

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

新媒体大数据分析 New Media Big Data Analysis

第二章 数据分析

黄振亚, 朱孟潇, 张凯

课程主页:

http://staff.ustc.edu.cn/~huangzhy/Course/NM2025.html

助教: 齐畅, 朱家骏 bigdata 2025@163.com

10/13/2025

数据预处理

21

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

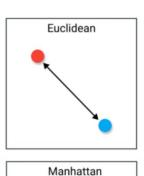
- **22**
- □数据集成
 - 口将多个数据源的数据整合到一个一致的数据存储中
- □数据集成的目标
 - □获得更多的数据
 - □获得更完整的数据
 - □ 获得更全面的数据画像,如用户画像
- □ 例: 要求电商推荐
 - □用户的购物记录:淘宝,美团,拼多多等
 - □用户的社交网络:微博,facebook等
 - □ 用户的视频记录: 爱奇艺, 抖音等

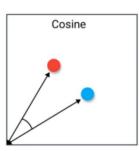
□数据集成

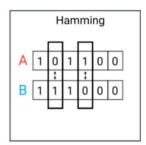
- □将多个数据源的数据整合到一个一致的数据存储中
- □集成数据(库)时,经常出现**冗余数据**
 - 冗余数据带来的问题: 浪费存储、重复计算
 - ■冗余的属性
 - ■冗余的样本
- □ 例如:
 - ■用户的电商记录出现在很多app中
 - ■用户的个人信息在多个app中
 - 0 0 0

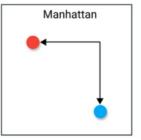
□检测冗余

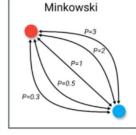
- □ 思想:数据样本(属性)之间的相关性,数据融合、去除冗余
- □ 方法: 距离度量
 - ■欧几里得距离
 - ■曼哈顿距离
 - ■汉明距离
 - ■明氏距离
 - **.....**
- □ 方法: 相似度计算
 - 余弦相似度
 - Jaccard相似度
 -

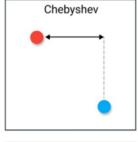


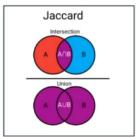


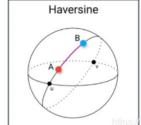


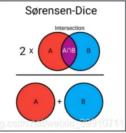






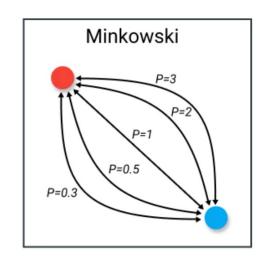






- □数据的距离度量
 - □明氏距离(Minkowski Distance)
 - ■距离度量:通用表达形式

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$



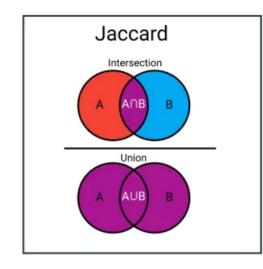
- r是参数
- n 表示数据p和q维度数, p_k 和 q_k 表示数据p和q的第k个属性
- □ r=1: 曼哈顿距离
- □ r=2: 欧氏距离
- □ r=∞: 切比雪夫距离

- 数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数
 - □ 离散数据,属性的取值表示为0或1
 - □ 例: 数据p和q, 定义如下4个变量
 - F01: p为0, q为1的属性数量
 - F10: p为1, q为0的属性数量
 - F00: p为0, q为0的属性数量
 - F11: p为1, q为1的属性数量

SMC = number of matches / number of attributes

$$= (F11 + F00) / (F01 + F10 + F11 + F00)$$

Jaccard = F11属性数量/ 非0属性数量 = (F11) / (F01 + F10 + F11)



- □数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数

p和q是否相关?

假设:存在该属性为1,不存在该属性为0

$$p = (1000000000)$$

q = (000001001)

F01 = 2 (p为0, q为1的属性数量)

F10=1 (p为1, q为0的属性数量)

F00 = 7 (p为0, q为0的属性数量)

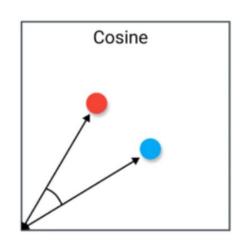
F11 = 0 (p为1, q为1的属性数量)

