

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

新媒体大数据分析

New Media Big Data Analysis

第三章 数据建模

黄振亚,朱孟潇,张凯

课程主页:

http://staff.ustc.edu.cn/~huangzhy/Course/NM2025.html

助教: 齐畅,朱家骏

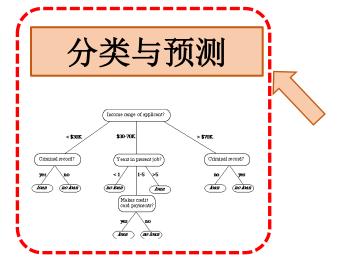
bigdata_2025@163.com

11/14/2025

数据建模基础

13

□数据挖掘——四个任务有哪些常用方法?

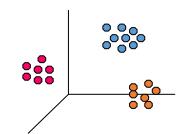


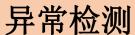
关联分析

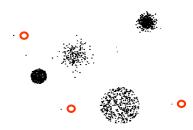
数据

	Т			Н	F	Р	
	L	Н	L	Н	L	Н	
J	-6.0	8.8	60	100	986	1044	
F	-2.8	10.9	48	100	973	1025	
M	-5.6	17.7	34	100	976	1037	
Α	-1.2	22.2	27	100	996	1036	
M	-0.8	27.8	25	100	1003	1034	
J	5.2	29.1	26	100	998	1030	
J	9.8	30.6	23	99	997	1027	
Α	5.6	26.1	31	100	992	1029	
S	5.2	24.8	35	100	998	1028	
0	-0.4	21.3	42	100	990	1031	
N	-7.6	17.3	55	100	963	1023	
D	-10.4	9.2	53	100	987	1039	
table 17a							
2010 m	onthly we	ather va	riation,	Cambrid	lge (UK)		

聚类







14

□数据挖掘任务一分类与预测

这张照片是哪里?

如果数据有标签,即已知图片是科大,则可以预测新图片的类

15

□案例一: 垃圾邮件分类 — 中科大安全演练

□ 判断: 下面这封邮件是垃圾邮件吗?

结论:一封垃圾邮件 中秋免费月饼领取 🗁 啔 🖨 😭 发起会议 发件人: 中科大邮箱管理中心 < mailservice@vstc.edu.cn > 时间: 2022年09月07日 18:39:40 (星期三) 收件人: huangzhy@ustc.edu.cn 特征1:仿冒地址:vstc.edu.cn 尊敬的科大邮箱用户, 您好! 金秋九月,丹桂飘香,中秋佳节临近,中科大邮箱管理中心祝您中秋快乐,万事如意! 了解到广大师生对我校定制月饼礼盒购买意愿强烈,礼盒供不应求,本部门特地采购了一批月饼礼盒,并以抽奖的形式回馈各位用户。由于礼<mark>盒数量有</mark> 限,仅限在校师生参与抽奖,请点击以下链接参与抽奖活动,祝您好运! 校内抽奖链接: 统一身份认证 中科大邮箱管理中心 🚄 特征2:不存在的科大部门:中科大邮箱管理中心 此邮件为自动发送,请勿回复 在使用中碰到任何问题,请点击链接联系或者电话联系: 0551-36309527 特征3: 错误的联系电话: 36309527 Copyright 2022

基于一些特征与规则,我们可以将垃圾邮件的判别视作一个分类问题

16

□ 案例二: 电影评分预测

□ 预测: 用户对电影《功夫》的评分是多少?

已知: 他对4部电影的评分分别为: 5.0, 4.8, 4.9, 4.5

特征1:喜欢周星驰

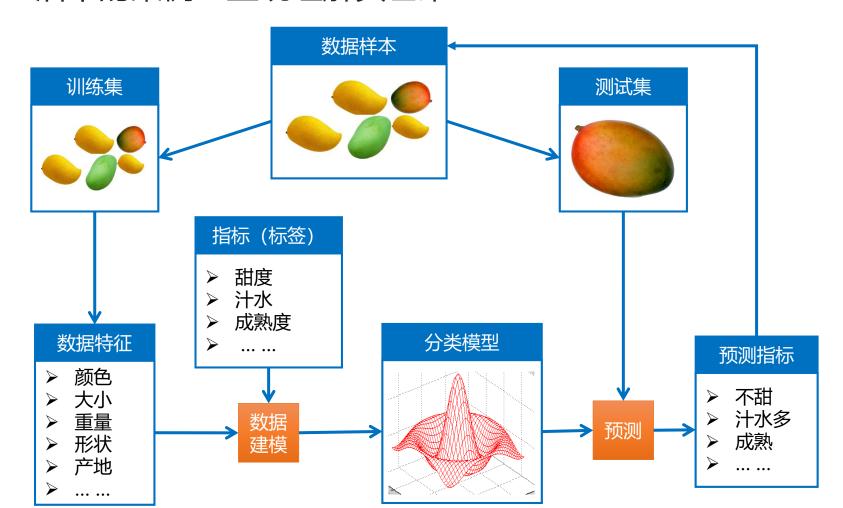
结论: 预测评分5分

特征2: 喜欢喜剧

基于一些特征与规则,我们可以将电影评分(连续值)估计视作一个预测问题

17

□生活中的案例: 直观理解买芒果



□ 分类与预测 - 有监督学习

□ 已知: 一组数据 (训练集) (X, Y)

