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ABSTRACT
Exploring how learners’ knowledge states evolve during the learn-
ing activities is a critical task in online learning systems, which can
facilitate personalized services downstream, such as course recom-
mendation. Most of existing methods have devoted great efforts to
analyzing learners’ knowledge states according to their responses
(i.e., right or wrong) to different questions. However, the significant
effect of learners’ learning behaviors (e.g., answering speed, the
number of attempts) is omitted, which can reflect their knowledge
acquisition deeper and ensure the reliability of the response. In
this paper, we propose a Learning Behavior-oriented Knowledge
Tracing (LBKT) model, with the goal of explicitly exploring the
learning behavior effects on learners’ knowledge states. Specifi-
cally, we first analyze and summarize several dominated learning
behaviors including Speed, Attempts and Hints in the learning pro-
cess. As the characteristics of different learning behaviors vary
greatly, we separately estimate their various effects on learners’
knowledge acquisition in a quantitative manner. Then, considering
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that different learning behaviors are closely dependent with each
other, we assess the fused effect of multiple learning behaviors
by capturing their complex dependent patterns. Finally, we inte-
grate the forgetting factor with learners’ knowledge acquisition
to comprehensively update their changing knowledge states in
learning. Extensive experimental results on several public datasets
demonstrate that our model generates better performance predic-
tion for learners against existing methods. Moreover, LBKT shows
good interpretability in tracking learners’ knowledge state by in-
corporating the learning behavior effects. Our codes are available
at https://github.com/xbh0720/LBKT.
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Figure 1: A toy example of four learners’ learning behaviors
when answering the same question 𝑒4 on the online learning
system. Although all the learners finally choose the correct
option “D”, they show extremely different behaviors.

1 INTRODUCTION
Online learning platforms, such as MOOC, KhanAcedemy.org, have
shown an increasing attention for learners nowadays due to their
convenience of accessing massive learning resources [3, 12, 26, 43,
47]. One of the dominated research topics in online learning is
knowledge tracing (KT), which aims to estimate and track learners’
knowledge states on different concepts (e.g., Function) from their
academic performance on answering questions during their learn-
ing activities [28]. On the basis of the KT research, learners can
realize their weakness and save energy to prepare the targeted prac-
tices. Besides, systems can tailor several personalized services, such
as arranging appropriate learning path and recommending suitable
learning items, which help avoid duplicated trials [11, 13, 48, 56].

In the literature, many works have been devoted to KT tasks
ranging from the earlier representative Bayesian knowledge tracing
based models to recent deep knowledge tracing based advances [17,
37, 52]. Generally, existing models try every effort to assess the
learning results of question-answering sequences, where learners’
responses (i.e., right or wrong) as well as the corresponding ques-
tion information (e.g., knowledge concept, question text) have been
explored as much as possible [27, 35, 54]. However, they are insuf-
ficient in exploitation of the learners’ critical learning behaviors
[55]. As shown in Figure 1, four learners are required to solve the
same question 𝑒4 at step 4, and all of them choose the correct op-
tion “D” as final answers. Focusing on this example, if we only
assess whether they could answer correctly during learning, we
can conclude that these four learners have equally benefited from
this question-solving process. However, this conclusion would be
untenable if we further analyze their learning behaviors when an-
swering. For example, Alice spends 20s to choose “D” but Bob only
consumes 4s. Taking this evidence into consideration, we tend to
conclude that Alice and Bob should have quite different fine-grained
knowledge acquisition on the related “division” concept. Besides,
Frank requested a hint, while Jack attempted four times, their re-
sponses should have different reliabilities compared with Alice and
Bob. Therefore, we argue that monitoring the detailed learning
behaviors of learners is essential for the KT research.

In recent years, some researchers have noticed the importance
of the behavior information and utilized it to enhance the KT
task [40, 42, 51, 55]. However, they generally applied learners’

behaviors as additional features with the model input explicitly
or implicitly. Actually, learning behaviors have quite complex ef-
fects during learners’ learning process, which remain unexplored.
We investigate and summarize three typical learning behaviors
which dominate how learners perform on questions and how much
knowledge they could acquire: (1) Speed. The speed of answering
has been confirmed to be closely related to learners’ knowledge
states [24, 49]. For example, a short initial response time could in-
dicate either high proficiency or “gaming” behavior (e.g., Bob may
be well mastered or just guess the answer in Figure 1) [4]. In con-
trast, a long initial response time could be caused by either careful
thinking or lack of concentration. (2) Attempts. The number of
learners’ attempts on a specific question is another important factor.
Specifically, a learner could learn quickly from multiple attempts
on the same question related to unknown concepts. However, it
is also possible that the learner just impatiently treats the ques-
tion and attempts repeatedly for correct answers which leads to
poor knowledge gain subsequently [38]. (3) Hints. Online learning
systems will offer hints for learners who are lack of knowledge
mastering when practicing [2]. Learners can obtain inspiration
from these hints and achieve promotion but some may choose to
directly access the correct answer through abusing hints instead of
making efforts on their own and thus resulting in poor knowledge
acquisition [4, 10].

In this paper, we aim to comprehensively assess the complex but
significant effects of the above three learning behaviors on tracking
learners’ knowledge states, where we try to figure out the follow-
ing challenges. First, as we have mentioned above, previous peda-
gogy studies indicated that learning behaviors have complex effect
mechanisms on the knowledge acquisition [6, 7, 24, 38]. Moreover,
different behavioral characteristics vary greatly, so it is difficult
to quantify the distinctive effects of each behavior on assessing
learners’ knowledge acquisition during the learning process. Sec-
ond, learning behaviors do not individually produce effects, but are
closely dependent with each other. For example, looking at the be-
havior of Attempts alone, we are not sure whether Jack who makes
multiple attempts in Figure 1 is learning through repeated trials
or impatiently attempting to try out the correct answer. But when
combining his rapid speed during each attempt, we are more confi-
dent that the latter is the case. Therefore, by considering learners’
different behaviors together, we can make more reliable assessment
of their knowledge states. However, it is a great challenge to cap-
ture the complex dependent patterns of multiple behaviors. Third,
besides knowledge acquisition, learners’ tendency of forgetting also
cannot be ignored, considering behavior effects on both knowledge
acquisition and forgetting would bring many obstacles on how to
update the knowledge state of learners during the process.

To address these challenges, we propose a novel Learning Behavior-
oriented Knowledge T racing (LBKT) model, which tries to explore
how learning behaviors affect learners’ knowledge states in an
explicit way. Specifically, we first analyze the distribution of the
learning behaviors including Speed, Attempts, and Hints, and ac-
cordingly assess their separate effects on knowledge acquisition
with a quantitive estimation. Then, we design the Fused Behavior
Effect Measuring module to capture the dependency among differ-
ent behaviors by modeling their high-order interaction patterns.
Subsequently, we update the knowledge states of learners with a
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novel delicate forget gate considering both the decline of mem-
ory and the stimulation of knowledge acquisition on the evolution
process. Finally, the experiments results on several public datasets
demonstrate that our LBKT not only generates better performance
predictions for learners but also shows the superior interpretabil-
ity in presenting learners’ knowledge proficiency considering the
learning behavior effects. To the best of our knowledge, this is first
few attempt to go deeper for exploring knowledge tracing with
quantitively modeling the complex learning behavior effects.

