with larger parameter n  or smaller spatial 
coherence δ  are less affected by the turbulence. 
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Fig. 5. Normalized propagation factor of CGSM beams with 0.02mδ =  for several values of 
parameter n  versus the propagation distance in non-Kolmogorov turbulence with different 

structure constant 
2

nC , respectively. 

 

Fig. 6. Normalized propagation factor of the CGSM beam with 2n =  and 0.02mδ = versus 
the propagation distance in non-Kolmogorov turbulence for different values of slope-parameter 

α , inner scale 0l , outer scale 0L  and structure constant 
2

nC , respectively. The other 

turbulence parameters are shown in each figure. 
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Fig. 7. The dependence of the normalized propagation factor of the CGSM beams on slope-
parameter α  at propagation distance 5kmz =  in non-Kolmogorov turbulence for several 
values of (a) parameter n  with 0.02mδ =  and (b) spatial coherence δ  with 2n = . 

4. Summary 

In conclusion, the analytical expressions for the propagation factor of the CGSM beams in 
turbulent atmosphere have been derived in terms of the extended Huygens-Fresnel principle 
and second-order moments of the WDF. We have numerically investigated the relative rms 
angular width and the normalized propagation factor of CGSM beams for different beam and 
turbulence parameters on propagation in non-Kolmogorov turbulence in detail. Numerical 
results have been shown that the CGSM beam has advantage over the GSM beam for 
reducing the turbulence-induced degradation, and this advantage will be more obvious for the 
beams with larger parameter n  and spatial coherence δ  or under the condition of stronger 
fluctuation of turbulence. It is indicated that partially coherent beams with special correlation 
function have the potential ability to further improve the performance of laser beam 
propagation. What’s more, the CGSM beam with larger parameter n  or smaller spatial 
coherence δ  will be less affected by the turbulence. The beam will be more affected by the 
turbulence under the conditions of larger inner scale and structure constant or smaller outer 
scale. In addition, the propagation properties are closely related to slope-parameter α  of the 
turbulence’s power spectrum. Our results will be useful in long-distance free-space optical 
communications. 
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