

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

数据科学导论 Introduction to Data Science

第二章 数据分析

黄振亚, 陈恩红

Email: huangzhy@ustc.edu.cn, cheneh@ustc.edu.cn

课程主页:

http://staff.ustc.edu.cn/~huangzhy/Course/DS2025.html

An Introduction to Data Science

10/8/2025

回顾:数据分析基础

9

□数据采集

Data Collection

□数据预处理

Data Preprocessing

□特征工程

Feature Engineering

数据预处理

- □大数据环境下的数据特点
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清洗
 - □数据集成
 - □数据变换
 - □数据规约

大数据环境下的数据特点-4V

4

数据来源多样:传感器, IT系统,应用软件等

数据类型多样:结构化,

半结构,非结构

多样 Variety 数据分析与结果需要及时处理, 实时的结果才有价值—1秒定律

> 高速 Velocity

> > "沙里淘金": 价值密度低 ,价值深度深,带来巨大的 科学和商业价值

> > > 价值 Value

计量单位一般是TB, 甚至到了PB, EB或ZB

TB (2³⁰KB)

PB (2⁴⁰KB)

EB (2⁵⁰KB)

ZB (2^60KB)

Big Data

10/8/2025

大数据环境下的数据特点

5

□ 收集来的数据,是否可以直接使用?

*ratings.csv - 记事本

文件(E) 编辑(E) 格式(O) 查看(V) 帮助(H) userId,movieId,rating,timestamp

1,1,4.0,964982703

1,3,4.0,964981247

1,6,4.0,964982224

1,47,5.0,964983815

1,50,5.0,964982931

1,70,3.0,964982400

1,101,5.0,964980868

Context:

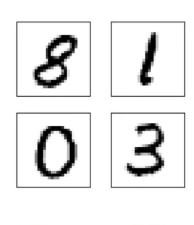
Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm.

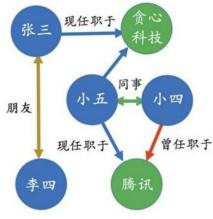
Question:

By what main attribute are computational problems classified using computational complexity theory?

Answer:

inherent difficulty





通常情况下,直接收集的数据难以直接使用,需要对数据进行预处理

数据预处理

- □大数据环境下的数据特点
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

7

- □ 直接收集的数据通常是"脏的"—数据来源不同
 - □应用需求
 - ■微博
 - ■淘宝
 - **.....**
 - □收集手段
 - 传感器,扫描仪
 - 摄像,照相
 - App收集
 - ■爬虫写错了
 - **.....**
 - □数据格式
 - ■结构化
 - 半结构化
 - ■非结构化
 -

高高飞起来啊 前方高能预警 可以做成游戏的 高能来了 高高的飞起来啊! 前方高能(ノ°

ID	时间	内容
陈赫	08-18	天霸
邓超	08-18	我们都很好
邓超	08-18	我也不知道

<name>黑龙江
<cities>
 <city>哈尔滨</city>
 <city>大庆</city>
</cities>

□ 直接收集的数据通常是"脏的"

- □不完整
 - ■有些数据属性的值丢失或不确定
 - 缺失必要的数据,例:缺失学生成绩
 - •••••

学 号	课程号	成绩
Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

□不准确

- 数据错误,属性值错误,例:成绩 = -10
- 噪声数据:包含孤立(偏离期望)的离群
- •••••

□不一致

- 数据结构有较大差异,例,编码或者命名上存在差异
- ■数据需求改动,例,评价等级:"百分制"与"A,B,C"
- 存在数据重复和信息冗余现象
- •••••

- □ 真实应用的数据是"脏的"——举例
 - □滥用缩写词 例:中科大,科大,中国科大,USTC
 - □ 数据中的内嵌控制信息 例: 路程=速度*时间
 - □重复记录
 - □缺失值
 - □拼写变化与时态,例: propose, proposed, proposing
 - □不同的计量单位
 - □噪声
 - □ UGC数据,例: 弹幕(短文本)