SMC =
$$(F11 + F00) / (F01 + F10 + F11 + F00)$$

= $(0+7) / (2+1+0+7) = 0.7$
Jaccard = $(F_{11}) / (F_{01} + F_{10} + F_{11}) = 0 / (2+1+0) = 0$

- □数据的相似度计算
 - □ 余弦相似性 (Cosine Similarity)

$$\cos(heta) = rac{A \cdot B}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} imes \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}.$$



□ 例:

$$A = 3205000200$$

 $B = 1000000102$

$$A \bullet B = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$| |A| | = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

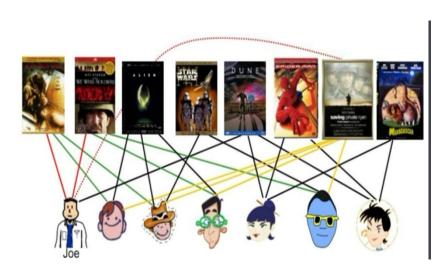
$$| |B| | = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

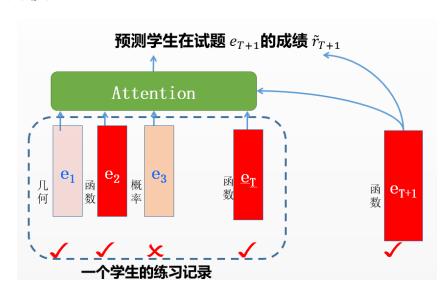
$$\cos(A, B) = 0.3150$$

思考: 余弦相似度是不是一种距离?

33

- □数据的相似度计算
 - □余弦相似度 (Cosine Similarity)
 - ■推荐系统中,协同过滤算法(UCF, ICF)—经典算法
 - ■用户(向量)的相似度度量,产品(向量)的相似度度量
 - ■深度学习中,训练Attention(注意力机制)的权重
 - ■基于注意力机制的学生成绩预测模型





- □数据的相关性分析
 - □ Pearson相关系数
 - 衡量两个数据对象之间的线性关系
 - ■数据标准化

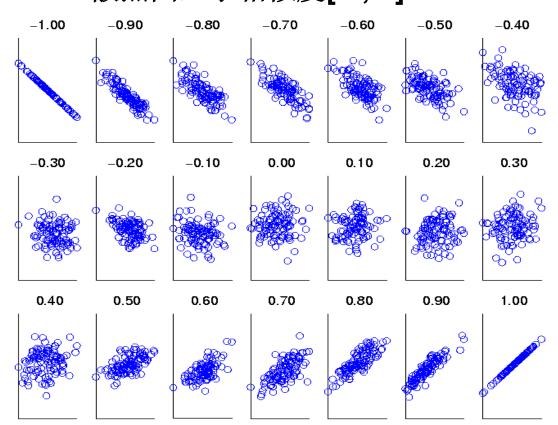
$$p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$$

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017

35

- 数据的相关性
 - □ Pearson相关系数: 衡量数据对象之间的线性关系 散点图显示相似度[-1, 1]



- □数据的相关性分析
 - □ Pearson相关系数: 衡量数据对象之间的线性关系
- □ 例:问: X与Y有没有关系?
 - \square X = (-3, -2, -1, 0, 1, 2, 3)
 - \square Y = (9, 4, 1, 0, 1, 4, 9)

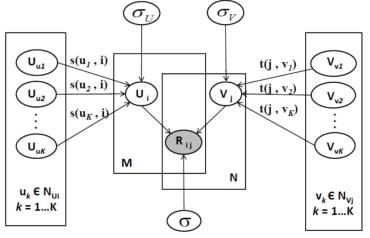
 $p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$

- □ Mean(X) = 0, Mean(Y) = 4
- Correlation=?
 - = (-3)(5) + (-2)(0) + (-1)(-3) + (0)(-4) + (1)(-3) + (2)(0) + 3(5) = 0

- □数据的相关性分析
 - □ 有时,不同的属性产生的影响不同
 - □ 在计算距离,相似度时,可以赋予数据属性的权重不同(w_k)

similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{\sum_{k=1}^{n} w_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$



Le Wu, Enhong Chen, Qi Liu, Leveraging Tagging for Neighborhood-aware Probabilistic Matrix Factorization. CIKM2012

