

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

数据科学导论 Introduction to Data Science

第二章 数据分析

黄振亚, 陈恩红

Email: huangzhy@ustc.edu.cn, cheneh@ustc.edu.cn

课程主页:

http://staff.ustc.edu.cn/~huangzhy/Course/DS2025.html

10/21/2025

回顾:数据分析基础

2

□数据采集

□数据预处理

□特征工程

Data Collection

Data Preprocessing

Feature Engineering

数据预处理

3

- □大数据环境下的数据特点
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清洗
 - □数据集成
 - □数据变换
 - □数据规约

数据预处理

22

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

- □数据集成
 - 口将多个数据源的数据整合到一个一致的数据存储中
- □数据集成的目标
 - □获得更多的数据
 - □获得更完整的数据
 - □ 获得更全面的数据画像,如用户画像
- □ 例: 电商推荐-需求
 - □用户的购物记录:淘宝,美团,拼多多等
 - □用户的社交网络:微博,facebook等
 - □ 用户的视频记录: 爱奇艺, 抖音等

- 数据集成
 - □将多个数据源的数据整合到一个一致的数据存储中
 - □集成数据(库)时,经常出现冗余数据
 - 冗余数据带来的问题: 浪费存储、重复计算
 - ■冗余的属性
 - ■冗余的样本
 - □ 例如:
 - ■用户的电商记录出现在很多app中
 - ■用户的个人信息在多个app中
 - 0 0 0

数据预处理:

25

- □检测冗余属性
 - □分析属性之间的相关性
 - □相关性分析检测冗余

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

字段	说明	示例
ID_LAT_LON_YE AR_WEEK	地点、时间	ID0.510_29.290_2019_00
year	年份	2019
latitude	维度	-0.51

输入 78种字段

Pearson积矩相关系数,取值范围为 [-1; 1]

➤值大于 0,则属性 A 和 B 是正相关的,值越大相关性越强

因此,表明两个属性中有一个可以作为冗余删除

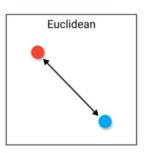
- ▶值为 0,则A和B是独立的,它们不存在相关性
- ▶值小于 0,则 A和 B是负相关的。
- □ 卡方检验: 值越大, 两个变量相关的可能性越大

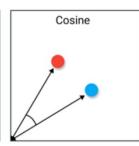
$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})}{e_{ij}}$$

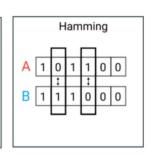
卡方检验: oij 是联合事件 (Ai; Bj) 的观测频度(即实际计数),而 eij 是 (Ai; Bj)的期望频度。卡方检验的原假设是 A和 B两个属性相互独立,如果可以拒绝该原假设,则我们说 A和 B是显著相关的。

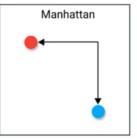
□检测冗余样本

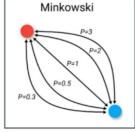
- □ 思想: 数据样本之间的相关性,数据融合、去除冗余
- □ 方法: 距离度量
 - ■欧几里得距离
 - ■汉明距离
 - ■明氏距离
 - ■马氏距离
 - **.....**
- □ 方法: 相似度计算
 - 余弦相似度
 - Jaccard相似度
 -

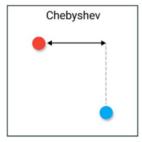


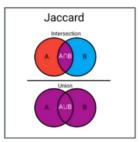


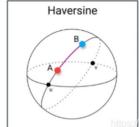


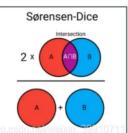












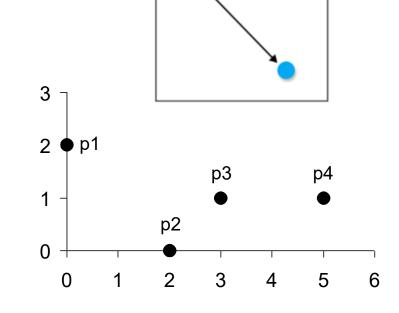
27

- □数据的距离度量
 - □ 欧几里得距离(Euclidean Distance)