- □数据错误的不可避免性
 - □数据输入和获得过程数据错误的不可避免性
 - □数据集成所表现出来的错误
 - □数据传输过程所引入的错误
- □ 没有高质量的数据,就没有高质量的结果
 - □高质量的决策必须依赖高质量的数据
 - 例如,数据重复或者缺失将会产生不正确的分析结果,误导决策
- □ 数据预处理是进行大数据的分析和挖掘的工作中占工 作量最大的一个步骤 (80%)

数据预处理

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换

数据预处理:数据清理

- □数据清理的目标
 - □解决数据质量问题
 - □让数据更适合分析、建模
- □数据清理基本任务
 - □处理缺失值
 - □清洗噪声数据
 - □纠正不一致数据
 - □根据需求进行清理
 -

ID	住址	学历	单位	专业	收入
01	$A\boxtimes$	本科	A	CS	С
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	С
04	$A\boxtimes$	硕士	С	CS	В
05	$A\boxtimes$	博士	A	DS	A
•••	•••	•••	•••	•••	•••

ID	住址	学历	单位	专业	收入
01	$A \boxtimes$	本科	A	CS	C
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		C	CS	В
	$A\boxtimes$	博士	A	DS	
				•••	

- □造成数据缺失的原因
 - □ 信息无法获取,或获取代价大。
 - 反爬虫,加密
 - □信息遗漏
 - ■需求不明确
 - 采集故障,存储故障,传输故障
 - ■人为因素
 - □ 数据的某些属性不可用,或不存在(与设计有关)
 - 如: 学生的收入,老师的成绩等

- □数据缺失的类型
 - □ 完全随机缺失: 不依赖任何属性/变量, 不影响样本的无偏性
 - □ 随机缺失: 缺失自身无关,与其他完全属性/变量有关系
 - 体检"老年人血压"漏检缺失: "血压值"与"年龄"
 - ■问卷"某人群未填收入"缺失: "收入"与"人群背景"的关系
 - □ 非随机缺失: 数据缺失与属性/变量自身的取值有关
 - ■疾病诊断缺失: 重大疾病患者拒绝提供诊断结果

ID	住址	学历	単位	专业	收入
01	$A\boxtimes$	本科	A	CS	C
02	$B\boxtimes$	本科	В	EE	C
03	$A \boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
•••	•••	•••	•••	•••	•••

15

- □ 处理缺失数据的方法: 首先确认缺失数据的影响
 - □ 数据删除(可能丢失信息,或改变分布)
 - ■删除数据
 - ■删除属性
 - ■改变权重
 - □数据填充
 - ■特殊值填充
 - 样本/属性的均值、中位数、众数填充
 - 空值填充,不同于任何属性值。例,NLP词表补0,DL补mask
 - 预测: 使用最可能的数据填充
 - K最近距离法(KNN)
 - 利用回归等估计方法
 - ■大模型等

模型预测:建立模型预测缺失值

- □ K最近距离法
 - □ 完整数据中找到**1个**与它最相似的样例, 然后用该样本的值来进行填充
 - □ 根据相关分析(距离)来确定距离缺失数据样本的最近**K个**样本
 - □将这K个值加权平均估计样本缺失数据
- □ 模型法: 回归法
 - □ 基于**数据集**,建立回归模型
 - □ 将已知属性值代入模型来估计未知属性 值,以此预测值填充

ID	住址	学历	単位	专业	收入
01	A X	本科	A	CS	С
02	B X	本科	В	EE	С
03	A X	本科	A	CS	0
04	A X		С	CS	В
	A X	博士	A	DS	

17

□大模型做数据填充

- □提示词工程
- □大模型数据读取和代码
- □填充结果的合理性与真实性
- □ 计算成本与效率
- □与数据分布的适配性
- □结果验证与后处理
- □数据隐私与安全风险

ID	住址	学历	单位	专业	收入
01	A X	本科	A	CS	С
02	B X	本科	В	EE	С
03	A X	本科	A	CS	0
04	A X		С	CS	В
	A X	博士	A	DS	
•••	•••	•••	•••	•••	•••

