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Abstract

As intelligent education evolves, it will pro-
vide students with multiple personalized learn-
ing services based on their individual abilities.
Computerized adaptive testing (CAT) is de-
signed to accurately measure a student’s ability
using the least questions, providing an efficient
and personalized testing method. However, ex-
isting methods mainly focus on minimizing the
number of questions required to assess ability,
often lacking clear and reliable explanations
for the question selection process. Educators
and students can hardly trust and accept CAT
systems without an understanding of the ratio-
nale behind the question selection process. To
address this issue, we introduce LLM-Agent-
Based CAT (LACAT), a novel agent powered
by large language models to enhance CAT with
human-like interpretability and explanation ca-
pabilities. LACAT consists of three key mod-
ules: the Summarizer, which generates inter-
pretable student profiles; the Reasoner, which
personalizes questions and provides human-
readable explanations; and the Critic, which
learns from past choices to optimize future
question selection. We conducted extensive
experiments on three real-world educational
datasets. The results demonstrate that LACAT
can perform comparably or superior to tradi-
tional CAT methods in accuracy and signifi-
cantly improve the transparency and acceptabil-
ity of the testing process. Human evaluations
further confirm that LACAT can generate high-
quality, understandable explanations, thereby
enhancing student trust and satisfaction. 1

1 Introduction

As intelligent education has evolved significantly,
computerized adaptive testing (CAT), which aims
to accurately measure a student’s ability with as

*Corresponding author
1Code and data are publicly available at https://github.

com/doublecheng12/LACAT
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Figure 1: Overview of CAT workflow.

few questions as possible, provides an efficient
and personalized testing method for downstream
educational services, such as learning resource rec-
ommendation, and learning status report. (Van der
Linden and Glas, 2000). Generally, CAT selects
appropriate questions that align with each stu-
dent’s individual performance, further delivering
equivalent testing accuracy levels with fewer test
items compared to conventional paper-and-pencil
exams (Cheng, 2009).

Figure 1 illustrates a toy example of a typical
CAT. In practice, CAT involves two core com-
ponents: the Cognitive Diagnosis Model (CDM),
which estimates students’ abilities, and a selection
strategy that identifies the most appropriate ques-
tions based on their past performance (Embretson
and Reise, 2013; Zhao et al., 2023). The workflow
of the CAT system is as follows. Given a student,
in step t−1, the selection algorithm selects an exer-
cise based on the CDM’s estimate of the student’s
current abilities, denoted by θt−1. Subsequently,
the students accept and answer the exercise. After
receiving the answer, the CDM updates the esti-
mate to θt based on the new answer.

Traditionally, heuristic rules such as maxi-
mizing Fisher information (Chang et al., 2015),
KLI (Chang and Ying, 1996) have been used
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for question selection. However, these methods
struggle with generalization and modeling com-
plex interactions between students and questions.
Recently, the focus has shifted to deep learning
methods like NCAT (Zhuang et al., 2022), BOB-
CAT (Ghosh and Lan, 2021), and GMOCAT (Wang
et al., 2023b), which learn selection algorithms
from large-scale student response data and have im-
proved test accuracy. Despite their success, these
black-box systems lack transparency and fail to
provide reasonable explanations (Liu et al., 2024a),
leading to potential distrust among teachers and stu-
dents. Hence, developing interpretable and trans-
parent adaptive testing models is crucial for their
widespread adoption and trust (Wainer et al., 2000).

Nowadays, the emergence of large language
models (Achiam et al., 2023) offers a new per-
spective on solving this problem. Recent research
has demonstrated their power in textual reason-
ing (Zhang et al., 2024a), achieving significant re-
sults in tasks like text summarization (Luo et al.,
2023) and sentiment analysis (Zhang et al., 2023a).
Additionally, these models possess powerful lan-
guage generation capabilities, enabling them to
produce human-readable explanatory text for their
decision-making processes. However, although
large language models excel in language processing
tasks, the integration of LLM within the framework
of computerized adaptive testing remains highly
challenging.

