

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

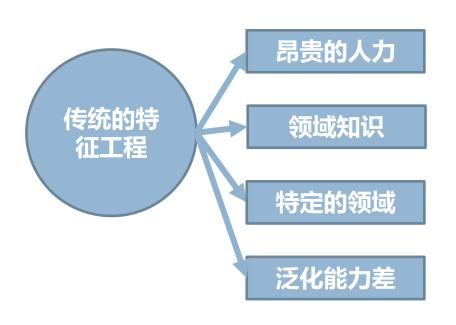
新媒体大数据分析 New Media Big Data Analysis

第二章 数据分析

黄振亚, 朱孟潇, 张凯

课程主页:

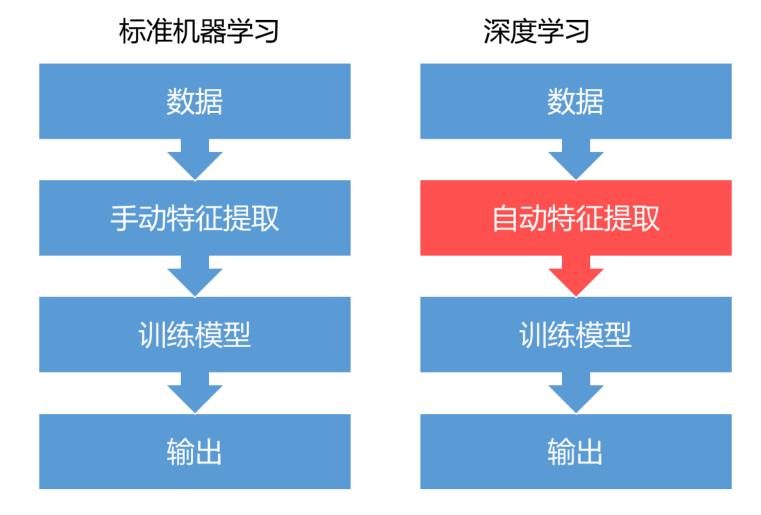
http://staff.ustc.edu.cn/~huangzhy/Course/NM2025.html


助教: 齐畅, 朱家骏 bigdata 2025@163.com

传统特征工程的缺点

29

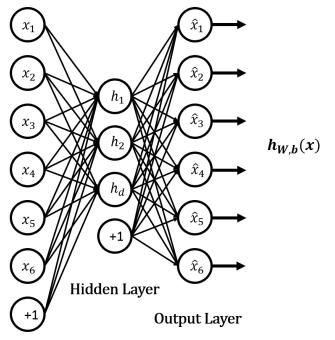
□传统特征工程的缺点



传统特征工程的缺点

30

□传统特征工程的缺点



□特征学习

如何从数据中能够自主的学习特征,在这里我们主要介绍在深度学习中常用的三种网络结构。

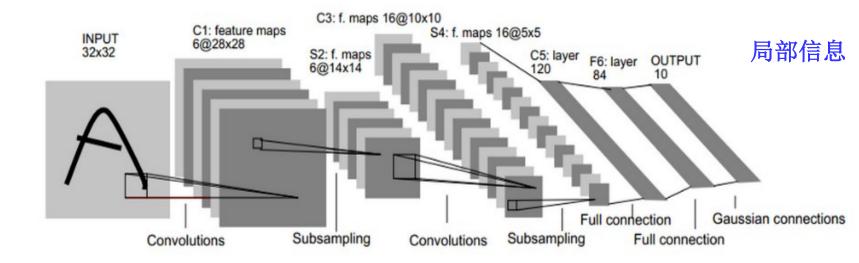
□ 自编码结构(Auto-Encoder)

Input Layer

将数据的特征X作为Input Layer输入同样将原始数据特征X'作为Output Layer的输出来重构出原数据。

Encoder: H = f(A * X + b)

Decoder: X' = f(A' * H + b')