2 RELATEDWORK
Knowledge Tracing. Knowledge Tracing (KT) is an essential task
which aims at tracking learners’ knowledge state dynamically in
the online learning system. Existing approaches can be categorized
as traditional methods and deep learning methods [31]. Bayesian
Knowledge Tracing (BKT) is one of the most popular traditional
methods, which assessed the learner’s proficiency on different con-
cepts in a Hidden Markov Model. Thai-Nghe et al. [44] used the
Tensor Factorization method to project learners into a latent space
on different time steps. Huang et al. [22] further considered the
learning theory and Ebbinghaus forgetting curve in constraining
the transition of learners’ knowledge matrix. With the development
of deep learning, DKT first introduced recurrent neural network to
model learners’ knowledge state [37]. Different fromDKT using one
hidden high-dimensional vector to represent the knowledge state,
DKVMN facilitated a dynamic value memory matrix to store and
update learners’ proficiency on each concept [54]. Shen et al. [41]
applied a convolutional sliding window to model learners’ individ-
ualized learning. SAKT first introduced self-attention mechanism
into KT to capture the dependency among the learning sequence
[36]. AKT further used the Rasch model to combine questions’
individualized difficulty with concepts for better question repre-
sentation [17]. Liu et al. [27] utilized text information to enrich
the question’s embedding. Furthermore, some work model the con-
straint or propagation of knowledge proficiency among related
concepts with their structure information [9, 35].

Some research has noticed the importance of learning behaviors
and applied them to KT models. Schultz and Arroyo [39] believed
that learners’ performance was determined by both their evolving
knowledge states and motivation reflected in the learning behav-
iors. Wang and Heffernan [49] thought that first response time
could help predict learners’ performance and combined the predic-
tion result with existing KT models. Besides, some studies utilized
learners’ engagement in multiple learning materials like video lec-
tures and question-related hints to better evaluate their knowledge
proficiency [1, 46, 57]. For example, Mongkhonvanit et al. [32] intro-
duced learners’ behaviors like playback speed and fast-forwarded
when they watched videos in the MOOC into DKT’s input. LPKT
made a finer application of behaviors that considered the influence
of interval and answer time on learners’ learning and forgetting
in the learning process [40]. However, these models just concate-
nate the behavioral features with the input of a neural network
as supplementary information without fully mining the way how
learning behaviors affect learners’ knowledge state.
Learning Behaviors Analysis. There are many pieces of research
about learning behavior analysis [33, 55], which mainly focus on

Table 1: Notations and descriptions.
Notations Descriptions
𝑋 Learners’ learning sequence.
𝒉𝑡 Learners’ knowledge state matrix.
𝑐𝑚 The knowledge concept.
𝑒𝑡 , 𝒆𝑡 The question and its embedding.
𝑟𝑡 , 𝒓𝑡 The response and its embedding.
𝒊𝑡 The embedding of a basic question-answer interaction.
𝑄 , 𝒒𝑒𝑡 The question-concept relation matrix and one row in it.
𝑦𝑡 The prediction of performance.
𝑎𝑡 , 𝑝𝑡 , 𝑛𝑡 The behaviors of Speed, Attempts and Hints.
𝐴𝐶𝑡 , 𝑃𝐶𝑡 , 𝑁𝐶𝑡 The rescaled factors generated from learning behaviors.

two aspects. One is using learning behaviors to assess learners’ mo-
tivation or attitude during learning. Vicente and Pain [45] classified
learners’ motivational state into 9 axes such as “Fantasy” and “Sat-
isfaction” according to their interactions when learning Japanese
numbers. Joseph [24] used response time to catch learner’s disen-
gagement and presented the positive correlation between response
time and performance. Baker et al. [5] utilized multiple behaviors
to detect gaming and made timely intervention to prevent learn-
ers from gaming. The other aspect is using learning behaviors to
better assess learners’ proficiency [16, 19]. Some cognitive diag-
nosis models predict learners’ performance based on their motiva-
tions. For example, Wu et al. [50] used learners’ multiple-attempt
response to capture their gaming probability according to four as-
sumptions (e.g. the less time, the higher gaming factor) and based
on which predicted learners’ performance thus obtaining more
accurate knowledge proficiency estimation. Similarly, Johns and
Woolf [23] applied HMM to dynamically track learners’ motiva-
tion as “unmotivated-hint”, “unmotivated-guess” and “motivated”
according to the requested-hints and response time behaviors.

In summary, learning behaviors are confirmed to be significant
in analyzing learners’ learning process and show complex effects
on their knowledge states. In contrast to previous works that in-
sufficiently view behaviors as additional features, our work deeply
mine how the multiple learning behaviors produce effect.

3 PROBLEM DEFINITION
In this section, we give a formal definition of our task and summa-
rize the notations used throughout the paper in Table 1.

Supposing there are |𝑆 | learners and |𝐸 | questions in the on-
line learning system. Generally, the learning result sequence of a
specific learner is recorded as 𝑋 = {(𝑒1, 𝑟1), (𝑒2, 𝑟2), ..., (𝑒𝑇 , 𝑟𝑇 )},
where 𝑒𝑡 ∈ 𝐸 denotes the question answered by the learner at
time step 𝑡 , and 𝑟𝑡 is the corresponding response (1 means correct
and 0 for incorrect). Since behaviors affect learners’ knowledge
acquisition, using only the basic step of learning results (𝑒𝑡 , 𝑟𝑡 )
is insufficient to capture the evolution of knowledge state. In or-
der to better assess learners’ knowledge state, we consider three
dominated behaviors of Speed, Attempts and Hints in the paper.
Thus, the learning sequence including the behaviors is represented
as 𝑋 = {(𝑒1, 𝑟1, 𝑏1), (𝑒2, 𝑟2, 𝑏2), ..., (𝑒𝑇 , 𝑟𝑇 , 𝑏𝑇 )}, where 𝑏𝑡 denotes
the learning behaviors, composed of (𝑎𝑡 , 𝑝𝑡 , 𝑛𝑡 ) which represent
Speed, Attempts, and Hints respectively. After taking the learning
behaviors into account, the definition of our task is:

Given learners’ learning records 𝑋 = {(𝑒1, 𝑟1, 𝑏1), (𝑒2, 𝑟2, 𝑏2), ...,
(𝑒𝑇 , 𝑟𝑇 , 𝑏𝑇 )}, we aim to dynamically track learners’ knowledge state
and predict their performance on future questions.
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Figure 2: The framework and details of LBKT.