□ 如右图,每一条记录表示为(x, y)

■ x: 数据特征/属性(如收入)

■ y: 类别标记(是否有借款)

□ 任务:

■ 学习一个模型,利用每一条记录的特征*x*去预测它对应的类别*y*

即:输入未标记的数据(含特征x),

预测数据的类别y

分类 / 数值预测 取决于 类别标签是 离散型 / 数值型

3个特征:

- > 是否有住房
- ▶ 婚姻状态
- > 年收入

类别:

是否拖欠贷款

Defaulted Marital Annual Home ID **Owner Status** Income **Borrower** No Yes Single 125K Married No 100K No No Single 70K No Yes Married 120K No Yes No Divorced 95K No Married 60K No 220K Yes Divorced No No 85K Yes 8 Single No Married 75K No 90K Yes 10 No Single

19

□ 分类与预测 — 回顾前例

任务	特征x	类别y
垃圾邮件分类	收件人、邮箱名、邮件	是否时垃圾邮件
	内容等	离散型
电影评分预测	用户在其他电影的评分	实值评分[0,5]
	电影的演员,类型等	数值型
芒果好坏预测	芒果的颜色、大小、重 量、形状、产地等	芒果的甜度、水分、成 熟与否
		离散型 或 数值型

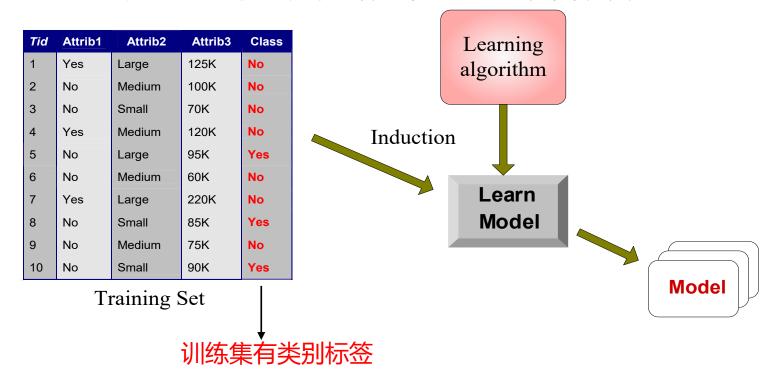
20

□如何建立分类与预测模型?

□ 一般流程: 有监督学习

□ 通常包括两个阶段: 模型训练、模型预测

■ 模型训练:目标是利用训练数据,学习一个分类或预测模型

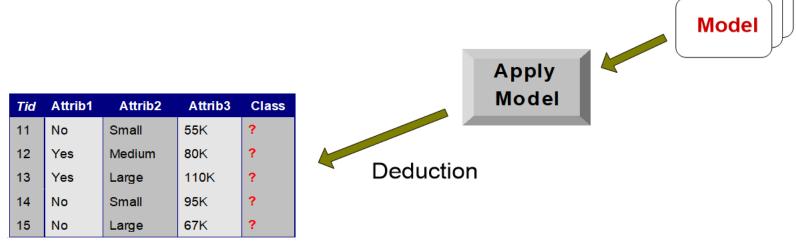


□如何建立分类与预测模型?

□ 一般流程: 有监督学习

□ 通常包括两个阶段:模型训练、模型预测

■ 模型预测:目标是利用学习的模型,预测测试数据的标签



Test Set

测试集无类别标签,需要预测

- □有监督学习:分类与预测
- □常用方法
 - 规则方法
 - □ 决策树
 - □贝叶斯方法
 - □最近邻方法
 - □ 支持向量机 (SVM)
 - □神经网络
 - □集成方法
- □分类的评价指标

分类: 规则方法

□规则方法

- □ 基于规则的分类器 (Rule-based Classifier) 就是使用一组 if-then 的模式来进行分类
- 基本形式: Condition → y (标签)
 - 其中, Condition是一组属性的组合, 也被称作规则的前提
- □ 例如:
 - (胎生= 否) ∧ (飞行动物= 是) → 鸟类
 - (胎生= 是) ∧ (体温= 恒温) → 哺乳类
- □ 最基础的获得规则的方法:人工制定规则进行分类