将中间的隐含层H的输出作为学习到的数据特征。

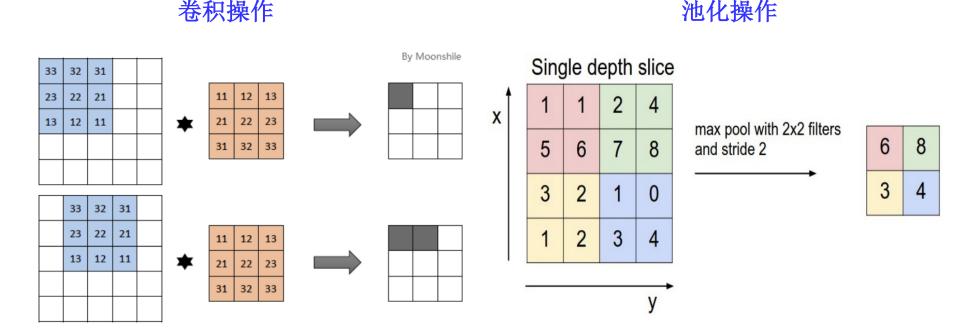
11/5/2025

32

□ 卷积神经网络(CNN): 常用于图像特征提取

LeNet

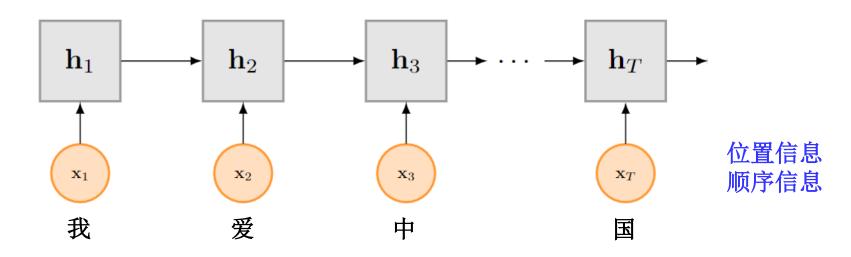
卷积层:通过局部平移,利用不同的卷积核来提取图像中不同的特征


池化层: 计算某个区域的特征,提高模型的泛化能力**全连接层**: 通过多层的神经网络,抽取更高阶的特征。

最终全连接层的输出即为该图像的特征向量表示。

33

□ 卷积神经网络(CNN): 常用于图像特征提取



思考: 卷积神经网络能否用于文本处理? 如何做?

Zhenya Huang, Qi Liu, Enhong Chen, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017

□ 循环神经网络(RNN): 常用于序列数据的特征提取

将序列中的每个数据依次作为RNN的输入,如上图中的文本数据'我'、'爱'、'中'、'国',并将最后一层网络的输出 h_T 作为最终序列数据的特征向量

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, Guoping Hu, EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction, IEEE TKDE), 33(1): 100-115,2021

- □ 利用标准数据集进行特征学习(特征预训练)
 - □作用:模型效果验证&应用问题中的模型预训练
 - □ 图像数据预训练: ImageNet
 - http://www.image-net.org/
 - 1400万张图片数据,2万类别,已标注
 - 常用模型: ResNet, AlexNet, VGG等
 - 常见应用: 图像分类、目标检测、目标定位
 - □ 文本数据预训练: Twitter, Wiki
 - https://nlp.stanford.edu/projects/glove/
 - 2 Billon tweets, 27 Billion 词数,1.2M 词表
 - 常用模型: CBOW, Skip-gram, Glove等Word2 e
 - 常见应用: 文本分类, 文本推理, 翻译等

训练好的特 征即可直接 作为其它模 型的输入来 使用 Efficient estimation of word representations in vector space

<u>T Mikolov, K Chen, G Corrado, J Dean</u> - arXiv preprint arXiv:1301.3781, 2013 - arxiv.org We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing ...

☆ 55 被引用次数: 24421 相关文章 所有 43 个版本 >>>

- □ Word2Vec-自然语言处理的预训练
 - □哪句话更像自然语句

S1: 语言模型的本质是对一段自然语言的文本进行预测概率的大小

S2: 语言模型的本质是对自然一段语言的文本进行预测概率的大小

S3: 语言模型的本质是对自然语言一段的文本进行预测概率的大小

□ 计算词构成句子的概率—最大化

$$P(w_1, w_2, ..., w_n) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) ... P(w_n|w_1, ..., w_{n-1})$$

$$L = \sum_{w \in C} \log P(w|context(w))$$

特征工程:可解释性

Factorization machines

S Rendle - 2010 IEEE International confere In this paper, we introduce Factorization Macombines the advantages of Support Vector SVMs, FMs are a general predictor working