4 THE LBKT MODEL
Figure 2(a) illustrates the overview of LBKT framework.We propose
the Differentiated Behavior Effect Quantifying (DBEQ) module and
Fused Behavior Effect Measuring (FBEM) module to evaluate the
distinctive and cooperative effect of learning behaviors on learners’
knowledge acquisition. Then a forget gate incorporated with learn-
ing behaviors is proposed to model the decline of proficiency over
time. By combining the forgetting factor and knowledge acquisition
together, the knowledge state is updated.

4.1 Learning Sequence Representation
Knowledge State Embedding. Following existing work [27, 40],
we represent the knowledge state by a matrix 𝒉 ∈ R𝑀×𝑑ℎ , where
𝑀 denotes the number of concepts and 𝑑ℎ is the dimension. There-
fore, each row in 𝒉 represents the proficiency of the corresponding
concept and will be updated in the training process. 𝒉𝑡 is utilized
to represent the knowledge state at step 𝑡 .
Basic Interaction Embedding.We treat the question-answer pair
in a step as a basic interaction. A question embedding matrix 𝑬1 ∈
R |𝐸 |×𝑑𝑒 is utilized to embed the question set where |𝐸 | denotes the
number of questions and 𝑑𝑒 is the dimension. Then, the question
answered at time step 𝑡 is represented as 𝒆𝑡 ∈ R𝑑𝑒 by looking
up 𝑬1 with the question id. For the answer, we employ another
embedding matrix 𝑬2 ∈ R2×𝑑𝑎 to encode the two kinds of response
results (correct or incorrect) into a 𝑑𝑎-dimensional vector. And
the response at time step 𝑡 is denoted as 𝒓𝑡 . To obtain the basic
interaction embedding, we use a fully connected layer to deeply
fuse the question and answer embedding as follows:

𝒊𝑡 = 𝑅𝑒𝐿𝑈 (𝑾1 [𝒆𝑡 ⊕ 𝒓𝑡 ] + 𝒃1), (1)
where𝑾1 ∈ R𝑑ℎ×(𝑑𝑒+𝑑𝑎) , 𝒃1 ∈ R𝑑ℎ are the trainable parameters,
⊕ means the concatenate operation.
Q-matrix. We use a Q-matrix 𝑸 ∈ R |𝐸 |×𝑀 in which each element
is 0 or 1 to represent the relationship between questions and con-
cepts [8]. 𝑸 𝑗𝑚 = 1 means that the question 𝑒 𝑗 is related to concept
𝑐𝑚 and 0 otherwise. 𝒒𝑒𝑡 is a row in 𝑸 which represents the related
concepts vector of question 𝑒𝑡 . According to pedagogical theory
[15], the performance on a specific question will only influence the
knowledge proficiency on its corresponding concepts. Therefore,
when a learner finishes answering question 𝑒𝑡 at time t, the up-
date of his knowledge state matrix 𝒉𝑡−1 is controlled by 𝒒𝑒𝑡 . We

represent the knowledge state on the related concepts of 𝑒𝑡 as:

�̃�𝑡−1 = 𝒒𝑒𝑡 · 𝒉𝑡−1 . (2)

4.2 Differentiated Behavior Effect Quantifying
Generally, different learning behaviors have quite different char-
acteristics and affect learners’ knowledge acquisition in different
ways. In this section, we first measure the differentiated effects of
three specific learning behaviors: Speed, Attempts, and Hints. Not-
ing that there are many other learning behaviors you can think
of, such as Modifying and Discussing. As this paper mainly focuses
on exploring the learning behavior effects on learners’ knowledge
states, we choose the above three dominant learning behaviors ac-
cording to the suggestions of existing works [28, 39, 50] and leave
the extension to more kinds of learning behaviors as future work.

Specifically, each learning behavior has complex effects on learn-
ers’ knowledge acquisition. For example, a high speed may rep-
resent proficiency or guessing and a medium speed correlates to
carefully thinking in most cases. To tackle this problem, we first
analyze the data distribution of these behaviors on three widely-
used real-world datasets: ASSIST2009, ASSIST2012, and Junyi. The
details of the datasets are given in Section 5.1. Figure 3 presents
the distributions of different behaviors on three datasets, based on
which, we then can quantify their differentiated effects accordingly.

Speed Effect. As discussed in Section 1, the speed of answering
closely reflects learners’ knowledge levels. We use the feature of
“first response time” in the datasets which denotes the answer time
of learner’s first attempt to represent Speed. Figure 3(a), 3(d), and
3(g) present the distribution of learners’ answer time, where the
number of records approximately shows the form of log-normal
distribution with respect to the answer time (in seconds). Therefore,
we assume that the answer time 𝑎 𝑗𝑖 of learner 𝑖 on question 𝑒 𝑗 obeys
ln𝑎 𝑗𝑖 ∼ N(𝜇 𝑗 , 𝜎2𝑗 ), where 𝜇 𝑗 , 𝜎 𝑗 can be learned by the maximum-
likelihood estimation (MLE) method from the records. On this basis,
we compute the Speed factor 𝐴𝐶 𝑗𝑖 as:

𝐴𝐶 𝑗𝑖 = 1 − 𝑃 (N (𝜇 𝑗 , 𝜎2𝑗 ) ≤ ln𝑎 𝑗𝑖 ), (3)

where higher speed correlates to higher 𝐴𝐶 𝑗𝑖 . Then, we quantify
the distinctive impact of Speed factor and obtain the knowledge
acquisition vector 𝒈𝑎𝑡 monitored by Speed factor 𝐴𝐶𝑡 at time step t
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(a) Distribution of time on ASSIST2009.
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(b) Distribution of attempts on ASSIST2009.
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(c) Distribution of hints on ASSIST2009.
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(d) Distribution of time on ASSIST2012.

� � � � � ��
	���������
�������

�

�

�

�

�

�

	
��

��
���

���
��
��
�

1e6

(e) Distribution of attempts on ASSIST2012.
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(f) Distribution of hints on ASSIST2012.
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(g) Distribution of time on Junyi.
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(h) Distribution of attempts on Junyi.
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(i) Distribution of hints on Junyi.

Figure 3: The distribution of learning behaviors data on datasets ASSIST2009, ASSIST2012 and Junyi.

as follows:

𝑐𝑎𝑡 = 𝑘 + 1 − 𝑘

1 + 𝑒𝑑 · (𝐴𝐶𝑡−𝑏)
,

𝒈𝑎𝑡 = 𝜎 (𝑐𝑎𝑡 · (𝑾𝑎
2 [�̃�𝑡−1 ⊕ 𝒊𝑡 ] + 𝒃𝑎2)),

(4)

where 𝜎 (·) is the sigmoid function,𝑾𝑎
2 ∈ R𝑑ℎ×2𝑑ℎ , 𝒃𝑎2 ∈ R𝑑ℎ are

trainable parameters. 𝑐𝑎𝑡 is the controlling factor extracted from𝐴𝐶𝑡
by a non-linear curve and utilized to control how much knowledge
learners could acquire. We choose the non-linear curve inspired
by IRT [14] that predicts learners’ performance by distinguishing
their latent proficiency and similarly we employ it to distinguish
the Speed factor. 𝑘 , 𝑑 , and 𝑏 are hyper-parameters determining the
curve’s shape, and we will analyze their influence in Section 5.6.