数据清理-清洗噪声

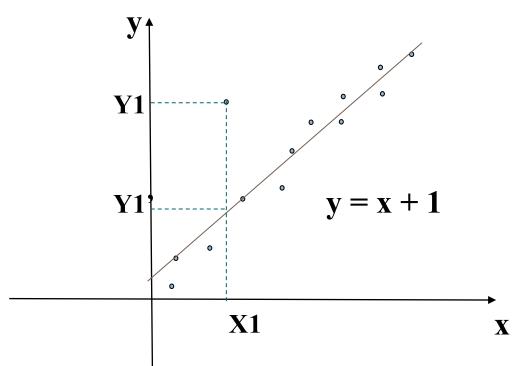
- □噪声是测量误差的随机部分
 - □包括错误值,或偏离期望的孤立点值
 - □需要对数据进行平滑
- □常用的处理方法
 - □ 回归(Regression)
 - 让数据适应回归函数来平滑数据
 - □ 识别离群点,常用聚类方法
 - ■监测并且去除孤立点

ID	住址	学历	单位	专业	收入
01	$A \boxtimes$	本科	A	CS	C
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
					•••

数据清理-清洗噪声

□回归: 让数据适应回归函数来平滑数据

- □ 通过线性回归模型,对不符合回归的数据进行平滑处理
- □用某些属性预测其他属性

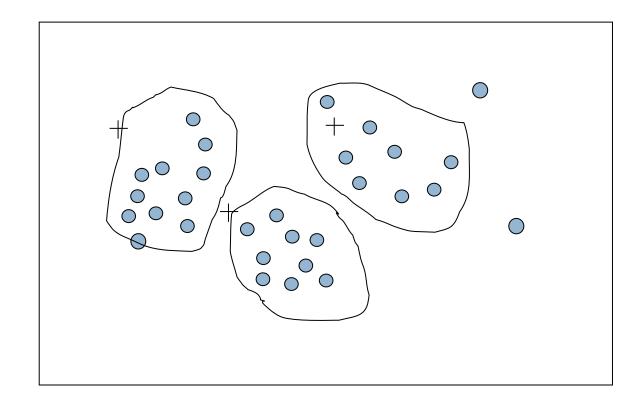


ID	住址	学历	单位	专业	收入
01	$A\boxtimes$	本科	A	CS	С
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
•••			•••		

数据清理-清洗噪声

□ 识别离群点:聚类分析检测离群点,消除噪声

- □聚类将类似的值聚成簇
- □落在簇集合之外的值被视为离群点



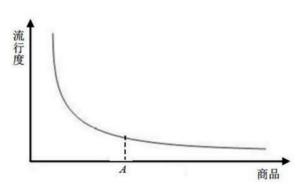
数据清理-根据需求清理数据

- □ 在特定的应用任务中,根据目标不同,需要特殊的数 据清理方法
 - □推荐系统
 - ■通用推荐问题
 - ■冷启动问题
 - □教育大数据
 - □社交网络
 - □ POI任务: Point of interest

	The Lo	ong Tail Module
		recharted by Jamo www.jamowoo.com
Body	The Long Tail	こと、自告Vitarlieを対す

Dataset	Douban Book	Yelp
# Users	6,576	25,783
# Items	20,547	33,105
# Ratings	326,419	727,259
Rating Sparsity	99.76%	99.91%
Avg. friends of each user	6.0	3.8
# Users without friends	1,314	10,867

Table 1: The statistics of two datasets.



Li Wang, Zhenya Huang, Qi Liu, Enhong Chen, Preference-Adaptive Meta-Learning for Cold-Start Recommendation, IJCAI'2021.

数据预处理

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

- □数据集成
 - 口将多个数据源的数据整合到一个一致的数据存储中
- □数据集成的目标
 - □获得更多的数据
 - □获得更完整的数据
 - □ 获得更全面的数据画像,如用户画像
- □ 例: 电商推荐-需求
 - □用户的购物记录:淘宝,美团,拼多多等
 - □用户的社交网络:微博,facebook等
 - □ 用户的视频记录: 爱奇艺, 抖音等

- 数据集成
 - □将多个数据源的数据整合到一个一致的数据存储中
 - □集成数据(库)时,经常出现冗余数据
 - 冗余数据带来的问题: 浪费存储、重复计算
 - ■冗余的属性
 - ■冗余的样本
 - □ 例如:
 - ■用户的电商记录出现在很多app中
 - ■用户的个人信息在多个app中
 - 0 0 0