不足:人工定义规则、效率低,难以处理复杂问题

自动生成规则?决策树

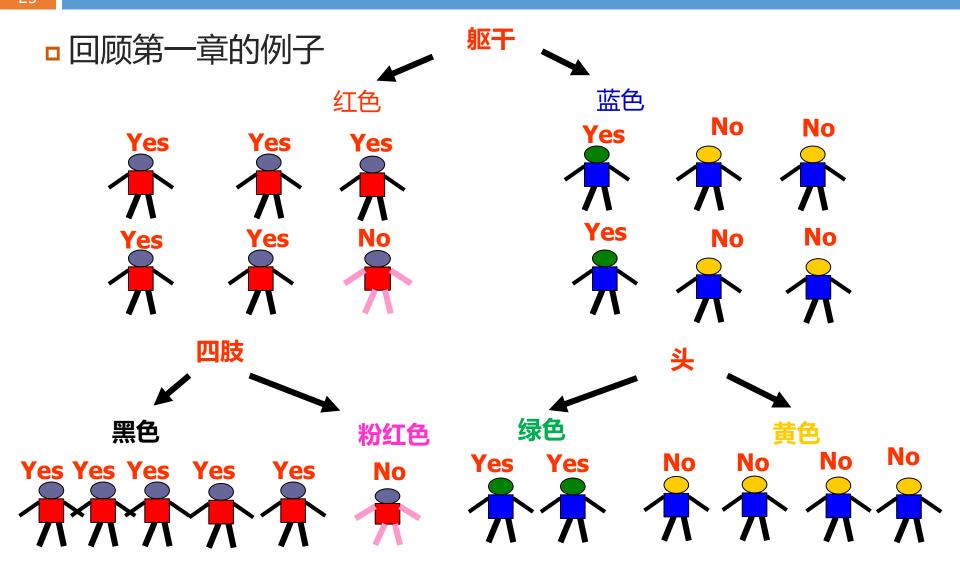
分类: 规则方法

24

- □回顾垃圾邮件分类的例子
 - □ 判断: 下面这封邮件是垃圾邮件吗?

(地址= vstc.edu.cn) ∧ (部门= 中科大邮箱管理中心) ∧ (电话= 36309527) → 垃圾邮件

25



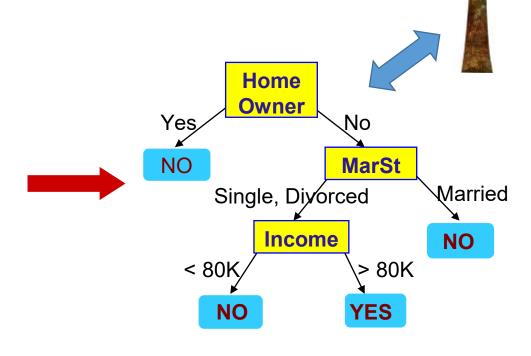
26

□什么是决策树

□ 对数据进行处理,利用归纳算法生成可读的规则

□模型以树状形式呈现出来

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

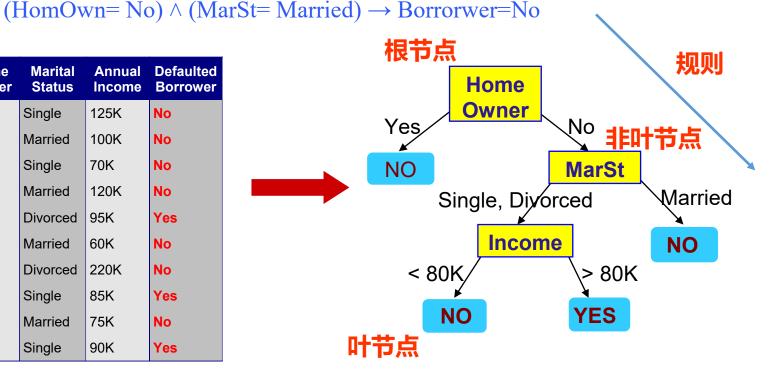


训练数据

模型: 决策树

- □ 什么是决策树 —— 基本概念
 - □ 非叶节点: 一个属性上的测试, 每个分枝代表该测试的输出
 - □ 叶节点: 存放一个类标记
 - □ 规则: 从根节点到叶节点的一条属性取值路径

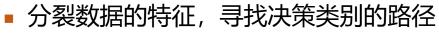
Marital Defaulted Annual Home **Owner Status Borrower** Income Yes Single 125K No 2 No Married 100K No Single 70K No No 120K No Yes Married Divorced 95K Yes No Married 60K No No No Yes Divorced 220K Single 85K Yes 8 No No Married No 75K Single 90K Yes No