☆ 切 被引用次数: 1862 相关文章

- □特征的含义
 - □人工设计的特征
 - □ 特征的构造基于先验知识,天然具有可解释性

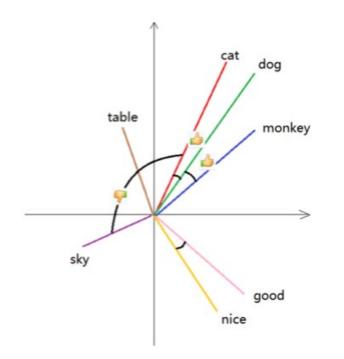
\bigcap	Feature vector x															ſī	arg	et y					
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0	[]		5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X(3)	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	Α	B Us	C		TI	NH	SW Movie	ST		Ot	NH her N	SW fovie	ST s rate	ed"	Time	"	NH .ast l	SW Movie	ST e rate	 ed			

 $S = \{(A, TI, 2010-1, 5), (A, NH, 2010-2, 3), (A, SW, 2010-4, 1), \\ (B, SW, 2009-5, 4), (B, ST, 2009-8, 5), \\ (C, TI, 2009-9, 1), (C, SW, 2009-12, 5)\}$

11/5/2025

特征工程:可解释性

"dog" "canine"


3 399,999

(0)
0
1
0
0
0
0
0
0
1
1
0
1
1
1
1

□ 特征的含义

- □ Word2Vec—自然语言处理的预训练
- □ 学习语言的语义特性:解决"语义鸿沟"

词的相似性

词的类比性

King – Queen ~= Man – Woman China – Beijing ~= UK – London ~= Capital

Efficient estimation of word representations in vector space

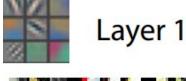
<u>T Mikolov, K Chen, G Corrado, J Dean</u> - arXiv preprint arXiv:1301.3781, 2013 - arxiv.org We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing ...

☆ 59 被引用次数: 24421 相关文章 所有 43 个版本 >>>

特征工程:可解释性

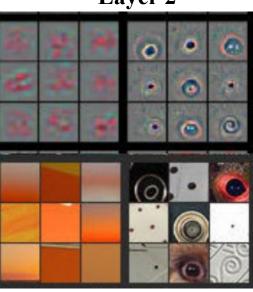
Visualizing and understanding convolutional networks

MD Zeiler, R Fergus - European conference on computer vision, 2014 - Abstract Large Convolutional Network models have recently demonstra classification performance on the ImageNet benchmark Krizhevsky et a is no clear understanding of why they perform so well, or how they might paper we explore both issues. We introduce a novel visualization techn


insight into the function of intermediate feature layers and the operation Used in a diagnostic role, these visualizations allow us to find model are