Three primary challenges can be delineated in
tackling the explainable computerized adaptive
testing task using large language models (LLMs).
Firstly, the Cognitive Diagnostic Model (CDM)
generally represents the estimation of a student’s
abilities using a single or multi-dimensional vec-
tor. However, relying solely on a vector is insuf-
ficient for guiding an LLM in question selection.
Secondly, while the primary goal of computerized
adaptive testing is to assess students’ abilities accu-
rately, the lack of a precise standard for question se-
lection and determining the optimal question poses
a significant challenge. This is especially true for
LLMs, which must also explain their question se-
lections. Thirdly, the lack of an effective feedback
mechanism to optimize question selection is a chal-
lenge. In computerized adaptive testing, decision-
making is continuous, with past selections and ex-
periences crucial for current decisions. Ensuring
past decisions improve future question selection is
essential for maintaining accurate assessments.

To address these challenges, we propose an

LLM-Agent-Based CAT (LACAT). LACAT incor-
porates three essential components: (1) The Sum-
marizer, which accurately depicts user profiles
from student response data and further enhances the
understanding of students’ abilities, addresses the
challenge of insufficient selection guidance from
student’s abilities estimation vectors. (2) The Rea-
soner, which selects the most suitable questions
and provides clear, human-readable explanations,
tackles the challenge of the lack of a precise stan-
dard for question selection and explanation. (3)
The Critic, which reflects on past question selec-
tions and gathers insights to improve future deci-
sions, addresses the lack of an effective feedback
mechanism for optimizing question selection. In
summary, our contributions are:

• To the best of our knowledge, our method is
the first to integrate large language models
(LLMs) into computerized adaptive testing
(CAT) for explainable question selection, in-
troducing a new perspective and methodology.

• We introduce the LACAT framework, com-
prising three modules that leverage LLMs to
understand students’ cognitive abilities, select
the most appropriate questions, and then pro-
vide clear and comprehensible explanations.

• Extensive experiments on three real-world
public datasets demonstrate the efficacy of
LACAT. Human evaluations further confirm
the high quality of its generated explanations.

2 Related Works

2.1 Computerzied Adaptive Testing
In classical Computerized Adaptive Testing (CAT)
systems, Item Response Theory (IRT) is typi-
cally used as the Cognitive Diagnostic Model
(CDM) to predict student responses to questions.
Recently, neural network-based CDMs, such as
NCDM (Wang et al., 2020), ICDM (Liu et al.,
2024b) have also emerged. The selection algorithm
plays a crucial role in CAT systems. Initially, selec-
tion algorithms were based on information metrics
like MFI (Chang et al., 2015) and KLI (Chang and
Ying, 1996). Subsequently, rule-based methods,
such as MAAT (Bi et al., 2020) using active learn-
ing, were proposed. Recent works have focused
on data-driven approaches. For instance, BOB-
CAT (Ghosh and Lan, 2021) and NCAT (Zhuang
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Figure 2: Illustration of (a) a typical process of CAT (Left), and (b) the overflow of LACAT(Right), which integrates
three components, i.e., Summarizer, Reasoner, and Critic. The Support Set and Query Set are randomly selected
from the pool of candidate questions.

et al., 2022) treat CAT as a reinforcement learn-
ing (RL) (Kaelbling et al., 1996) problem and train
selection algorithms directly from large-scale stu-
dent response data. Additionally, to achieve a more
general and scalable framework, researchers have
proposed the bounded estimation CAT framework
(BECAT) (Zhuang et al., 2024), which redefines
the selection problem using a data summary ap-
proach. However, these methods primarily aim
to reduce test length and do not address the inter-
pretability of CAT selections. To our knowledge,
no current work focuses on the transparency and
explainability of CAT selection algorithms.

2.2 LLM-Based Agent
With the rapid development of large language mod-
els, increasing efforts have been made to utilize
these models as agents for decision-making (Yang
et al., 2024; Zhao et al., 2024a). These models
often possess reflective (Wang et al., 2023c; Pan
et al., 2023; Li et al., 2023), memorization (Zhong
et al., 2024; Sun et al., 2023; Li and Qiu, 2023),
and tool-using capabilities (Zhao et al., 2024b) and
have been applied in diverse fields such as game
decision-making (Ma et al., 2023; Zhu et al., 2023;
Wang et al., 2023a), finance (Li et al., 2024b; Koa
et al., 2024), and recommendation systems (Shi
et al., 2024; Zhou et al., 2024; Zhang et al., 2023b).
In the field of education, LLM-based agents have
been applied to student state modeling tasks, such
as knowledge tracking (Li et al., 2024a) and sim-
ulating student behavior (Xu et al., 2024). How-
ever, existing research typically addresses individ-
ual aspects of intelligent education, such as student
ability modeling, without integrating proper mod-
ules to accomplish complex multi-step tasks. Thus,
they are not suitable to tackle the explanation prob-
lem in the CAT task. In this paper, We propose a
multi-module framework, LACAT (LLM-Agent-

Based CAT), which enhances the interpretability
and transparency of multi-step decision-making in
Computerized Adaptive Testing (CAT) through the
collaborative work of the Summarizer, Reasoner,
and Critic modules.