数据预处理:

- 检测冗余属性
 - □ 分析属性之间的相关性
 - □相关性分析检测冗余

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

字段	说明	示例
ID_LAT_LON_YE AR_WEEK	地点、时间	ID0.510_29.290_2019_00
year	年份	2019
latitude	维度	-0.51

Pearson积矩相关系数,取值范围为 [-1; 1]

 \triangleright 值大于 0,则属性 A 和 B 是正相关的,值越大相 关性越强

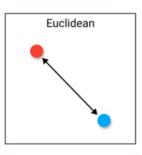
因此,表明两个属性中有一个可以作为冗余删除

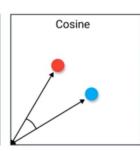
- ▶值为 0,则 A 和 B 是独立的,它们不存在相关性
- ▶值小于 0,则 A和 B是负相关的。
- □ 卡方检验: 值越大, 两个变量相关的可能性越大

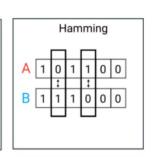
$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})}{e_{ij}}$$

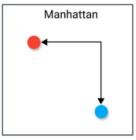
卡方检验: oij 是联合事件 (Ai; Bj) 的观测频度 (即 实际计数),而 eij 是 (Ai; Bj)的期望频度。 卡方检 验的原假设是 A 和 B 两个属性相互独立,如果可以 拒绝该原假设,则我们说A和B是显著相关的。

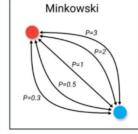
- □检测冗余样本
 - □ 思想: 数据样本之间的相关性, 数据融合、去除冗余
 - □ 方法: 距离度量
 - 欧几里得距离
 - ■汉明距离
 - ■明氏距离
 - ■马氏距离
 - **.....**
 - □ 方法: 相似度计算
 - 余弦相似度
 - Jaccard相似度
 - **.....**

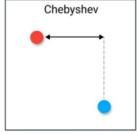


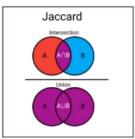


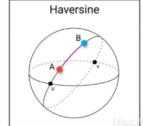


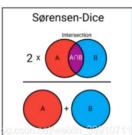












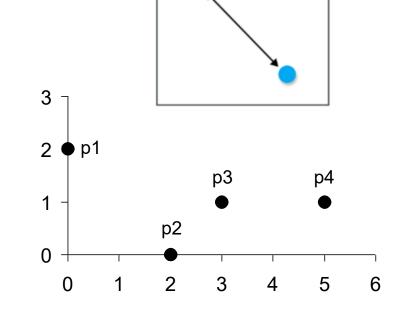
27

- □ 数据的距离度量
 - □ 欧几里得距离(Euclidean Distance)

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

n 表示数据p和q维度数 p_k 和 q_k 表示数据p和q的第k个属性

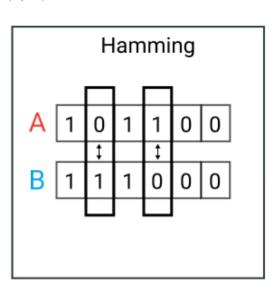
	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p 4	5.099	3.162	2	0



Euclidean

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

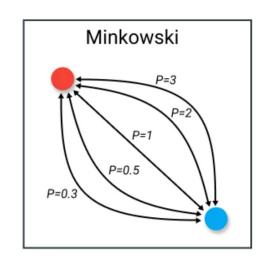
- □数据的距离度量
 - □ 汉明距离(Hamming Distance)
 - □ 定义: 两个向量之间不同值的个数
 - ■字符串比较:比较两个相同长度的二进制字符串
 - □要求:向量长度相同
 - □常用: HASH场景



Defu Lian, Haoyu Wang, Enhong Chen, Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. WWW 2020.