Attempts Effect. To analyze the attempt effect, we examine the
data distribution of “attempt count” attribute in the datasets, rep-
resenting the number of attempts learners used, to summarize the
characteristics of Attempts. As shown in Figure 3(b), 3(e), and 3(h),
most learners attempted only once, consistent with the common
sense. However, there are still some learners who require repeated
attempts, either to learn unknown concepts from or to impatiently
try out the correct answer. And their knowledge growth should be
significantly different from those who attempted only once [7, 38].
As the number of attempts obeys the Poisson distribution approxi-
mately, we assume 𝑝 𝑗𝑖 ∼ P(𝜆𝑝

𝑗
) where 𝑝 𝑗𝑖 denotes the number of

attempts learner 𝑖 uses on question 𝑒 𝑗 . The parameter 𝜆𝑎
𝑗
can be

learned by MLE. Then we compute the Attempts factor as:

𝑃𝐶 𝑗𝑖 = 1 − 𝑃 (P(𝜆𝑝
𝑗
) ≥ 𝑝 𝑗𝑖 ), (5)

where more attempts stand for the higher 𝑃𝐶 𝑗𝑖 . Similar to Speed,
we compute the knowledge acquisition vector affected by 𝑃𝐶𝑡 as:

𝑐
𝑝
𝑡 = 𝑘 + 1 − 𝑘

1 + 𝑒𝑑 · (𝑃𝐶𝑡−𝑏)
,

𝒈
𝑝
𝑡 = 𝜎 (𝑐𝑝𝑡 · (𝑾𝑝

2 [�̃�𝑡−1 ⊕ 𝒊𝑡 ] + 𝒃
𝑝

2 )),
(6)

Hints Effect. In terms of the hints effect, learners generally
answer questions without requesting for any hint in most cases as
shown in Figure 3(c), 3(f), and 3(i), i.e., the distribution of learners’
requested hints number. However, there are also some learners
need to learn from hints and achieve promotion, while a few even
abuse hints to directly access the correct answer thus leading to
poor knowledge acquisition [2]. To capture such differentiation of
requested hints number, we assume that 𝑛 𝑗𝑖 ∼ P(𝜆𝑛

𝑗
), where 𝑛 𝑗𝑖

denotes the number of hints learner 𝑖 uses on question 𝑒 𝑗 and 𝜆𝑛
𝑗
is

also a learnable parameter. Then we define the Hints factor as:
𝑁𝐶 𝑗𝑖 = 1 − 𝑃 (P(𝜆𝑛𝑗 ) ≥ 𝑛 𝑗𝑖 ), (7)

where more hints used equal to higher 𝑁𝐶 𝑗𝑖 . The knowledge acqui-
sition vector 𝒈𝑛𝑡 affected by 𝑁𝐶𝑡 is computed similarly as above:

𝑐𝑛𝑡 = 𝑘 + 1 − 𝑘

1 + 𝑒𝑑 · (𝑁𝐶𝑡−𝑏)
,

𝒈𝑛𝑡 = 𝜎 (𝑐𝑛𝑡 · (𝑾𝑛
2 [�̃�𝑡−1 ⊕ 𝒊𝑡 ] + 𝒃𝑛2 )),

(8)

Thus, the knowledge acquisition vectors considering the distinc-
tive effect of each behavior are obtained.

4.3 Fused Behavior Effect Measuring
In practice, different behaviors are not independent with each other
but cooperative, and we can make more accurate assessment from
the perspective of all of them. For example, if a learner answers
a question with a high speed, it does not necessarily mean that
the learner is disengaged and maybe he is just so skilled in the
corresponding concept. However, if he accompanies with other
behaviors like repeated attempts, the confidence for him to guess
at a random by quick attempts is higher. Therefore, it’s of great
importance to capture the complex dependency patterns among
different behaviors and model their cooperative effect on learners’
knowledge acquisition. Inspired by the Tensor Fusion Network
[53], we first concatenate the knowledge acquisition vectors 𝒈𝑎𝑡 ,
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𝒈
𝑝
𝑡 , 𝒈𝑛𝑡 which are estimated under each dominant behavior from
DBEQ with the number 1 as shown in Figure 2(c). Then we make
an outer-product operation for these three vectors to get a matrix
that keeps the information of each feature as well as brings in the
interactive information of every two or three features:

𝑮𝑡 =

[
𝒈𝑎𝑡
1

]
⊗
[
𝒈
𝑝
𝑡

1

]
⊗
[
𝒈𝑛𝑡
1

]
, (9)

where 𝑮𝑡 is composed of the original features 𝒈𝑎𝑡 , 𝒈
𝑝
𝑡 , 𝒈𝑛𝑡 , the in-

teractions between two features 𝒈𝑎𝑡 ⊗ 𝒈
𝑝
𝑡 , 𝒈𝑎𝑡 ⊗ 𝒈𝑛𝑡 , 𝒈

𝑝
𝑡 ⊗ 𝒈𝑛𝑡 , and

the interactions among three features 𝒈𝑎𝑡 ⊗ 𝒈
𝑝
𝑡 ⊗ 𝒈𝑛𝑡 as shown in

Figure 2(c). As a result, it can well capture the complex interaction
of knowledge acquisition vectors estimated from three behaviors.
Then, we utilize a fully connected layer to obtain the final knowl-
edge acquisition vector considering the cooperative effect:

𝒍𝒈𝑡 = 𝑅𝑒𝐿𝑈 (𝑾3 · 𝑮𝑡 + 𝒃3), (10)

where 𝑾3 ∈ R𝑑ℎ×(𝑑ℎ+1)×(𝑑ℎ+1)×(𝑑ℎ+1) , 𝒃3 ∈ R𝑑ℎ are trainable
parameters. However, the space complexity of 𝑮𝑡 and the weight
matrix𝑾3 and computation complexity of their multiplication are
very high, which increase exponentially with the number of input
features. In order to save the memory and computation overhead,
we follow LMF [30] to decompose𝑾3. Assuming that𝑾3 is staked
by �̃�𝑘 ∈ R(𝑑ℎ+1)×(𝑑ℎ+1)×(𝑑ℎ+1) , 𝑘 = 1, ..., 𝑑ℎ , each of which will
take part in computing one dimension in 𝒍𝒈𝑡 . For an order-3 tensor
�̃�𝑘 , we can decompose it into vectors in the form of:

�̃�𝑘 =

𝑅∑
𝑖=1

(𝒘 (𝑖)
𝑎,𝑘

⊗𝒘 (𝑖)
𝑝,𝑘

⊗𝒘 (𝑖)
𝑛,𝑘

), (11)

where 𝑅 is the smallest number to make the decomposition valid,
and𝒘 (𝑖)

𝑎,𝑘
,𝒘 (𝑖)

𝑝,𝑘
,𝒘 (𝑖)

𝑛,𝑘
∈ R𝑑ℎ+1. We use a fixed rank 𝑟 to implement 𝑅

in this paper. Through Eq. (11), the space complexity of𝑾3 reduces
from𝑂 (𝑑ℎ × (𝑑ℎ +1) × (𝑑ℎ +1) × (𝑑ℎ +1)) to𝑂 (3𝑟 ×𝑑ℎ × (𝑑ℎ +1)).