3 PRELIMINARIES

3.1 Computerized Adaptive Testing (CAT)
In Computerized Adaptive Testing (CAT), as illus-
trated in Figure 2(a), two core components, the cog-
nitive diagnostic model and the selection algorithm,
work in tandem through a series of steps t ∈ [1, T ].
Initially, the candidate questions pool is randomly
split into the support and query set. The selection
algorithm identifies the most appropriate question
from the support set for the student to respond to.
Post-response, the cognitive diagnostic model es-
timates the student’s true ability θt based on their
response record, denoted as (qt, at, ct), where qt is
the question answered by the student at step t, at
is the response (1 if correct, 0 otherwise), and ct is
the text content of the question. When combined
with θt, this query set helps compute feedback to
assess the accuracy of the ability estimation, as il-
lustrated in Figure 2(a). This feedback is then used
to guide the selection of the next question, refining
the process to match the student’s demonstrated
abilities better.

3.2 Problem Statement
As mentioned above, Computerized Adaptive Test-
ing System involves selecting a question q from the
support set for student ui at each step t based on
the student’s historical records and feedback from
the Cognitive Diagnostic Model (CDM). After re-
ceiving the student’s response a to question q, the
CDM updates and estimates the new ability level
θt. This process is repeated T times to accurately
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estimate the student’s ability, aiming for θT to ap-
proach θ0, where θ0 represents the true (usually
unknown) ability of student ui.

Furthermore, we aim to integrate Large Lan-
guage Models (LLMs) into the question selection
process of Computerized Adaptive Testing (CAT)
to enhance user modeling and improve the trans-
parency, interpretability, and efficiency of ability
estimation. This integration will enable the gen-
eration of clear and transparent explanations for
question selection, thus making the process more
understandable and accessible for students and edu-
cators. By leveraging LLMs, we can provide more
personalized and accurate assessments, ultimately
contributing to a more effective and insightful eval-
uation of student ability.

4 Method

4.1 Overall Workflow
As shown in Figure 2(b), the Summarizer is respon-
sible for constructing the student profile, consisting
of a long-term profile from all of the student’s re-
sponse records and a short-term profile from their
recent response records. This profile serves as the
basis for subsequent question selection, address-
ing the challenge of insufficient selection guidance
typically provided by traditional ability estimation
vectors. Then, the Reasoner selects the most suit-
able question from the support set based on the
detailed user profile created by the Summarizer
and insights from the Critic’s evaluation of the pre-
vious round’s question selection. Importantly, the
Reasoner provides a clear and reasonable explana-
tion for each selection, ensuring transparency and
interpretability. The Critic’s evaluation is based
on the reward provided by the environment. If the
reward is low, the Critic analyzes the issues in the
previous question selection to avoid repeating the
same mistakes in future selections, thereby opti-
mizing the quality of the question selection and
achieving a more precise capability assessment.

Specifically, given that a new student has no
response, a representative item from the support
set, such as one with high distinction and medium
difficulty, will first be selected for them. Then,
the Summarizer will obtain the student’s record
and analyze their profile. The Reasoner selects the
most suitable exercise for the student based on their
profile and provides reasons for the selection. If the
quality of the exercise selection is not satisfactory,
the Critic will analyze the reasons to prevent the

same error and provide hints for the next selection
round. These three components work in a cycle
until the end of the test.

4.2 Summarizer
The Summarizer module comprises both long-term
and short-term profile systems. As illustrated in
Figure 2(b), the long-term profile repository metic-
ulously analyzes and catalogs student-specific fea-
tures extracted from their entire response history.
It systematically identifies and archives areas of
strength, weakness, and persistent challenges over
time, providing a comprehensive view of each stu-
dent’s unique educational journey. Concurrently,
the short-term profile system focuses on the im-
mediate evaluation of the student’s most recent
response, conducting a real-time analysis to synthe-
size an informed guiding thought. This cognitive
process is crucial for the adaptive selection of sub-
sequent questions, ensuring their appropriateness at
the challenge level and alignment with the student’s
immediate learning needs.