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

n表示数据p和q维度数 p_k和 q_k表示数据p和q的第k个属性

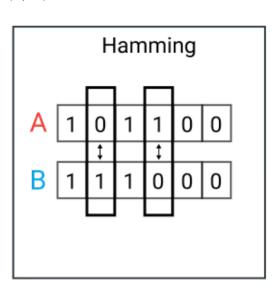
	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p 4	5.099	3.162	2	0



Euclidean

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

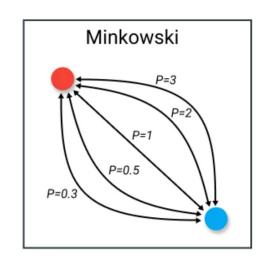
- □数据的距离度量
 - □ 汉明距离(Hamming Distance)
 - □ 定义: 两个向量之间不同值的个数
 - ■字符串比较:比较两个相同长度的二进制字符串
 - □ 要求: 向量长度相同
 - □常用: HASH场景



Defu Lian, Haoyu Wang, **Enhong Chen,** Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. **WWW 2020**.

- □数据的距离度量
 - □明氏距离(Minkowski Distance)
 - ■距离度量:通用表达形式

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$



r是参数

n 表示数据p和q维度数, p_k 和 q_k 表示数据p和q的第k个属性

□ r=1: 曼哈顿距离

□ r=2: 欧氏距离

□ r=∞: 切比雪夫距离

- □ 马氏距离 vs 欧氏距离
 - □ **假设:** 以厘米为单位测量人的身高,以克(g)为单位测量人的体重。每个人被表示为一个两维向量。如:一个人身高173cm,体重50000g,表示为(173,50000),根据身高体重来判断人的体型的相似程度
 - □ **己知:** 小明(160,60000); 小王(160,59000); 小李(170,60000) 。小明与谁的体型更相似?

分析:根据常识可以知道小明和小王体型相似。但是如果根据**欧氏距离**来判断,小明和小王的距离要远大于小明和小李之间的距离,即小明和小李体型相似

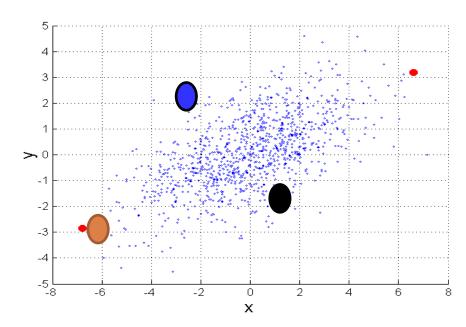
原因:不同特征的度量标准之间存在差异而导致判断出错

- ▶以克(g)为单位测量人的体重,数据分布比较分散,即方差大,
- ▶以厘米为单位来测量人的身高,数据分布就相对集中,方差小

马氏距离把方差归一化,使得特征之间的关系更加符合实际情况

- □数据的距离度量
 - □马氏距离:数据的协方差距离
 - 欧氏距离的扩展,考虑到各种特性之间的联系(协方差)

$$s(p-q)=(p-q)\Sigma^{-1}(p-q)^{T}$$



Σ 是总体样本 Χ的协方差矩阵

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

- ▶ 确定未知样本集与己知样本集的相似度
- ▶ 它考虑了数据集的相关性,并 且是比例不变的

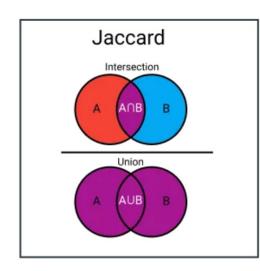
红色的数据点, 欧氏距离为14.7, 马氏距离为6

- □数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数
 - □ 离散数据,属性的取值表示为0或1
 - □ 例:数据p和q,定义如下4个变量
 - F01: p为0、q为1的属性数量
 - F10: p为1、q为0的属性数量
 - F00: p为0、q为0的属性数量
 - F11: p为1、q为1的属性数量

SMC = number of matches / number of attributes

$$= (F11 + F00) / (F01 + F10 + F11 + F00)$$

p = (10000000000)q = (0000001001)



Jaccard = number of F11 matches / number of non-zero attributes

$$= (F11) / (F01 + F10 + F11)$$

- □数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数

p和q是否相关?