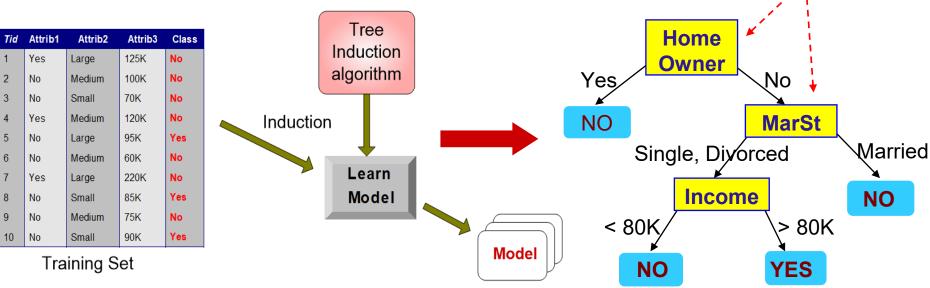


28

□建立决策树分类模型的流程

□ 模型训练: 从已有数据中生成一棵决策树





分裂特征:Home Owner, MarSt, Income

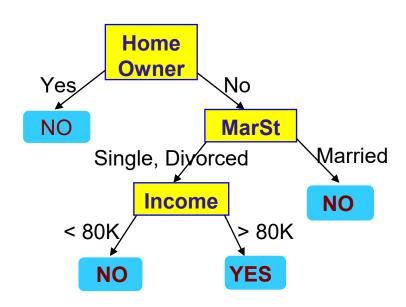
生成模型: 决策树

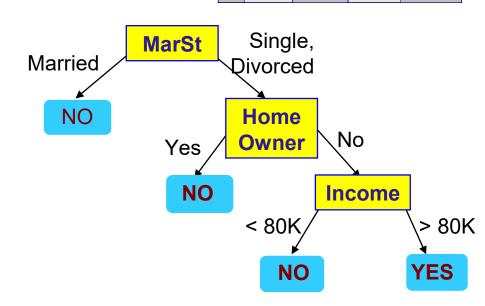
分裂特征

Home Marital Annual Defaulted Income Owner **Status Borrower** 125K Yes Single Married 100K No No Single 70K No No Yes Married 120K No 5 Divorced 95K Yes Married 60K 220K Yes Divorced No 85K No Single Yes 75K No Married No No Single 90K Yes

29

□ 是否有其他决策树?





特征顺序: Home Owner, MarSt, Income

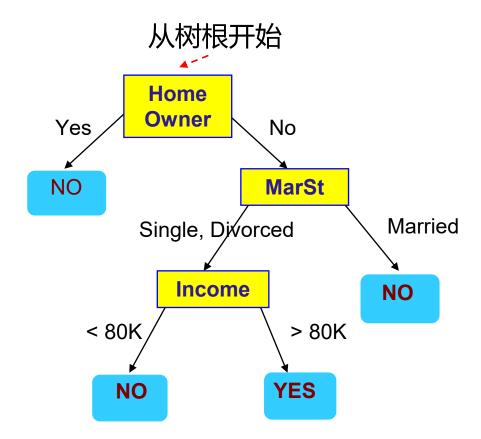
特征顺序: MarSt, Home Owner, Income

相同的数据, 根据不同的特征顺序, 可以建立多种决策树

30

□决策树分类模型的测试过程

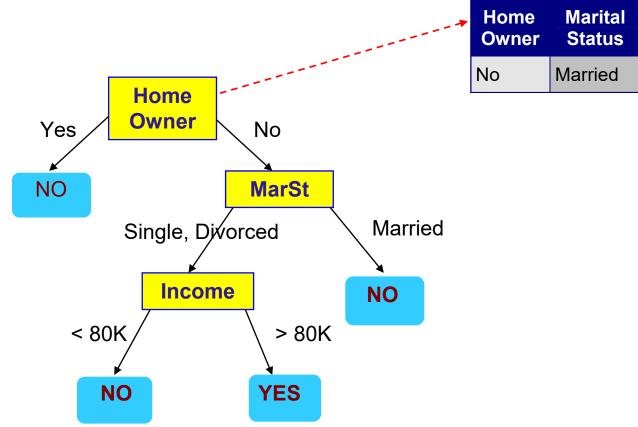
□ 模型测试:根据规则将样本分类到某个叶子节点



			Defaulted Borrower
No	Married	80K	?