Let 𝒘 (𝑖)
𝑎 = [𝒘 (𝑖)

𝑎,1,𝒘
(𝑖)
𝑎,2, · · · ,𝒘

(𝑖)
𝑎,𝑑ℎ

], the same applies to 𝒘 (𝑖)
𝑝 and

𝒘 (𝑖)
𝑛 , then the high-order matrix multiplication could be transferred:

𝑾3 · 𝑮𝑡 =(
𝑟∑

𝑖=1

(𝒘 (𝑖)
𝑎 ⊗𝒘 (𝑖)

𝑝 ⊗𝒘 (𝑖)
𝑛 )) · 𝑮𝑡

=

𝑟∑
𝑖=1

(𝒘 (𝑖)
𝑎 ⊗𝒘 (𝑖)

𝑝 ⊗𝒘 (𝑖)
𝑛 ) · 𝑮𝑡 (12)

=

𝑟∑
𝑖=1

(𝒘 (𝑖)
𝑎 ⊗𝒘 (𝑖)

𝑝 ⊗𝒘 (𝑖)
𝑛 ) · (

[
𝒈𝑎𝑡
1

]
⊗
[
𝒈
𝑝
𝑡

1

]
⊗
[
𝒈𝑛𝑡
1

]
)

=(
𝑟∑

𝑖=1

𝒘 (𝑖)
𝑎 ·

[
𝒈𝑎𝑡
1

]
) ∗ (

𝑟∑
𝑖=1

𝒘 (𝑖)
𝑝 ·

[
𝒈
𝑝
𝑡

1

]
) ∗ (

𝑟∑
𝑖=1

𝒘 (𝑖)
𝑛 ·

[
𝒈𝑛𝑡
1

]
),

where ∗ denotes the element-wise multiplication. We transfer the
high-order matrix multiplication into low-rank vectors’ multiplica-
tion with each feature vector thus reducing the computation com-
plexity from𝑂 (𝑑ℎ×(𝑑ℎ+1)×(𝑑ℎ+1)×(𝑑ℎ+1)) to𝑂 (𝑟×𝑑ℎ×(𝑑ℎ+1)).

As 𝒍𝒈𝑡 is correlated to specific concepts, we need to broadcast it
to all concepts. We multiply the concept-focused acquisition vector
𝒍𝒈𝑡 with the concept-related vector 𝒒𝑒𝑡 :

𝒍𝒈𝑡 = 𝒒𝑇𝑒𝑡 · 𝒍𝒈𝑡 . (13)

4.4 Knowledge State Updating
In the learning process, learners acquire knowledge through an-
swering questions and their knowledge states change accordingly.
Following the intuition, we have modeled the knowledge acquisi-
tion of learners monitored by the learning behaviors’ effect. How-
ever, learners’ proficiency will decrease over time as well, and the
update of their knowledge states is under the influence of both the
forgetting factor and knowledge acquisition [34]. Thus, a forget
gate is proposed to model the forgetting phenomenon, in which
we hold that a learner’s forgetting is closely related to his learning
behaviors. For instance, a learner exhibiting quickly repeated at-
tempts will forget more as he is not indeed recalling and applying
his knowledge. Therefore, we combine learners’ learning behaviors,
previous knowledge state and current basic interaction into the
forget gate to simulate their forgetting process. By combining the
forgetting gate and knowledge acquisition vector, we finish the
update of knowledge state as follows:

𝒇𝒕 = 𝜎 (𝑾4 [𝒉𝑡−1 ⊕ 𝒊𝑡 ⊕ 𝑨𝑪𝑡 ⊕ 𝑷𝑪𝑡 ⊕ 𝑵𝑪𝒕 ] + 𝒃4),
𝒉𝑡 = 𝒇𝑡 ∗ 𝒉𝑡−1 + 𝒍𝒈𝑡 ,

(14)

where𝑾4 ∈ R𝑑ℎ×(2𝑑ℎ+3𝑑𝑎) , 𝒃4 ∈ R𝑑ℎ are trainable parameters.

4.5 Performance Prediction
Considering that in real learning scenarios, when given a question
𝑒𝑡+1 at time step 𝑡 + 1, learners will use their knowledge of the
corresponding concepts to solve the problem. So we first use the
concept-related vector 𝒒𝑒𝑡+1 to extract the corresponding knowl-
edge proficiency �̃�𝑡 from the knowledge state matrix 𝒉𝑡 , then a
fully connected layer is utilized to predict the performance on 𝑒𝑡+1:

�̃�𝑡 = 𝒒𝑒𝑡+1 · 𝒉𝑡 ,

𝑦𝑡+1 = 𝜎 (𝑾5 [�̃�𝑡 ⊕ 𝒆𝑡+1] + 𝒃5),
(15)

where 𝑾5 ∈ R1×(𝑑ℎ+𝑑𝑒 ) , 𝒃5 ∈ R are trainable parameters, 𝑦𝑡+1
which in the range of (0,1) represents the probability to answer
question 𝒆𝑡+1 correctly. To train all parameters and vectors in LBKT,
we choose the cross-entropy log loss between the predicted answer
𝑦 and actual answer 𝑟 as the objective function, which will be
minimized in the training process:

L = −
𝑇∑
𝑡=1

(𝑟𝑡 log𝑦𝑡 + (1 − 𝑟𝑡 ) log(1 − 𝑦𝑡 )). (16)

5 EXPERIMENTS
5.1 Datasets
We evaluate our method on three public datasets: (1) ASSIST2009
1(2) ASSIST20122 and (3) Junyi3. The basic statistics of these three
datasets are listed in Table 2 and descriptions are as follows:
• ASSIST2009 is collected from the ASSISTments online tutoring
system which records the behaviors of “attempt count”, “hint
count” and “ms first response”. The records without concepts
and the learners whose answering sequence is less than ten are

1https://sites.google.com/site/assistmentsdata/home/assistment- 2009-2010-data/skill-
builder-data-2009-2010
2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 2: Statistics of all datasets.

Statistics Datasets
ASSIST2009 ASSIST2012 Junyi

Records 297,343 2,622,857 4,316,340
Learners 3,006 22,397 1,000
Questions 9,798 37,413 701
Concepts 107 254 39
Avg.attempts 1.532 1.354 1.417
Avg.time (s) 51.220 54.322 208.398
Avg.hints 0.428 0.394 0.249

removed. To better estimate the distribution of behaviors on each
question, we filter out the questions answered less than 10 times.