假设:存在该属性为1,不存在该属性为0

$$p = (1000000000)$$

q = (000001001)

F01=2 (p为0, q为1的属性数量)

F10=1 (p为1, q为0的属性数量)

F00=7 (p为0, q为0的属性数量)

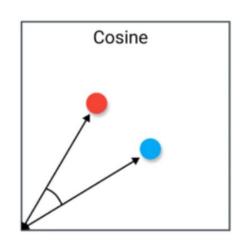
F11 = 0 (p为1, q为1的属性数量)

SMC =
$$(F11 + F00) / (F01 + F10 + F11 + F00)$$

= $(0+7) / (2+1+0+7) = 0.7$
Jaccard = $(F_{11}) / (F_{01} + F_{10} + F_{11}) = 0 / (2+1+0) = 0$

- □数据的相似度计算
 - □ 余弦相似性 (Cosine Similarity)

$$\cos(heta) = rac{A \cdot B}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} imes \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}.$$



□ 例:

$$A = 3205000200$$
 $B = 1000000102$

$$A \bullet B = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||A|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

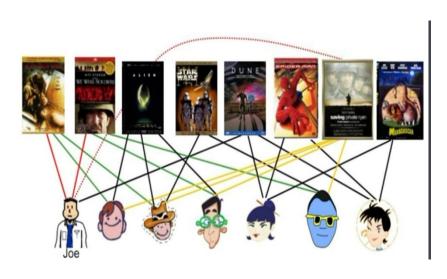
$$||B|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

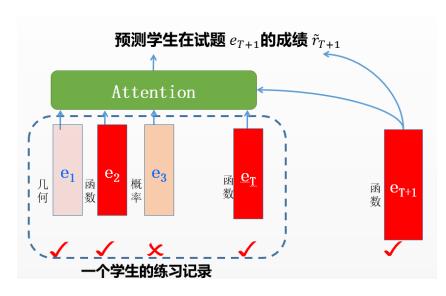
$$\cos(A, B) = 0.3150$$

思考: 余弦相似度是不是一种距离?

35

- □数据的相似度计算
 - □余弦相似度 (Cosine Similarity)
 - ■推荐系统中,协同过滤算法(UCF, ICF)—经典算法
 - ■用户(向量)的相似度度量,产品(向量)的相似度度量
 - ■深度学习中,训练Attention(注意力机制)的权重
 - ■基于注意力机制的学生成绩预测模型





- □数据的相关性分析
 - □ Pearson相关系数
 - 衡量两个数据对象之间的线性关系
 - ■数据标准化
 - □可以简单理解为: p和q的协方差/(p的标准差*q的标准差)

$$p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$$

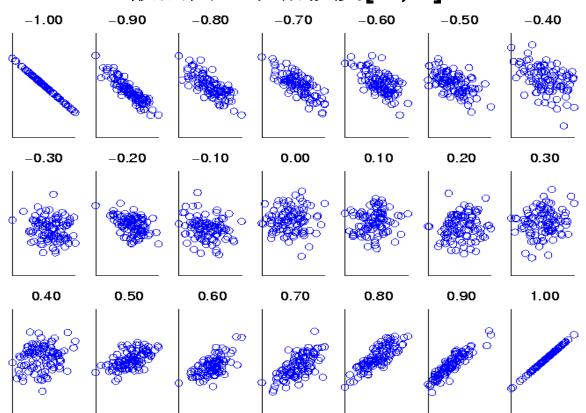
$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017

37

- □数据的相关性
 - □ Pearson相关系数: 衡量数据对象之间的线性关系

散点图显示相似度[-1, 1]



- □数据的相关性分析
 - □ Pearson相关系数: 衡量数据对象之间的线性关系
- □ 例:问: X与Y有没有关系?
 - \square X = (-3, -2, -1, 0, 1, 2, 3)
 - \square Y = (9, 4, 1, 0, 1, 4, 9)