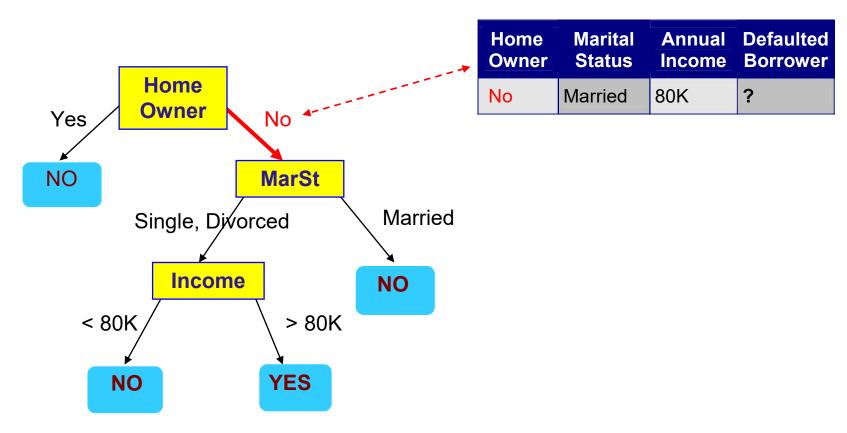
31

□决策树分类模型的测试过程



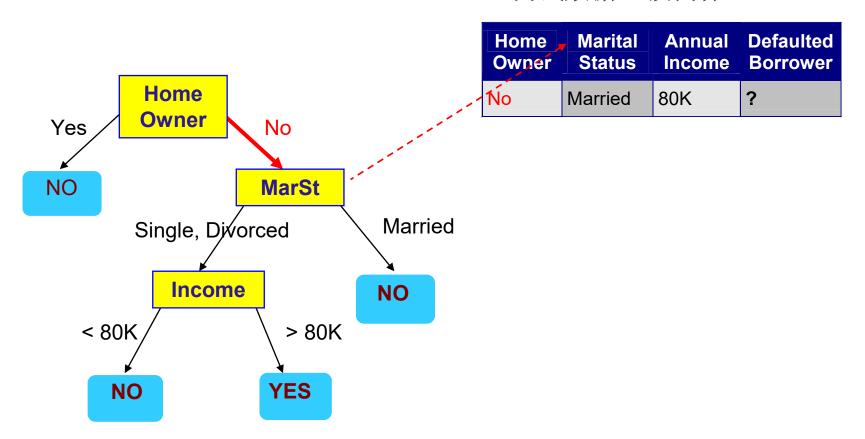
			Defaulted Borrower
No	Married	80K	?

□决策树分类模型的测试过程



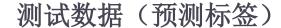
33

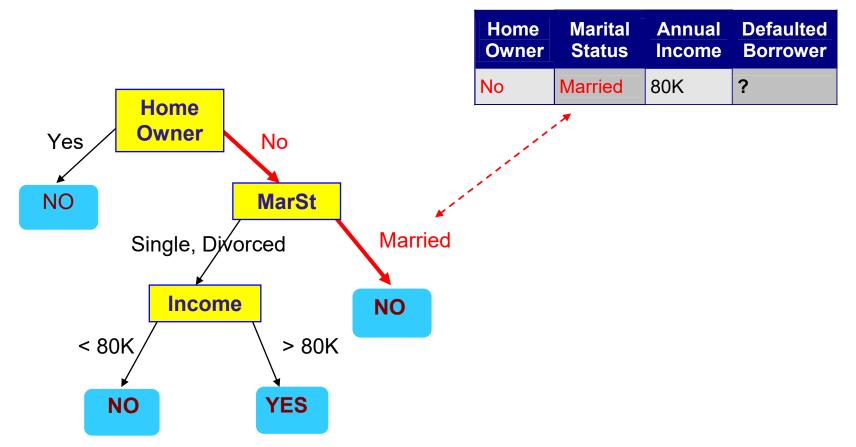
□决策树分类模型的测试过程



34

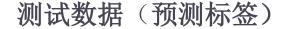
□决策树分类模型的测试过程

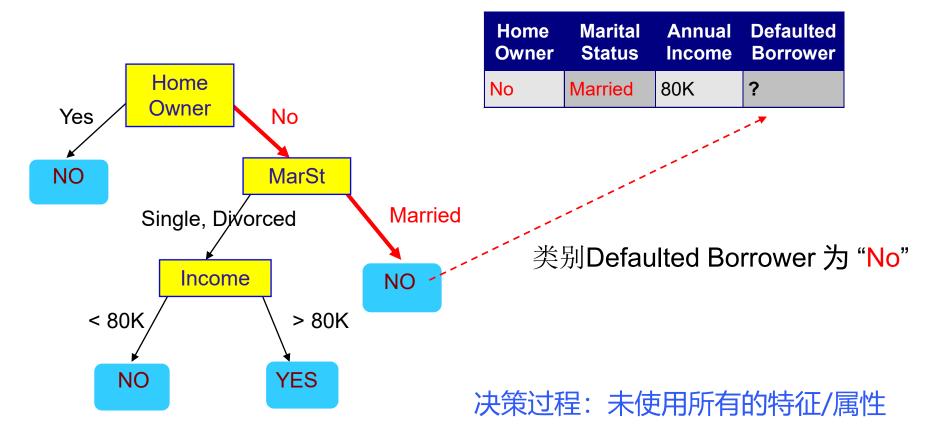




35

□决策树分类模型的测试过程

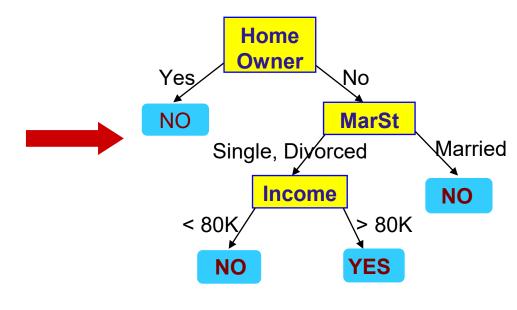




□如何建立决策树?