• ASSIST2012 is also collected from ASSISTments online tutoring
system. We do the same preprocessing as in ASSIST2009.

• Junyi is collected from Junyi Academy, a Chinese e-learning plat-
form. Following existing works [50, 51], we select 1000 learners
with the most question-answering records from the log data. The
data preprocessing is the same as in ASSIST2009.

5.2 Baselines
In order to evaluate the effectiveness of LBKT, we compare it with
eight knowledge tracing models. Their details are as follows:
• DKT uses RNN to model the question-answer sequence and the
hidden state is represented as learners’ knowledge state [37]. We
use LSTM to implement DKT [21].

• DKT_concat is a variant of DKT that we propose to fuse behav-
ioral information, in which features of Speed, Attempts and Hints
are concatenated with the original input of DKT.

• AT-DKT enhances DKT through adding two auxiliary tasks i.e.
question tagging and students’ prior knowledge prediction [29].

• DKVMN uses a key memory matrix to store the concepts and a
dynamic value memory matrix to store and update the learners’
proficiency on the corresponding concepts [42].

• DMKT estimates learners’ knowledge gain from both answering
results and learning materials like question-related hints [46].
We feed requested-hints number as learning material to DMKT.

• SAKT introduces self-attention mechanism into knowledge trac-
ing to capture the dependency among a learning sequence [36].

• AKT applies a monotonic attention mechanism to capture the
dependency in a learning sequence and uses the Rasch model to
combine questions’ individualized difficulty with concepts [17].

• LPKTmodels the learning process of learners by combining their
answer time and interval time into calculating the learning gain
and forgetting between two continuous time steps [40].

5.3 Training Details
In our experiments, we split the dataset in an 8:1:1 ratio by learners
to obtain the training set, validation set, and testing set. For all
datasets, we first sorted all learning records of a learner by the
timestamp. Then, we set all input sequences to a fixed length as 100.
For sequences longer than the fixed length, we cut them into pieces
based on the fixed length. For the shorter ones, zero vectors were
used to pad them up to the fixed length. We randomly initialized
all parameters by the uniform distribution [18]. The parameters
𝑑 , 𝑘 , 𝑏 in Eq. (4) are set to be 10, 0.3, and 0.7 respectively. The

rank 𝑟 in Eq. (12) to break down high-order matrices is set as 4.
The dimensions of knowledge state and question embedding are
both set as 128 while the answer embedding’s dimension is 50
in our implementation. The learning rate is 0.002 with a decay
at each epoch and the optimizer is Adam [25]. For fairness, the
hyper-parameters of baselines are carefully tuned to have the best
performance. All experiments were conducted on a cluster of Linux
servers with Tesla V100 GPUs.

5.4 Learner Performance Prediction Results
As it’s difficult to directly quantify learners’ knowledge states, fol-
lowing existing work [40], we use the performance prediction task
to infer how well KT models estimate learners’ knowledge states.
In order to evaluate the effectiveness of LBKT, we compare it with
all baselines on predicting learners’ performance and report ex-
perimental results in Table 3. We measure the performance of KT
models with Root Mean Squared Error (RMSE), Area Under Curve
(AUC), and Accuracy (ACC).

In Table 3, we can find several important observations. First,
LBKT significantly outperforms all baseline methods on all datasets
and evaluation metrics. The superior performance demonstrates
that LBKT provides more accurate estimation of learners’ knowl-
edge state by capturing learning behaviors’ complex effects. Second,
DKT_concat which incorporates multiple learning behaviors into
DKT promotes its performance and it shows introducing learning
behaviors into KT task is necessary and valuable. LPKT which ap-
plies behaviors in a finer way outperforms other classic models in
almost all metrics demonstrating the significance of digging more
into the behaviors’ effect. Third, compared with DKT_concat and
LPKT that integrate behaviors in a simple way without mining
their explicit effect on learners’ knowledge state, LBKT achieves
better performance which explains the effectiveness of LBKT in
capturing the behaviors’ distinctive and cooperative effects. We
further investigate the efficiency of LBKT in Appendix A.

5.5 Ablation Study
To further investigate the importance of each module in LBKT, we
design three variations to conduct the ablation study, each of which
removes one part from the original LBKT:
• LBKT-DB replaces Differentiated Behavior Effect Quantifying
(DBEQ) with a fully connected layer by concatenating behavioral
features (i.e. answer time, number of attempts and hints) with
previous knowledge state and current interaction embedding.

• LBKT-FB replaces Fused Behavior Effect Measuring (FBEM)
module with the addition operation to fuse the knowledge acqui-
sition vectors in Eq. (9).

• LBKT-Forget refers to LBKT neglecting the learning behaviors’
impact in forget gate.

We draw some important conclusions from the results in Table 3.
First, the performance of LBKT decreases no matter which part is
removed, which proves that all our proposed components are neces-
sary for tracing learners’ knowledge state. Second, LBKT-FB brings
the biggest decline of performance on ASSIST2009 and ASSIST2012,
reflecting that modeling the dependency of multiple behaviors by
capturing their complex interaction patterns plays the most impor-
tant role in LBKT and simply using the addition operation to linearly
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Table 3: Results of baselines and ablation experiments on learner performance prediction. Existing state-of-the-art results are
underlined and the best results are bold. We compare our LBKT with the SOTA LPKT and ∗ indicates p-value < 0.05 in the
t-test. The Bonferroni’s correction is used in multiple t-tests.

Methods
ASSIST2009 ASSIST2012 Junyi

RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC

DKT 0.4372 0.7430 0.7127 0.4226 0.7364 0.7333 0.3536 0.7586 0.8326
DKT_concat 0.4335 0.7508 0.7204 0.4193 0.7447 0.7407 0.3518 0.7655 0.8340
AT-DKT 0.4370 0.7574 0.7172 0.4162 0.7544 0.7440 0.3537 0.7581 0.8325
DKVMN 0.4416 0.7400 0.7038 0.4224 0.7351 0.7359 0.3544 0.7565 0.8324
DMKT 0.4370 0.7569 0.7196 0.4224 0.7377 0.7383 0.3538 0.7586 0.8336
SAKT 0.4545 0.7111 0.6885 0.4236 0.7335 0.7333 0.3544 0.7590 0.8323
AKT 0.4273 0.7766 0.7289 0.4084 0.7760 0.7559 0.3538 0.7593 0.8325
LPKT 0.4236 0.7788 0.7325 0.4078 0.7751 0.7567 0.3509 0.7689 0.8344

LBKT 0.4203∗ 0.7863∗ 0.7380∗ 0.4043∗ 0.7823∗ 0.7613∗ 0.3494∗ 0.7723∗ 0.8362∗

LBKT-DB 0.4237 0.7793 0.7336 0.4055 0.7815 0.7591 0.3502 0.7698 0.8354
LBKT-FB 0.4243 0.7792 0.7346 0.4056 0.7797 0.7597 0.3496 0.7717 0.8361
LBKT-Forget 0.4212 0.7842 0.7356 0.4054 0.7804 0.7602 0.3494 0.7720 0.8361
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Figure 4: Sub-figures (a)-(d) show the sensitivity of parameters k, b, d and r on dataset ASSIST2009.

combine acquisition vectors under every behavior is insufficient
Third, the performance drop of LBKT-DB verifies that compared
with implicitly utilizing behaviors as supplementary features, our
DBEQ that explicitly quantifies each behavior’s distinctive effect
on knowledge acquisition is better. Last, introducing behaviors
into computing the forget gate assists in capturing the forgetting
process and improving the performance. We further present the
contribution of different behaviors to LBKT in Appendix B.