4.2.1 Long-term Profile
Students may exhibit consistent ability in exam
performance over time. For instance, a student
lacking in spatial visualization typically performs
inadequately on solid geometry problems (Chen
et al., 2023b; Zhao et al., 2021). Therefore, we
propose to learn the long-term profile of students
to capture this consistent ability. Specifically, for
a student ui at time step t, the profile utilizes the
historical response records and the current ability
estimate θt, which is derived from the parameters of
the abstract CDM. This estimate takes the response
records from all previous steps as input.

Note that the input for the long-term profile in-
cludes the response records from all previous steps.
Thus, for each previous step t′ ∈ [1, t − 1], the
triple (qt′ , at′ , ct′) can be represented by et′ . The
student’s current ability estimate θt is calculated
using these previous responses.

Lt =LLMlong-term ([e1, e2, . . . , et−1] ,

θt−1, promptlong-term).
(1)

The long-term profile primarily captures the stu-
dent’s state in each type of knowledge and serves
as a valuable resource for selecting customized
questions tailored to her individual needs.
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Table 1: Example of Critic.
Critic Case

The selected trigonometric function problem was too
difficult for the student, resulting in less-than-ideal out-
comes. This mismatch may have caused the student
frustration and hindered their progress. To improve this
situation, we should adjust the difficulty of the problems
to match the student’s current skill level. By providing
questions appropriate to the student’s abilities, we can
help them gradually build confidence and effectively
promote learning.

4.2.2 Short-term Profile
Besides the long-term ability, when construct-
ing students’profiles, their recent academic perfor-
mance must also be considered. For instance, if stu-
dents correctly answer the trigonometric function
knowledge in the previous question, the difficulty
level of the questions related to this knowledge
point should be increased to gain a more precise
assessment of their capabilities. We represent the
short-term profile as a thought that guides the se-
lection of the next question based on the student’s
long-term profile and their recent response history.
Specifically, for a student ui at time step t, the Sum-
marizer utilizes the recent response record et−1 as
input to generate the short-term profile.

St = LLMshort-term ([et−1] , Lt,

promptshort-term) .
(2)

In light of these comprehensive profiling mech-
anisms, the student profile is thus composed of
both long-term and short-term components. Conse-
quently, the Reasoner leverages this multifaceted
student profile to make informed decisions in se-
lecting the most appropriate subsequent question.

4.3 Critic
In the computerized adaptive testing (CAT) selec-
tion process, decision-making is continuous, with
past selections and experiences playing a key role
in current selections (Zhao et al., 2024a; Li et al.,
2024c; He et al., 2024). With this in mind, we
design the Critic module to extract guiding princi-
ples from past selections. When the quality of the
selected questions is low, the Critic module ana-
lyzes the cause and provides guidance for the next
selection. The quality of a question is defined by
its ability to predict students’ true abilities accu-
rately. Although students’ true abilities are usually
unknown, we can use their query set (Zhuang et al.,
2022) to measure the error of the ability estimate
θt. During the test phase t, we use θt to calculate
the prediction accuracy of the query set, denoted

as ACC(θt). The higher the ACC(θt), the closer
the estimated θt is to the true ability. Therefore,
the quality of a question can be formally defined as
follows:

rqua =

{
1, if ACC(θt) > ACC(θt−1)

0, otherwise.
(3)

The detailed calculation process of ACC(θt) is
described in Appendix C.

Questions are deemed high quality when they
enhance the accuracy of ability assessments. The
Critic module aims to simulate this quality assess-
ment process and maximize rqua over time. If the
selected questions fall short of improving accuracy,
the Critic assesses output quality and offers strate-
gic direction through the following formulation:

Ct = LLMcritic ([e1, . . . , et−1] ,

θt−1, promptcritic) .
(4)

To provide a clearer understanding, we present
an example in Table 1. In this instance, the poor
quality of question selection is due to a mismatch
between the selected question and the student’s
ability. Specifically, a question on trigonometric
functions was chosen that is far beyond the stu-
dent’s current capability. Therefore, the following
selections should consider reducing the difficulty
of questions in this knowledge point. Obviously,
the Critic module helps the agent fully perceive
past student ability and adapt their strategies to
maintain high-quality selections.