- □ 基本的决策树学习过程,可以归纳为以下三个步骤:
- □ 1. 特征选择: 选取对于训练数据有着较强区分能力的特征
- **2. 生成决策树**:基于选定的特征,逐步生成完整的决策树
- □ 3. 决策树剪枝: 简化部分枝干, 避免过拟合因素影响

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

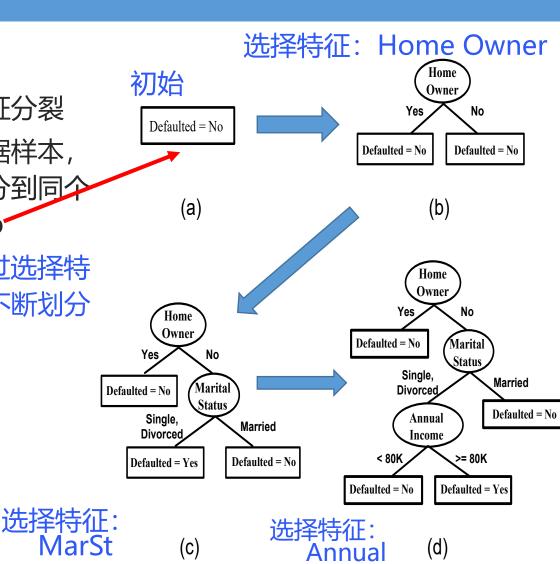


37

□1. 特征选择

- □ 决策树的基本思想: 特征分裂
- □ 初始节点包含所有的数据样本, 我们希望这些样本能划分到同分 类里,如defaulted=No
- 但往往不成立,因此通过选择特征和取值,将样本集合不断划分

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K No		No
5	No	Divorced	95K	Yes
6	No	Married 60K No		No
7	Yes	Divorced	Divorced 220K No	
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

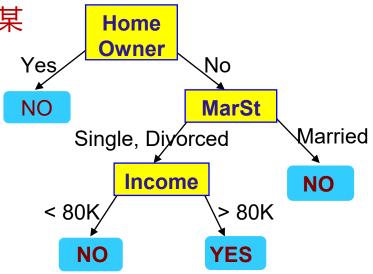


Income

- 38
- □1. 特征选择: 分裂思想的形式化
- □ Hunt贪心算法
 - D_t : 为树中结点t的所有训练样本
 - 若 D_t 中的样本属于同一类别 y_t ,则t 作为叶子节点,标签为 y_t

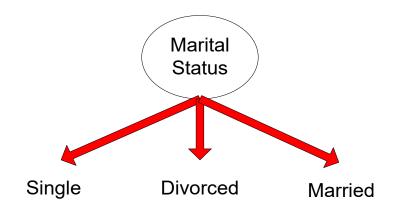
 - 重复上述过程

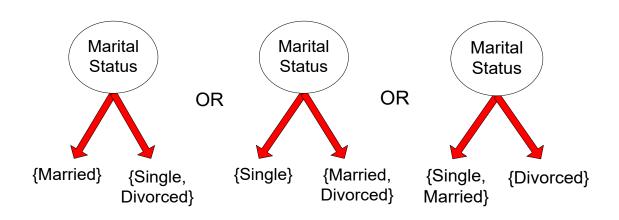
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	



39

- □1. 特征选择: 分裂过程的形式
 - □ 多路分裂(Multi-way split)
 - 不同取值均作为一个子集
 - □ 二分裂(Binary split)
 - 只划分两个子集
 - 需找到最优划分方法





40

- □1. 特征选择: 分裂过程的两个问题
 - □训练样本如何分裂?
 - 选择分裂特征
 - 评价测试条件
 - □分裂过程何时停止?
 - 理想终止
 - 如果所有记录属于同一类
 - 所有数据有相同的属性值
 - 提前终止

4

□问题1:如何选择分裂特征?

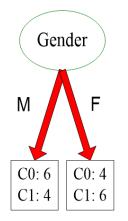
□ 例子: 右图的数据

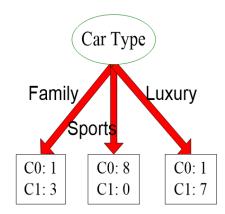
■ 10个记录类别为0

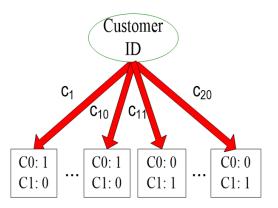
■ 10个记录类别为1

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	${ m M}$	Sports	Medium	C0
3	\mathbf{M}	Sports	Medium	C0
4	\mathbf{M}	Sports	Large	C0
5	\mathbf{M}	Sports	Extra Large	C0
6	$_{ m M}$	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

对不同特征属性进行分裂







哪一种分裂方式最优?