5.6 Parameter Sensitivity Analysis
As our main concern is explicitly modeling behaviors’ effects on
knowledge state, the sensitivity of 𝑘 , 𝑏, and 𝑑 in Eq. (4), (6) and (8)
should be significant. Besides, the fixed rank 𝑟 in Eq. (12) is also
essential to make the decomposition keep as much information of
𝑾3 as possible and reduce the computation and storage burden at
the same time. To be specific, we evaluate LBKT’s performance on
eight different numbers of 𝑘 : {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. When
applying these different levels on 𝑘 , 𝑑 and 𝑏 always remain 10 and
0.7. Similarly, 𝑏 varies from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1}, 𝑑 varies
from {5, 8, 10, 12, 15, 17, 19}, and 𝑟 varies from {2, 3, 4, 5, 6}.

The experimental results on ASSIST2009 are shown in Figure
4(a)-(d). First, for the low bound 𝑘 , performance increases then
decreases when 𝑘 surpasses 0.3. As a large 𝑘 will lose the difference
of control factor 𝑐 on different levels of behavior factors (i.e. 𝐴𝐶𝑡 ,
𝑃𝐶𝑡 and 𝑁𝐶𝑡 ), while a small 𝑘 enlarges the difference thus leading
to large cost on wrongly supposed cases. Second, for threshold 𝑏,
the performance decreases when it surpasses 0.7 because a small 𝑏
stands for a lower boundary point for different levels of behavior
factors and results in the misunderstanding of behaviors’ effect

while a large 𝑏 increases the boundary point. Third, for the discrim-
inative parameter 𝑑 , performance increases then decreases when
𝑑 surpasses 10. As the control factor 𝑐 will change too smoothly
between low and high behavior factors on a small 𝑑 thus losing
the discrimination contrasting with the sharp change on a large
𝑑 . Fourth, for the fixed rank 𝑟 , LBKT reaches highest performance
when 𝑟 equals to 4. Because a small 𝑟 will cause more information
loss of𝑾3 while a large 𝑟 introduces more unnecessary information.

5.7 Association Validation Between Learning
Behaviors and the Update of Knowledge

We conduct experiments to better investigate the association be-
tween knowledge acquisition and behavior factors. We use the
Normalized Learning Gain (𝑁𝐿_𝐺𝑎𝑖𝑛) [20] to measure the explicit
knowledge acquisition of a learner from his performance prediction
before and after he answers a question.

𝑦𝑡 = 𝜎 (𝑾5 [˜𝒉𝑡−1 ⊕ 𝒆𝑡 ] + 𝒃5),

𝑦′𝑡 = 𝜎 (𝑾5 [˜𝒉𝑡 ⊕ 𝒆𝑡 ] + 𝒃5),

𝑁𝐿_𝐺𝑎𝑖𝑛 =
𝑦′𝑡 − 𝑦𝑡

1 − 𝑦𝑡
,

(17)

where 𝑦𝑡 and 𝑦′𝑡 denote the prediction performance before and
after the learner answers question 𝑒𝑡 . We hold if the learner learns
from the question, his performance would increase on the same
question. For each behavior factor, we classify records into high
and low groups based on the threshold 𝑏 in Eq. (4) , (6) and (8)
which shows best performance when equal to 0.7, and we would
get 8 groups according to three behavior factors e.g., group (ℎ,ℎ, 𝑙)
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e1 e2 e3 e4 e5 e6 e7 e8 e9
Concept j j k k k k l l l

Resp
j 0.91 0.87 0.84 0.84 0.83 0.83 0.83 0.83 0.83 
k 0.44 0.74 0.65 0.64 0.78 0.71 0.68 0.63 0.62 
l 0.59 0.59 0.60 0.59 0.60 0.60 0.72 0.69 0.59 

jAddition and Subtraction Positive Decimals kDivision Fractions lAddition and Subtraction Fractions
Figure 5: An example of tracking the proficiency of a certain learner on three concepts on the dataset ASSIST2009. The top
line represents questions answered by the learner followed by the corresponding concepts and responses below. In addition,
the learning behaviors including Speed,Attempts andHints together with their rescaled factors are presented in the right part.
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Figure 6: The Normalized Learning Gain of eight groups on
ASSIST2009, which are obtained based on the rescaled , e.g.,
the group (ℎ,ℎ, 𝑙) includes records with high Speed and At-
tempts factors but a low Hints factor.

include records with high Speed and high Attempts factors (i.e.
𝐴𝐶𝑡 , 𝑃𝐶𝑡 ) and a low Hints factor 𝑁𝐶𝑡 . For each group, the average
𝑁𝐿_𝐺𝑎𝑖𝑛 of its records represents the knowledge acquisition.

Figure 6 shows the 𝑁𝐿_𝐺𝑎𝑖𝑛 results of each group and we have
some observations. First, the 𝑁𝐿_𝐺𝑎𝑖𝑛 of group (𝑙, 𝑙, 𝑙) is the high-
est while group (ℎ,ℎ, ℎ) is the lowest. This indicates that knowledge
acquisition of groups except (𝑙, 𝑙, 𝑙) is narrowed by some behavior
(i.e. high speed, many attempts and requested hints correlate to poor
knowledge acquisition from an overall point of view) and group
(ℎ,ℎ, ℎ) is especially affected by all three behaviors. Second, the
𝑁𝐿_𝐺𝑎𝑖𝑛 of groups that infer a high factor on just one behavior e.g.,
(ℎ, 𝑙, 𝑙) is higher than those groups that infer high factors on two or
three behaviors, which demonstrates the dependency among differ-
ent behaviors is captured well through FBEM. Third, in the groups
that infer a high factor on just one behavior, the 𝑁𝐿_𝐺𝑎𝑖𝑛 of group
(𝑙, 𝑙, ℎ) is the lowest, which indicates that relying on hints to finish
a question influences most on learners’ knowledge acquisition.