4.4 Reasoner
The Reasoner aims to select the most appropriate
questions for students of varying abilities based on
their historical response records and to provide rea-
sonable, transparent, and human-readable explana-
tions. To achieve this, the Reasoner considers both
students’ long-term and short-term performance,
combining these insights in the question selection
process. Guided by the Critic, the Reasoner can
promptly adjust the selection strategy. Additionally,
we employ the chain of thought prompt (Wei et al.,
2022) to enhance the effectiveness and explainabil-
ity of question selection. Specifically, the Reasoner
first identifies the characteristics of problems that
should be selected for each student, paying par-
ticular attention to how each problem affects the
student’s ability profile. This approach ensures that
the reasoning behind each choice is clear and easy
to understand, thereby enhancing the transparency
and credibility of the process.
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Table 2: Example of Reasoner.
Reasoner Case

I selected question 1 because it involves solving a
quadratic equation, an area where the student has re-
cently shown significant improvement. This will help
consolidate their algebra skills and build confidence.
The moderate difficulty level can effectively assess their
understanding and differentiate their ability in algebra.
Additionally, focusing on algebra avoids their weak-
nesses in geometry, allowing them to concentrate on
their strengths and enhance their overall learning expe-
rience.

For example, Table 2 shows a student who has
significantly improved in solving quadratic equa-
tions, demonstrating a strength in this area, while
still struggling with geometry, which remains a
weakness. Based on this information, the Reasoner
selects a question involving quadratic equations
from the list of candidate questions to reinforce
the student’s algebra skills and build confidence.
This selection leverages the student’s strengths and
provides an appropriate challenge to assess their
understanding accurately. Avoiding geometry ques-
tions at this stage allows the student to focus on
areas where they can perform well, enhancing the
learning experience.

For test stage t, the final process can be formu-
lated as:

(rt, qt) = LLMReasoner (Lt−1, St−1, Ct−1,

[support set], promptReasoner) .
(5)

Here, rt represents the reason for selecting qt, and
qt is the selected question.

5 Experiments

In this section, we conduct extensive experiments
on three real-world datasets to evaluate the per-
formance of LACAT. Our experiments focus on
answering the following research questions:

• RQ1: How does LACAT compare to exist-
ing question selection algorithms under the
general CAT setting?

• RQ2: What is the quality of the Explanation
of the different components (i.e., Summarizer,
reasoner) generated by LACAT?

• RQ3: How does LACAT perform on Question
Exposure and Context Overlap?

• RQ4: How do different components (i.e.,
Summarizer, Critic) influence our LACAT?

Furthermore, we conduct several quantitative exper-
iments to further demonstrate the effectiveness of
LACAT. More details can be found in Appendix B.

5.1 Experimental Settings
5.1.1 Data Partition and Experiment Process
We evaluate our LACAT method using three real-
world educational datasets: Junyi, MOOCRadar,
and EXAM. The Junyi dataset (Chang et al., 2015)
consists of question logs from the 2018-2019 aca-
demic year on the online learning platform Junyi
Academy. MOOCRadar (Yu et al., 2023) includes
learning records from students in various MOOCs.
The EXAM dataset, provided by Zhixue.com, con-
tains records of junior high school students’ math-
ematical exam performances. For all datasets, we
remove students with fewer than 30 test records.
Then, we allocate 80%, 10%, and 10% of the stu-
dents for training, validation, and testing, respec-
tively. Additionally, we divide the samples contain-
ing student’s test records into a support question
set, which comprises 80% of the samples, and a
query question set, which comprises the remaining
20%. We use AUC (Area Under the Curve) and
ACC (Accuracy) to evaluate the performance of
each CAT method.

5.1.2 Compared Methods
In our experiment, we use Item Response Theory
(IRT) (Embretson and Reise, 2013), which is the
most popular Cognitive Diagnostic Model (CDM)
in Computerized Adaptive Testing (CAT). To mea-
sure the effectiveness of LACAT, We first com-
pare it with traditional CAT methods that do not re-
quire training, including MFI (Chang et al., 2015),
KLI (Chang and Ying, 1996), MAAT (Bi et al.,
2020), and BECAT (Zhuang et al., 2024). Further-
more, to evaluate the superiority of LACAT, we
compare it with other data-driven CAT algorithms,
specifically BOBCAT (Ghosh and Lan, 2021) and
NCAT (Zhuang et al., 2022). Detailed implemen-
tations of the baseline methods are presented in
Appendix A.