数据的相关性分析

- □ 无序数据: 每个数据样本的不同维度是没有顺序关系的
 - □ 余弦相似度、相关度、欧几里得距离、Jaccard
- □ 有序数据:对应的不同维度(如特征)是有顺序(rank)要求的
 - □ 在信息检索中,如何判断不同检索方法返回的页面序列的优劣
 - □ 在推荐系统中,如何判断不同推荐序列的好坏
 - Spearman Rank(斯皮尔曼等级)相关系数
 - 归一化的折损累计增益(NDCG)
 - 肯德尔相关性系数
 - kendall correlation coefficient
- □ 课外阅读: PageRank算法

i	相关度
1	3
2	3
3	2
4	0
5	1
6	2

i	相关度
1	3
2	3
3	2
4	2
5	1
6	0 /
上 点	ナル土田

方法返回结果

真实结果

数据的相关性分析—举例

- □ 已知: 6个网页的相关度是3, 2, 3, 0, 1, 2, 所以在信息检 索中,最好的返回结果应当如(a)所示。
- □ 如果我们设计了两个检索算法,返回结果分别是(b)和(c),请 问哪个方法的结果与真实结果更相似?

									_
	i	相关度		i	相关度		i	相关度	
	1	3		1	3		1	3	
_	2	3		2	3		2	3	
	3	2		3	0		3	2	
	4	2		4	2		4	0	
	5	1		5	2		5	2	
	6	0		6	1		6	1	
(:		[结果	(b)	 方法1	返回	· 结果 (c)	 方法2	返回	结果

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数
 - 比较两组变量的相关程度
 - 当关系是非线性时,它是两个变量之间关系评价的更好指标

$$\rho_S = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$

- ρ_s : 表示斯皮尔曼相关系数
- *n*:表示样本容量
- ρ_s 的范围: -1 to 1 (正相关: $\rho_s > 0$,负相关: $\rho_s < 0$,不相关: $\rho_s = 0$)

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数

$$\Box$$
 X = (a, b, c, d, e, f)

$$\Box$$
 Y = (c, a, e, d, f, b)

$$d_i = Y_i - X_i$$

$$d_i^2 = (4, 1, 4, 0, 1, 16)$$

$$\rho_{S} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2}-1)}$$

$$\rho = 1 - \frac{6(26)}{6(36-1)} \approx 1 - 0.743 = 0.257$$

数据的相关性分析—课后思考

□ Spearman Rank相关度与Pearson相关度之间的联系与区别?

$$\rho_{S} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2}-1)}$$

$$p_{X,Y} = \frac{\sum_{i=1}^{n} (X_{i} - \tilde{X})(Y_{i} - \tilde{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \tilde{X})^{2} \sum_{i=1}^{n} (Y_{i} - \tilde{Y})^{2}}}$$

数据预处理:数据集成 $\rho_s = 1 - \frac{6 \sum d_i^2}{n(n^2-1)}$

$$\rho_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

数据的相关性分析——练习题2 (计算Spearman)

- □ 已知6个网页的相关度是3,2,3,0,1,2,所以在信息检索 中,最好的返回结果应当如(a)所示。如果我们设计了两个检 索算法,返回结果分别是(b)和(c),
- □ 请问: 哪个方法的结果与真实结果更相似?

		i	相关度		i	相关度		i	相关度	只考虑了每个位置
		1	3		1	3		1	3	的数据与真实数据 的顺序差异,但是
		2	3		2	3		2	3	· 没有考虑到不同位 - 没有考虑到不同位
		3	2		3	0		3	2	置(position)的重要
		4	2		4	2		4	0	性差异
l		5	1		5	2		5	2	•
		6	0		6	1		6	1	
	(7.早%	ア4年田	l asi	<u>~</u> >+.4.		计用 ()-	—————————————————————————————————————) <u> </u>	H

(a)具头结果

(b)万法1返回结果

(c)万法2返回结果

- □ NDCG: 有序数据的度量(信息检索、推荐系统等) Normalized Discounted cumulative gain
 - □ G(增益): 每个结果的相关度
 - \square CG(累计增益): 所有 (k) 结果的累计增益 $CG@K = \sum_{i=1}^{K} rel_i$
 - □ DCG (折损累计增益):引入折损因子,对每一个结果相关性进行位置折损后累计。排名靠前的结果更重要!

$$DCG@K = \sum_{i=1}^{K} \frac{rel_i}{\log_2(i+1)}$$
 $DCG@K = \sum_{i=1}^{K} \frac{2^{rel-i}-1}{\log_2(i+1)}$

■ i是结果的位置,i越大,表示该结果的结果列表排名越靠后,结果 列表越差,DCG越小

Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)