- □问题1:如何选择分裂特征?
 - □目标:选取对于训练数据有着**较强区分能力**的特征
 - 如果某特征分类的结果与随机结果没有很大的差别,则称这个特 征是没有分类能力的,扔掉这样的特征对学习的精度影响不大
 - □常用特征选择准则

■ 信息増益

回顾第二章:数据离散化

- 信息增益率
- 基尼指数

- □信息增益:信息熵(回顾第二章)
 - □ 信息熵: 计算数据的不确定性

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

- 此时:表示某个节点t (即某个特征)的信息不确定性
 - p(j|t) 是节点特征t的属于类别j的样本的比例
- 特点: 对于该节点特征t
 - 当样本均匀地分布在各个类别时,熵达到最大值 $log(n_c)$,此时包含的信息最少
 - 当样本只属于一个类别时, 熵达到最小值 0, 此时包含的信息最多

□ 计算 某个节点 特征的信息熵 (回顾第二章)

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

决策树特征选择: 信息增益

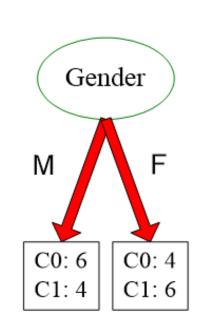
45

- □特征选择准则一:信息增益
 - □ 信息增益: 按某个特征划分之后, 数据不确定性降低的程度

$$GAIN(m) = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

- 第一项表示数据未划分时的信息熵
- ▶ 第二项表示按特征m划分后,数据的信息熵
 - > 按特征m划分后,父节点分裂成k个子节点
 - » n表示父节点的样本个数
 - n_i 表示子节点i的样本个数
- □ 选择准则:选择<mark>最大的GAIN 对应的特征</mark>m

信息增益在ID3和C4.5决策树算法中被应用



- □特征选择准则一: 信息增益
 - □ 选择A或B两个特征构造节点,哪种方式好?

特征A	Yes	Yes	No	•••	No	No
特征B	No	Yes	Yes	•••	Yes	No
类别	C0	C0	C1		C1	C1

Entropy(p)

以特征A划分

特征A	Yes	Yes
特征B	No	Yes
类别	C0	C0

$$Entropy(A_{Yes})$$
 $Entropy(A_{No})$
 $M = \frac{|A_{Yes}|}{n} Entropy(A_{Yes}) + \frac{|A_{No}|}{n} Entropy(A_{No})$
 $Gain(A) = Entropy(p) - M$

决策树特征选择: 信息增益

47

- □特征选择准则一: 信息增益
 - □ 选择A或B两个特征构造节点,哪种方式好?

特征A	Yes	Yes	No		No	No
特征B	No	Yes	Yes	•••	Yes	No
类别	C0	C0	C1		C1	C1

Entropy(p)

以特征B划分

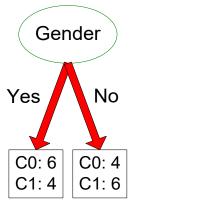
特征A	Yes	No		No
特征B	Yes	Yes	•••	Yes
类别	C0	C1		C1

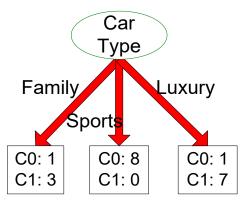
$$Entropy(B_{Yes})$$
 $Entropy(B_{No})$
 $M = \frac{|B_{Yes}|}{n} Entropy(B_{Yes}) + \frac{|B_{No}|}{n} Entropy(B_{No})$
 $Gain(B) = Entropy(p) - M < Gain(A)$

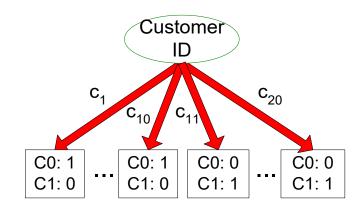
决策树特征选择: 信息增益

48

- □特征选择准则一:信息增益
- □ 结论: 信息增益能够较好地体现某个特征在降低信息不确定性方面的贡献
 - □ 信息增益越大,说明信息纯度提升越快,最后结果的不确定性越低
- □ 不足: 信息增益的局限性, 尤其体现在更偏好可取值较多的特征
 - 取值较多,不确定性相对更低,因此得到的熵偏低