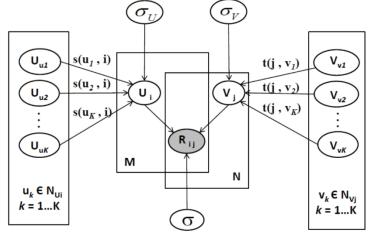
 $p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$

- □ Mean(X) = 0, Mean(Y) = 4
- Correlation=?
 - = (-3)(5) + (-2)(0) + (-1)(-3) + (0)(-4) + (1)(-3) + (2)(0) + 3(5) = 0

- □数据的相关性分析
 - □ 有时,不同的属性产生的影响不同
 - □ 在计算距离,相似度时,可以赋予数据属性的权重不同(w_k)

similarity(
$$\mathbf{x}, \mathbf{y}$$
) =
$$\frac{\sum_{k=1}^{n} w_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$$

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$



Le Wu, Enhong Chen, Qi Liu, Leveraging Tagging for Neighborhood-aware Probabilistic Matrix Factorization. CIKM2012

- □数据的相关性分析
- □ 练习题1: 给定数据x和y, 计算指定的相似性或距离
 - □余弦相似度、pearson相关度、欧几里得距离、Jaccard
- > 己知: X = (0, 1, 0, 1), Y = (1, 0, 1, 0)
- ▶ 问:分析X和Y的相关性

$$\cos(heta) = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} imes \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}. \qquad p_{X,Y} = rac{\sum\limits_{i=1}^{n} (X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum\limits_{i=1}^{n} (X_i - ilde{X})^2 \sum\limits_{i=1}^{n} (Y_i - ilde{Y})^2}}$$

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$
 $J = (F11) / (F01 + F10 + F11)$

数据的相关性分析

- □无序数据:每个数据样本的不同维度是没有顺序关系的
 - □余弦相似度、相关度、欧几里得距离、Jaccard
- □有序数据:对应的不同维度(如特征)是有顺序(rank)要求的
 - □ 在信息检索中,如何判断不同检索方法返回的页面序列的优劣
 - □ 在推荐系统中,如何判断不同推荐序列的好坏
 - Spearman Rank(斯皮尔曼等级)相关系数
 - 归一化的折损累计增益(NDCG)
 - 肯德尔相关性系数
 - kendall correlation coefficient
- □课外阅读: PageRank算法

· — /	
·-	相关度
1	3
2	3
3	2
4	0
5	1
6	2

	, /u/J				
i	相关度				
1	3				
2	3				
3	2				
4	2				
5	1				
6	0 /				
早冷	→ <i>L</i> -1: HI				

方法返回结果

真实结果

数据的相关性分析—举例

- □已知: 6个网页的相关度是3,2,3,0,1,2,所以在信息检索 中,最好的返回结果应当如(a)所示。
- □如果我们设计了两个检索算法,返回结果分别是(b)和(c), 哪个方法的结果与真实结果更相似?

i	相		i	相		i	相	
	关			关			关	
	相 关 度			 关 度			相关度	
1	3		1	3		1	3	
2	3		2	3		2	3	
3	2		3	0		3	2	
4	2		4	2		4	0	
5	1		5	2		5	2	
6	0		6	1		6	1	
(a)真多	Ç结果	(b)	 方法1	返回	结果 (c)方法2	返回	结果

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数
 - 比较两组变量的相关程度
 - 当关系是非线性时,它是两个变量之间关系评价的更好指标

$$\rho_S = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- ρ_s : 表示斯皮尔曼相关系数
- d_i^2 :表示每一对样本之间等级的差
- *n*:表示样本容量
- ρ_s 的范围: -1 to 1 (正相关: $\rho_s > 0$,负相关: $\rho_s < 0$,不相关: $\rho_s = 0$)

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数

$$\Box$$
 X = (a, b, c, d, e, f)

$$\Box$$
 Y = (c, a, e, d, f, b)

$$d_i = Y_i - X_i$$

$$d_i^2 = (4, 1, 4, 0, 1, 16)$$

$$\rho_{S} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2}-1)}$$

$$\rho = 1 - \frac{6(26)}{6(36-1)} \approx 1 - 0.743 = 0.257$$

数据的相关性分析—课后思考

□ Spearman Rank相关度与Pearson相关度之间的联系与区别?