5.1.3 Implementation Details
We used GPT-3.5-turbo-16k provided by OpenAI
API as the LLM backbone for its strong long con-
text modeling ability, and the temperature of the
model is set to 0. Moreover, We reproduced all
baseline models using the public EduCAT library 2.
We use the recommended hyperparameters from
the original papers.

2https://github.com/bigdata-ustc/EduCAT
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Table 3: The performance of different methods on Student Score Prediction with ACC and AUC metrics. The
boldfaced indicates the statistically significant improvements (p-value < 0.05) over the best baseline.

Dataset MoocRadar Junyi Exam
Metric AUC AUC AUC
Step 1 5 10 1 5 10 1 5 10
MFI 65.03 70.12 74.67 68.14 68.57 69.03 74.12 74.50 74.59
KLI 65.11 69.59 73.95 68.12 68.48 69.01 74.14 74.47 74.56
MAAT 65.45 69.71 74.17 68.18 68.70 69.54 74.17 74.53 74.64
BECAT 65.72 70.54 75.13 68.17 68.91 69.66 74.29 74.61 74.74
BOBCAT 65.97 71.34 75.78 68.23 69.07 69.73 74.49 74.73 74.97
NCAT 65.93 71.42 76.01 68.19 68.95 69.69 74.45 74.85 75.08
LACAT (Zero-shot) 66.08 71.66 76.32 68.37 69.15 69.79 74.22 74.60 74.71
Metric ACC ACC ACC
Step 1 5 10 1 5 10 1 5 10
MFI 74.67 83.14 86.67 71.20 71.93 72.08 64.44 65.35 66.47
KLI 74.76 83.28 86.66 71.23 71.99 72.13 64.39 65.27 66.40
MAAT 75.19 83.42 86.92 71.26 72.05 72.17 64.48 65.46 66.52
BECAT 75.36 83.54 87.06 71.39 72.07 72.20 64.55 65.50 66.61
BOBCAT 75.49 83.58 87.14 71.51 72.09 72.39 64.77 65.96 66.84
NCAT 75.58 83.97 87.36 71.43 72.07 72.22 64.83 66.12 67.10
LACAT (Zero-shot) 75.70 84.35 87.48 71.75 72.13 72.42 64.48 65.44 66.50

5.2 Student Performance Prediction (RQ1)
To verify the validity of the selection algorithm,
we tested it on the student score prediction task
of CAT. The evaluation methodology is detailed
in Appendix D. As shown in Table 3, the AUC
and ACC of students’ responses to questions in the
query set of the test set were used as evaluation
metrics. We present the results for 1, 5, and 10 test
steps. Our observations are as follows:

• LACAT demonstrates superior performance
across both the Junyi and MoocRadar datasets,
surpassing all baseline models. Remarkably,
despite requiring no data training, LACAT out-
performs data-driven approaches, validating
the efficacy of our framework. This achieve-
ment underscores LACAT’s capacity to ef-
fectively model the intricate relationships be-
tween students and exercises, highlighting its
potential in educational assessment.

• LACAT exhibits suboptimal performance on
the Exam dataset. We attribute this to the
difficulty large language models have in rec-
ognizing the attributes of mathematical prob-
lems requiring complex reasoning. Despite
being trained on many datasets, large lan-
guage models still struggle with complex rea-
soning. Compared to Junyi’s simple primary
school math problems and the quiz questions
in MoocRadar, large language models may
make more errors on questions requiring com-
plex reasoning.

5.3 Evaluation Results For Explainability
(RQ2)

Since there was no existing reference on the ex-
plainability of CAT, inspired by previous exper-
iments on text quality assessment (Yang et al.,
2023; Chen et al., 2023a), we designed four in-
dexes to evaluate the text generated by LACAT, in-
cluding the student profile by the Summarizer and
the selection reason by the Reasoner. The indexes
are: 1) Fluency: the fluency and readability of the
text. 2) Comprehensiveness: whether the generated
text covers all the students’ issues. 3) Relevancy:
whether the generated text is relevant to the stu-
dents’ problem-solving situation. 4) Overall: the
general effectiveness of the generated explanation.