☆ 卯 被引用次数: 13612 相关文章 所有 18 个版本

□ 特征的含义—可解释性

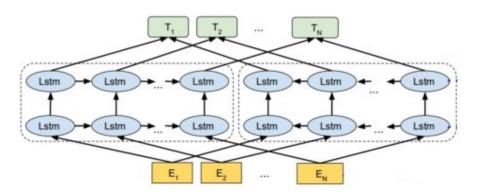

- □ CNN Feature map——特征图可视化
- □ 学习图像的特点:图形图像的"颜色,边角,轮廓,图形"等

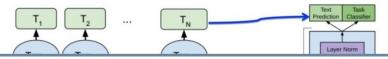
Layer 1

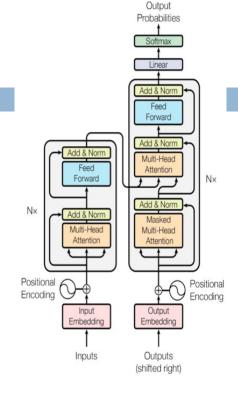
Layer 2

Layer 3

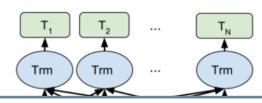
Layer 4



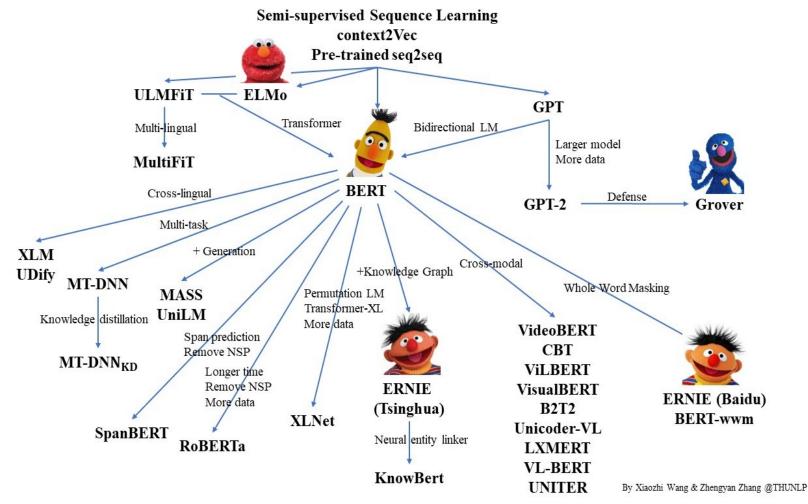

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.


40

- □自然语言处理的预训练模型
 - □ Elmo, GPT, Transformer, BERT



OpenAl GPT


BERT (Ours)

特征学习过程已经不局限于人工的思考、构造、统计等方法。它已经成为一个重要的研究方向,专门的特征学习模型已经在CV、NLP, graph等领域取得重要的突破。

□ 前沿: 自然语言处理的预训练模型

42

□ 前沿: 大语言模型

GPT

无监督预训练,有监督微调

5G文本数据

1.17亿模型参数

在9/12任务上最优,包括问答、语义相似度、文本分类

2018

GPT-2

多任务、零样本学习 (zero-shot)

40G文本数据

15亿模型参数

在7/8任务上最优,包括阅读理解、 翻译、问答

2019

GPT-3

小样本学习 (few-shot)

45T文本数据

1750亿模型参数

在阅读理解任务上超越当时所有 zero-shot模型

2020

GPT-4o

多模态,可处理图像和文本输入

GPT-4的升级版模型,其中"O"是 Omni的缩写,意为"全能"。其在 响应速度、多模态能力、实时交互性 方面较GPT-4能力有极大的提升 GPT-4

多模态,可处理图像和文本输入

在大多数专业和学术考试中表现出人 类水平,且能通过律师资格考试,排 名考生中前10%,相较之下GPT-3.5排名低于后10% ChatGPT (3.5)

基于InstructGPT进行优化

能生成更翔实的回复: 标注数据质量

更高

更擅长连续对话: 源于标注人员标注

的多轮对话数据

捕获人类意图 进一步优化

大规模预训练

模型

2024.5

2023.3

2022,11

2024

43

□ 前沿: 大语言模型

提出并应用了 GRPO,增强了 数学推理能力

DeepSeek v1

2024.1 初步发现强化学 习能大幅度提高 模型推理能力; 提出了R1使用的 MoE基本架构, 使用细粒度专家

和共享专家

DeepSeekMath

2024.2

DeepSeek v2

2024.5 引入了**多头潜在 注意力 (MLA)** 和遵循

DeepSeekMoE 架构 提出MTP,采用 FP8混合精度以及 DualPipe高效流 水线并行训练框架

DeepSeek v3

2024.12

DeepSeek R1

2025.1 推出DeepSeek-R1-Zero 和 DeepSeek-R1, 提出基于规则奖 励的纯强化学习, 以及多阶段SFT 和强化学习训练 流程

参考文献

- □书籍
 - ■数据挖掘导论
 - ■机器学习
- □论文
 - 《An Introduction to Variable and Feature Selection》
 - 《特征选择常用算法综述》
- □实战经验
 - Sklearn官方文档
 - Kaggle和天池比赛论坛

第二章数据分析基础小结

45

- □数据采集
 - □信息检索
 - □网络爬虫
- □数据预处理
 - □ 数据清洗
 - □ 数据集成
 - □数据变换
- □特征工程
 - □ 特征设计
 - □特征理解

Data Collection

Data Preprocessing

Feature Engineering