$$\rho_{S} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2}-1)}$$

$$p_{X,Y} = \frac{\sum_{i=1}^{n} (X_{i} - \tilde{X})(Y_{i} - \tilde{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \tilde{X})^{2} \sum_{i=1}^{n} (Y_{i} - \tilde{Y})^{2}}}$$

数据的相关性分析—课后思考

Spearman Rank相关度与Pearson相关度之间的联系与区别?

$$\rho_{S} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2} - 1)} \qquad \rho_{X,Y} = \operatorname{corr}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} = \frac{E[(X - \mu_{X})(Y - \mu_{Y})]}{\sigma_{X} \sigma_{Y}}$$

$$\rho_{S} = \frac{\sum_{i=1}^{N} (R_{i} - \bar{R})(S_{i} - \bar{S})}{\left[\sum_{i=1}^{N} (R_{i} - \bar{R})^{2} \sum_{i=1}^{N} (S_{i} - \bar{S})^{2}\right]^{\frac{1}{2}}}$$

$$\rho_{S} = \frac{\sum_{i=1}^{N} (R_{i} - \bar{R})(S_{i} - \bar{S})}{\left[\sum_{i=1}^{N} (R_{i} - \bar{R})^{2} \sum_{i=1}^{N} (S_{i} - \bar{S})^{2}\right]^{\frac{1}{2}}} \qquad p_{X,Y} = \frac{\sum_{i=1}^{n} (X_{i} - \tilde{X})(Y_{i} - \tilde{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \tilde{X})^{2} \sum_{i=1}^{n} (Y_{i} - \tilde{Y})^{2}}}$$

斯皮尔曼相关系数被定义成等级数据变量 (rank/order variables)之间的皮尔逊相关系数

数据预处理:数据集成 $\rho_s = 1 - \frac{6 \sum d_i^2}{n(n^2-1)}$

$$\rho_{S} = 1 - \frac{6\sum d_{i}^{2}}{n(n^{2}-1)}$$

数据的相关性分析——练习题2 (计算Spearman)

- □已知6个网页的相关度是3,2,3,0,1,2,所以在信息检索中 最好的返回结果应当如(a)所示。如果我们设计了两个检索算 法,返回结果分别是(b)和(c),
- □请问:哪个方法的结果与真实结果更相似?

i	相关度	i	相关度	i	相关度	只考虑了每个位置
1	3	1	3	1	3	的数据与真实数据 的顺序差异,但是
2	3	2	3	2	3	, 没有考虑到不同位 ————————————————————————————————————
3	2	3	0	3	2	置(position)的重要
4	2	4	2	4	0	性差异
5	1	5	2	5	2	
6	0	6	1	6	1	

(a)真实结果

(b)方法1返回结果

(c)方法2返回结果

- □ **NDCG: 有序数据的度量**(信息检索、推荐系统等) Normalized Discounted cumulative gain
 - □ G(增益): 每个结果的相关度
 - \square CG(累计增益): 所有 (k) 结果的累计增益 $CG@K = \sum_{i=1}^{K} rel_i$
 - □ DCG (折损累计增益):引入折损因子,对每一个结果相关性进行位置折损后累计。排名靠前的结果更重要!

$$DCG@K = \sum_{i=1}^{K} \frac{rel_i}{\log_2(i+1)}$$
 $DCG@K = \sum_{i=1}^{K} \frac{2^{rel-i}-1}{\log_2(i+1)}$

■ i是结果的位置,i越大,表示该结果的结果列表排名越靠后,结果 列表越差,DCG越小

Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)

- □ NDCG: 有序数据的度量(信息检索、推荐系统等) Normalized Discounted cumulative gain
 - □ 不同结果列表的数量不一致(如,由于搜索结果随着检索词的不同,返回的数量不一致),需要标准化(Normalized)处理:

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

- □ IDCG为理想(ideal)情况下最大的DCG值,即最好结果列表的 DCG分数
 - ■某一用户返回的最好推荐结果列表
 - ■真实的数据序列

数据预处理:数据集成 $NDCG@K = \frac{DCG@K}{IDCG@K}$

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

- 例,假设一个推荐系统为用户推荐了3部电影,顺序为A,B,C, 用户实际对这三部电影的偏好为B>A>C, 假定A, B, C三部电影 的相关性分数分别为2,3,1,那么对于系统返回的结果有:
 - CG@3 = 2 + 3 + 1 = 6
 - DCG@3 = 3 + 4.42 + 0.5 = 7.92

$$CG_k = \sum_{i=1}^k rel_i$$

- □理想情况下,系统给出的电影排序应该为B,A,C
 - \blacksquare IDCG@3 = 7 + 1.89 + 0.5 = 9.39
- □可以计算NDCG@3
 - NDCG@3 = 7.92 / 9.39 = 0.84

DCG@K =	•	$2^{rel-i}-1$	
DCG@K —	$\angle_{i=1}$	$\log_2(i+1)$	

i	movie	rel	$2^{rel_i}-1$
			$log_2(i + 1)$
1	A	2	3
2	В	3	4.42
3	С	1	0.5

方法返回结果

i	movie	rel	$\frac{2^{rel_i}-1}{log_2(i+1)}$
1	В	3	7
2	Α	2	1.89
3	С	1	0.5

真实结果

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

51

- □ 例,假设搜索返回的6个物品,其相关性分别是 3、2、3、0、1、2
 - CG@6 = 3+2+3+0+1+2
 - DCG@6 = 7+1.89+3.5+0+0.39+1.07 = 13.85
 - □ 假如用户真实选择了8个物品,除了上面的6个,还有2个物品, 第7个相关性为3,第8个相关性为0。那么在理想情况下的相关性 分数排序应该是
 - **3**, 3, 3, 2, 2, 1, 0, 0.
 - □ 计算IDCG@6:
 - \blacksquare IDCG = 7+4.42+3.5+1.29+1.16+0.36 = 17.73
 - □ 可以计算NDCG@6:
 - NDCG@6 = 13.85/17.73 = 0.78

$$CG_k = \sum_{i=1}^k rel_i$$
 $DCG_k = \sum_{i=1}^k \frac{2^{rel_{i-1}}}{log_2(i+1)}$

i	rel
1	3
2	2
3	3
4	0
5	1
6	2

i	rel
1	3
2	3
3	3
4	2
5	2
6	1

方法返回结果

真实结果

课堂练习:数据集成

- NDCG的用途相当广泛
 - □两个列表的相关性
 - □ 冗余数据的相关性
 - □ 搜索引擎:评价搜索结果的优劣
 - □ 推荐系统: 评价推荐结果的好坏
 - □ 大模型Agent: 工具调用的好坏

课堂练习:数据集成

 $CG_k = \sum_{i=1}^k rel_i$

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_{i-1}}}{\log_2(i+1)}$$

53

数据相关性分析——练习题3

 $NDCG_k = \frac{DCG_k}{IDCG_k}$

□ 已知6个网页的相关度是3,2,3,0,1,2,所以在信息检索中,最好的返回结果应当如(a)所示。如果我们设计了两个检索算法,它们的返回结果分别是(b)和(c),请问哪个方法的结果与真实结果更相似(根据**NDCG的计算结果**)。

i	相关度	
1	3	
2		
3	3	
4	2	
4 5	1	
6	0	

i	相关度
1	3
2	3
3	0 2
4	2
5	2
6	1

<u> </u>	- -
i	相关度
1	3
2	3
3	2
4	0 2
5	2
6	1

可以只列出计 算公式,不用 给出计算结果

- **0.9746**
- 0.9889

(b)方法1返回结果

(c)方法2返回结果

课后阅读

- □Defu Lian, Haoyu Wang, Enhong Chen, Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. WWW 2020.
- □Qi Liu, Zhenya Huang, Enhong Chen,, EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction, TKDE
- □Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017
- □Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)
- □信息检索经典研究: PageRank算法