- □数据的距离度量
 - □明氏距离(Minkowski Distance)
 - ■距离度量:通用表达形式

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$



r是参数

n 表示数据p和q维度数, p_k 和 q_k 表示数据p和q的第k个属性

□ r=1: 曼哈顿距离

□ r=2: 欧氏距离

□ r=∞: 切比雪夫距离

- □ 马氏距离 vs 欧氏距离
 - □ **假设:** 以厘米为单位测量人的身高,以克(g)为单位测量人的体重。每个人被表示为一个两维向量。如:一个人身高173cm,体重50000g,表示为(173,50000),根据身高体重来判断人的体型的相似程度
 - □ **己知:** 小明(160,60000); 小王(160,59000); 小李(170,60000) 。小明与谁的体型更相似?

分析:根据常识可以知道小明和小王体型相似。但是如果根据**欧氏距离**来判断,小明和小王的距离要远大于小明和小李之间的距离,即小明和小李体型相似

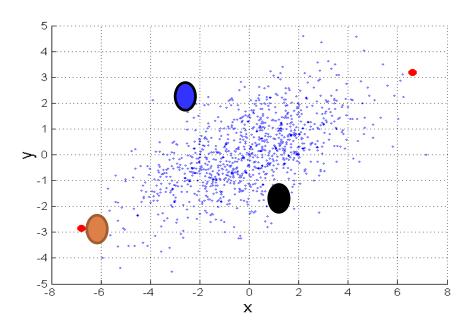
原因:不同特征的度量标准之间存在差异而导致判断出错

- ▶以克(g)为单位测量人的体重,数据分布比较分散,即方差大,
- ▶以厘米为单位来测量人的身高,数据分布就相对集中,方差小

马氏距离把方差归一化,使得特征之间的关系更加符合实际情况

- □数据的距离度量
 - □马氏距离:数据的协方差距离
 - 欧氏距离的扩展,考虑到各种特性之间的联系(协方差)

$$s(p-q)=(p-q)\Sigma^{-1}(p-q)^{T}$$



Σ 是总体样本 Χ的协方差矩阵

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

- ▶ 确定未知样本集与己知样本集的相似度
- ▶ 它考虑了数据集的相关性,并 且是比例不变的

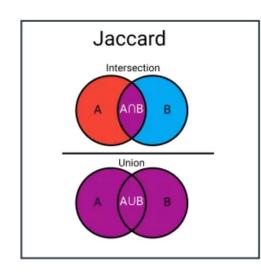
红色的数据点, 欧氏距离为14.7, 马氏距离为6

- □数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数
 - □ 离散数据,属性的取值表示为0或1
 - □ 例:数据p和q,定义如下4个变量
 - F01: p为0、q为1的属性数量
 - F10: p为1、q为0的属性数量
 - F00: p为0、q为0的属性数量
 - F11: p为1、q为1的属性数量

SMC = number of matches / number of attributes

$$= (F11 + F00) / (F01 + F10 + F11 + F00)$$

p = (10000000000)q = (0000001001)



Jaccard = number of F11 matches / number of non-zero attributes = (F11) / (F01 + F10 + F11)

□数据的相似度计算

□ 简单匹配 Simple Matching VS Jaccard相关系数

假设:存在该属性为1,不存在该属性为0 p和q是否相关?

p = (1000000000)

q = (0000001001)

F01 = 2 (p为0, q为1的属性数量)

F10 = 1 (p为1, q为0的属性数量)

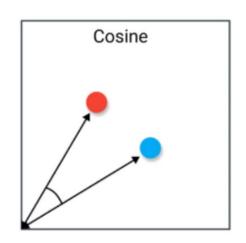
F00 = 7 (p为0, q为0的属性数量)

F11 = 0 (p为1, q为1的属性数量)

SMC = (F11 + F00) / (F01 + F10 + F11 + F00)= (0+7) / (2+1+0+7) = 0.7Jaccard = $(F_{11}) / (F_{01} + F_{10} + F_{11}) = 0 / (2 + 1 + 0) = 0$

- □数据的相似度计算
 - □ 余弦相似性 (Cosine Similarity)

$$\cos(heta) = rac{A \cdot B}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} imes \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}.$$



□ 例: A=

$$A = 3205000200$$
 $B = 1000000102$

$$A \bullet B = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$| |A| | = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$| |B| | = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(A, B) = 0.3150$$

思考: 余弦相似度是不是一种距离?