- □ NDCG: 有序数据的度量(信息检索、推荐系统等) Normalized Discounted cumulative gain
 - □不同结果列表的数量不一致(如,由于搜索结果随着检索词的不 同,返回的数量不一致),需要标准化(Normalized)处理:

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

- □ IDCG为理想(ideal)情况下最大的DCG值,即最好结果列表的 DCG分数
 - ■某一用户返回的最好推荐结果列表
 - ■真实的数据序列

数据预处理:数据集成 $NDCG@K = \frac{DCG@K}{IDCG@K}$

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

- 例,假设一个推荐系统为用户推荐了3部电影,顺序为A,B,C, 用户实际对这三部电影的偏好为B > A > C,假定A, B, C三部电影 的相关性分数分别为2,3,1,那么对于系统返回的结果有:
 - CG@3 = 2 + 3 + 1 = 6
 - DCG@3 = 3 + 4.42 + 0.5 = 7.92

$$CG_k = \sum_{i=1}^k rel_i$$

- □理想情况下,系统给出的电影排序应该为B,A,C
 - \blacksquare IDCG@3 = 7 + 1.89 + 0.5 = 9.39
- □可以计算NDCG@3
 - NDCG@3 = 7.92 / 9.39 = 0.84

DCG@K =	•	$2^{rel-i}-1$
DCG@K =	$\angle_{i=1}$	$\overline{\log_2(i+1)}$

i	movie	rel	$2^{rel_i}-1$
			$log_2(i + 1)$
1	A	2	3
2	В	3	4.42
3	С	1	0.5

方法返回结果

i	movie	rel	$\frac{2^{rel_i}-1}{log_2(i+1)}$
1	В	3	7
2	Α	2	1.89
3	С	1	0.5

真实结果

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

49

- □ 例,假设搜索返回的6个物品,其相关性分别是 3、2、3、0、1、2
 - CG@6 = 3+2+3+0+1+2
 - DCG@6 = 7+1.89+3.5+0+0.39+1.07 = 13.85
 - □ 假如用户真实选择了8个物品,除了上面的6个,还有2个物品, 第7个相关性为3,第8个相关性为0。那么在理想情况下的相关性 分数排序应该是
 - **3**, 3, 3, 2, 2, 1, 0, 0.
 - □ 计算IDCG@6:
 - \blacksquare IDCG = 7+4.42+3.5+1.29+1.16+0.36 = 17.73
 - □ 可以计算NDCG@6:
 - NDCG@6 = 13.85/17.73 = 0.78

$$CG_k = \sum_{i=1}^k rel_i$$
 $DCG_k = \sum_{i=1}^k \frac{2^{rel_{i-1}}}{log_2(i+1)}$

i	rel
1	3
2	2
3	3
4	0
5	1
6	2

i	rel
1	3
2	3
3	3
4	2
5	2
6	1

方法返回结果

真实结果

课堂练习:数据集成

 $CG_k = \sum_{i=1}^k rel_i$

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_{i-1}}}{\log_2(i+1)}$$

50

数据相关性分析——练习题3

 $NDCG_k = \frac{DCG_k}{IDCG_k}$

□ 已知6个网页的相关度是3,2,3,0,1,2,所以在信息检索中,最好的返回结果应当如(a)所示。如果我们设计了两个检索算法,它们的返回结果分别是(b)和(c),请问哪个方法的结果与真实结果更相似(根据**NDCG的计算结果**)。

i	相关度	
1	3	
2	3	
3	3	
4	2	
2 3 4 5	1	
6	0	

i	相关度
1	夏
2	3
3	0
4	2
5	2
6	1

71	<u> </u>
<u>. </u>	相关度
1	3
2	3
2345	2
4	0 2
	2
6	1

可以只列出计 算公式,不用 给出计算结果

- **0.9746**
- 0.9889

(b)方法1返回结果

课堂练习:数据集成

- NDCG的用途相当广泛
 - □两个列表的相关性
 - □ 冗余数据的相关性
 - □ 搜索引擎:评价搜索结果的优劣
 - □ 推荐系统:评价推荐结果的好坏
 - □ 大模型Agent: 工具调用的好坏

52

课后阅读

- □ Defu Lian, Haoyu Wang, Enhong Chen, Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. WWW 2020.
- Qi Liu, Zhenya Huang, Enhong Chen, EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction, TKDE
- Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017
- Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)
- □ PageRank算法