5.8 Visualization of Proficiency Evolution
A superior ability of LBKT is that it can track learners’ knowledge
proficiency on each concept as we use a matrix to store the knowl-
edge state under multiple concepts instead of a high-dimensional
vector. Learners can intuitively understand their mastery and defi-
ciencies in each knowledge concept. The proficiency of a learner
on concept 𝑐𝑚 at step t could be computed follows [27]:

𝑦𝑚𝑡 = 𝜎 (𝑾5 [𝒉𝑚𝑡 ⊕ 0] + 𝒃5), (18)

where 𝒉𝑚𝑡 means the row relates to concept 𝑐𝑚 in the knowledge
state matrix 𝒉𝑡 and 0 = (0, 0, ..., 0) is the masked question embed-
ding with the same dimension as 𝒆𝑡+1 in Eq. (15).

Figure 5 shows the changing process of a learner’s knowledge
proficiency on three concepts traced by LBKT after he finished an-
swering 9 questions sequentially. We find that although the learner
has answered question 𝑒3 related to concept “Division Fractions”
correctly, his proficiency on it decreases from 0.74 to 0.65. To in-
vestigate the reason, we move our sight to his learning behaviors
presented in the right part of Figure 5. We note that he spends 14
seconds with one attempt to obtain the correct answer and the Speed
factor 𝐴𝐶 estimated by DBEQ is extremely high (0.89). This implies
the learner answers too fast and is possibly viewed as guessing, so
LBKT narrows his knowledge acquisition and together with the
forget gate decreases his proficiency. Similarly, when the learner
answers question 𝑒9 with high factors as 0.97, 0.73 and 0.99 un-
der three behaviors, the cooperative effect of these three behaviors
drives the decline of proficiency in the answering concept “Addition
and Subtraction Fractions”. LBKT tracks learners’ proficiency not
only based on their responses but also considers different behaviors’
effect, thus making more accurate and reasonable estimation.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we pointed out the significant effects of learning
behaviors on knowledge tracing and proposed LBKT to measure
the effects. We first designed the Differentiated Behavior Effect
Quantifying (DBEQ) module and Fused Behavior Effect Measuring
(FBEM) module to quantify the distinctive and cooperative effects
of Speed, Attempts and Hints on knowledge acquisition. Moreover,
a forget gate was proposed incorporating the behaviors to capture
the decrease of proficiency over time and by combining forget-
ting and knowledge acquisition the knowledge state was updated.
Experimental results on three public datasets showed that LBKT
outperformed previous classic KT methods and estimated more
reasonable knowledge state of learners considering their behaviors.
Our LBKT can introduce other behaviors like the chosen option
transitions or answer text submitted by learners when available by
analyzing their distributions and effect on knowledge acquisition.
In the future, we will try to incorporate more behaviors and deeply
mine how these behaviors affect learners’ knowledge states.
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A EFFICIENCY OF LBKT
We conduct extensive experiments to show LBKT’s efficiency. As
the AKT and LPKT models show comparable performance with
LBKT while the other baselines show much worse performance,
we just compare the training time LBKT consumed with these two
baselines. And the results are listed in Table 4.

We adopt early stopping strategy in the training phase if the
evaluation metric AUC score on validation set does not increase
for 5 epochs. The batch size for training these three models is all
set as 32 and the learning rate is tuned to have best performance.
We setup the training process for each model five times. And Time
/ epoch refers to the average time (in minutes) consumed each
epoch for training. Best epoch refers to the average epochs used

for the model to achieve best performance on validation set. Total
time refers to the total time (in minutes) for the model to finish
training with the early stopping strategy. We can draw some conclu-
sions from the experimental results. Firstly, LBKT is more efficient
than the SOTA LPKT in all the datasets which indicates that LBKT
outperforms LPKT not only on the performance but also on the ef-
ficiency. Secondly, although LBKT spent more time per epoch than
AKT, it converges much faster and thus leading to the comparable
consuming time for training with AKT. Besides, LBKT utilizes a
matrix to record the learner’s proficiency level under each knowl-
edge concept which results in consuming more time each epoch in
contrast with AKT that only use a high-dimensional hidden vec-
tor to represent the student’s proficiency. So our LBKT can obtain
better interpretability for exhibiting learner’s proficiency under
different concepts than AKT. To sum up, it’s a good choice to use
LBKT in real-time online learning environments if the environment
requires good interpretability to show learner’s proficiency under
each knowledge concept.

B CONTRIBUTION OF DIFFERENT
BEHAVIORS

We further conduct ablation experiments of the three behavioral
variables to investigate their different contribution. LBKT_Speed,
LBKT_Attempt, and LBKT_Hint refer to that modifying LBKT to
be kept with only one behavior Speed,Attempt andHint respectively.
LBKT-none refers to LBKT with none behaviors which is built
by setting response time, attempts number and hints number as
fixed number 100 seconds, 1 and 0 respectively. We can draw some
conclusions from the experimental results. Firstly, it can be seen that
all the three behaviors contributes to the performance of LBKT as
LBKT_Speed, LBKT_Attempt and LBKT_Hint all outperform
LBKT_None. Secondly, the “Speed” behavior contributes most to
LBKT on ASSIST2009 and Junyi datasets. Finally, by considering all
these three behaviors, LBKT gains great performance improvement.
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Table 4: Consuming training time for different models on three widely-used datasets. The best results are bold.

Methods
ASSIST2009 ASSIST2012 Junyi

Time / epoch Best epoch Total time Time / epoch Best epoch Total time Time / epoch Best epoch Total time

AKT 0.05 32.80 1.89 1.20 26.40 37.68 1.65 31.20 59.73
LPKT 1.03 2.80 8.03 7.14 3.20 58.55 7.31 10.80 115.50

LBKT 0.75 2.20 5.40 6.05 2.00 42.35 6.73 5.80 72.68

Table 5: Results of learners’ performance prediction for LBKT fed with different behaviors. The second best results are under-
lined and the best results are bold.

Methods
ASSIST2009 ASSIST2012 Junyi

RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC

LBKT 0.4203 0.7863 0.7380 0.4043 0.7823 0.7613 0.3494 0.7723 0.8362

LBKT_None 0.4279 0.7733 0.7276 0.4082 0.7759 0.7549 0.3510 0.7681 0.8341
LBKT_Speed 0.4206 0.7854 0.7373 0.4062 0.7781 0.7583 0.3501 0.7699 0.8356
LBKT_Attempt 0.4224 0.7835 0.7336 0.4058 0.7792 0.7588 0.3506 0.7685 0.8342
LBKT_Hint 0.4223 0.7831 0.7335 0.4066 0.7786 0.7587 0.3503 0.7698 0.8354

2800


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The LBKT Model
	4.1 Learning Sequence Representation
	4.2 Differentiated Behavior Effect Quantifying
	4.3 Fused Behavior Effect Measuring
	4.4 Knowledge State Updating
	4.5 Performance Prediction 

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Training Details
	5.4 Learner Performance Prediction Results
	5.5 Ablation Study
	5.6 Parameter Sensitivity Analysis
	5.7 Association Validation Between Learning Behaviors and the Update of Knowledge
	5.8 Visualization of Proficiency Evolution

	6 Conclusions and Future Works
	Acknowledgments
	References
	A Efficiency of LBKT
	B Contribution of different behaviors