特征Customer ID有最大的信息增益,因为每个子节点的熵均为0

决策树特征选择: 信息增益率

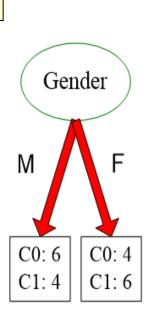
49

- □特征选择准则二:信息增益率
 - □ 信息增益率(Gain ratio): 综合考虑划分结果信息增益和 划分数量的信息

$$GAIN_{ratio(m)} = \frac{GAIN(m)}{IV}, \qquad IV = -\left(\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}\right)$$

- 相比于信息增益,增加了一个惩罚项IV,考虑产生划分的数量带来的划分信息
- 即,若某个特征产生的划分数量很大,则划分信息很大,降低增益率
- □ 选择准则:选择<mark>最大</mark>的 信息增益率 对应的特征m

信息增益率在C4.5决策树算法中被应用



决策树特征选择: 信息增益率

50

- □特征选择准则二:信息增益率
 - □ 结论: 信息增益率有矫枉过正的危险
 - 采用信息增益率的情况下,往往倾向于选择取值较少的特征
 - 当特征的取值较少时、IV较小、因此惩罚项相对较小
 - □ 实际应用中,通常采用折中的方法
 - 先从候选特征中,找到<u>信息增益</u>高于平均水平的集合
 - 再从这一集合中,找到<u>信息增益率</u>最大的特征

51

- □特征选择准则三:基尼指数
 - □ 基尼指数的目的,在于表示样本集合中一个随机样本被分错的概率
 - □ 基尼指数越低,表明被分错的概率越低,相应的信息纯度也就越高
 - □ 计算特征节点t的基尼指数:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

■ p(j|t) 是特征节点t上属于类别j的样本的比例

- 特点: 对于该节点特征t
 - 当样本均匀地分布在各个类别时,基尼指数达到最大值 $1 \frac{1}{n_c}$,此时包含的信息最少
 - 当样本只属于一个类别时,基尼指数达到最小值 0, 此时包含的信息最多

□ 计算 某个节点 特征的 基尼指数

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

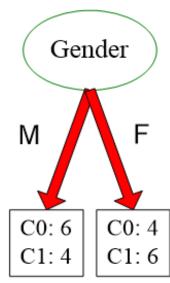
P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

- □特征选择准则三:基尼指数
 - □ 当一个特征节点p 分裂成 k 个子节点 (如两个子节点)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

- ▶ n表示父节点的样本个数
- n_i 表示子节点i的样本个数
- □ 选择准则:选择最大的GINI 对应的特征m

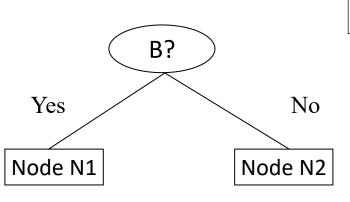


基尼指数在CART, SLIQ, SPRINT等决策树算法中被应用

54

□基尼指数计算示例

分裂前:



	Parent
C1	6
C2	6
Gini = 0.500	

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Gini(N1)

 $= 1 - (5/6)^2 - (1/6)^2$

= 0.278

Gini(N2)

 $= 1 - (2/6)^2 - (4/6)^2$

= 0.444

分裂后:

Gini(Children)

= 6/12 * 0.278 +

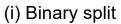
6/12 * 0.444

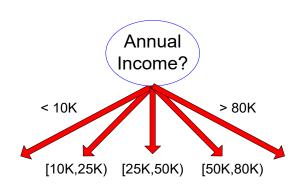
= 0.361

55

- □ 决策树特征选择: 连续属性的分裂
 - □ 将连续属性进行离散化
 - 最简单:人为划分一次,如设定收入的阈值
 - 通过等间隔分段、等频率分段(百分位数)或聚类找到划分位置
 - 利用算法二分离散化考虑所有情况,找出最好的划分

回顾第二章知识:基于熵的数据离散化





(ii) Multi-way split

决策树生成过程

□ 2. 生成决策树

- □ 决策树的最终目标,在于使每个节点所对应的样本类别均为"纯"的
- □ 以C4.5算法为例,当某个节点对应的样本集合"不纯"时
 - 计算当前节点的类别信息熵
 - 计算当前节点各个特征的信息熵,并进而计算得到该特征对应的信息增益率
 - 基于最大信息增益率的特征,对节点对应的样本集合进行分类
 - 重复上述过程, 直至节点对应的样本集合为"纯"的集合(即样本类别统一
- □ 其他决策树生成算法过程类似,区别在于准则不同
 - ID3采用信息增益,而CART采用基尼指数

决策树算法有很多,如ID3, C4.5, CART等,核心区别在特征选择准则不同,具体算法请大家课后查阅学习

决策树生成过程

57

- **2. 生成决策树**: 树停止分裂条件
 - □停止分裂直到所有节点属于同一类
 - 停止分裂当所有记录有相同的属性值
 - □早停策略

标签

按湿度特征划分,发现两个节点均属于同一类,即停止