Each aspect was rated on a scale from 0 to 2,
with higher ratings reflecting more satisfactory per-
formance. We extracted 50 samples each from
the MoocRadar and Exam data sets, totaling 100
samples. These samples were distributed to 5 eval-
uators, including teachers and graduate students
in the field of education. Specifically, we pro-
vided the evaluators with the record of the student’s
question responses, the student profile summarized
by the Summarizer, and the Reasoner’s explana-
tions for selecting each question. Additionally,
the emergence of large language models (LLMs)
had sparked interest in their potential applications
for evaluating natural language generation (NLG)
tasks. To leverage these advancements, we uti-
lized state-of-the-art models, specifically GPT-4
and Deepseek-v2, as automated evaluation methods
to assess the quality of the generated text. Details of
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Table 4: The Fleiss’ Kappa statistics and average scores of human evaluations on LACAT explanations

Module Fleiss’ Kappa Statistics Average Scores

Fluency Relevance Comprehensiveness Overall Fluency Relevance Comprehensiveness Overall
Summarizer 0.94 0.51 0.46 0.66 1.92 1.63 1.72 1.78
Reasoner 0.98 0.63 0.59 0.60 1.97 1.57 1.60 1.52

the evaluation criteria are described in Appendix E.

5.3.1 Human Evaluation
First, we assess the quality of the annotations in the
human evaluation results by calculating the inter-
evaluator agreement using Fleiss’ Kappa statis-
tic (Falotico and Quatto, 2015) for each aspect.
The Fleiss’ Kappa results are presented on the
left of Table 4. The evaluators’ opinions were
highly consistent, surpassing the standard for mod-
erate agreement (>0.41) according to Fleiss’ Kappa
statistics. Particularly for the fluency index, they
almost reached a complete agreement, reflecting
the high quality of the manual annotations.

As shown in the right of Table 4, in terms of
fluency, both the user portraits generated by the
Summarizer and the questions selected by the Rea-
soner are human-readable and highly fluent, closely
resembling human-written text, with an average
score of almost 2.0. The average text scores gener-
ated by both the Summarizer and Reasoner in rele-
vancy and completeness are over 1.5, indicating a
clear and comprehensive understanding of students’
abilities. However, the Reasoner performs slightly
worse than the Summarizer in both indicators, pos-
sibly because question selection requires a deeper
understanding of the student’s state, making it a
more complex task. Overall, both modules aver-
aged over 1.5 points, demonstrating that LACAT
can generate human-readable, clear explanations
for correct classifications regarding fluency, rel-
evance, and completeness, achieving the goal of
making the CAT process transparent.

5.3.2 Automatic Evaluation
We asked the LLMs to choose among the following
options: 1) Comprehensive (correct and thorough);
2) Partially good (reasonable but not comprehen-
sive); 3) Invalid. Table 5 presents the automatic
evaluation results of the LACAT explanations. The
result is the average of the evaluations from the two
models. The interpretations generated by the two
modules show good performance, with over 90%
of the content being valid. This reflects the high
quality of the explanations.

Table 5: Automatic evaluation results for LACAT expla-
nations

Methods Quality Summarizer Reasoner

Comprehensive 72.5% 64.5%
LACAT Partially good 18.5% 25.5%

Invalid 9.0% 10.0%

5.4 Question Exposure and Context Overlap
(RQ3)

To gain a better insight into LACAT, we closely
examine the characteristics of questions selected
by the algorithm. We evaluated the novelty of dif-
ferent algorithms using two main metrics: question
exposure rate and text overlap rate. Question ex-
posure rate refers to how often students encounter
the same questions in a single exam, while text
overlap rate indicates the similarity between two
or more tests. Lower exposure and overlap rates
indicate a better algorithm. We adopted the meth-
ods proposed by Chang (Chang and Ying, 1999)
and Chen (Chen et al., 2003) to measure these rates.
As shown in Table 6, which lists the exposure rate
(Exp.) and mean overlap rate (Over.) at step 10 us-
ing the MoocRadar dataset, LACAT demonstrates
low question exposure rate and text overlap rate.

5.5 Ablation Study (RQ4)
In this subsection, we conduct ablation studies to
investigate each module’s contribution to LACAT
further. We test AUC metrics at steps 3, 5, and 10
on IRT with the MoocRadar dataset. The settings
are discussed as follows:

• LACAT-S: Removing the Summarizer mod-
ule means we only use the student ability esti-
mate provided by the IRT model, ignoring the
student profile constructed from the student
response sequence.

• LACAT-C: Removing the Critic module
means that there is no mechanism to identify
and rectify flaws in the reasoning process.

The results are presented in Table 7. We observe
that removing any module leads to a decrease in
LACAT performance. Our analysis is as follows:
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Table 6: Exposure rate (Exp.) and mean overlap rate
(Over.) at test step 10 with MoocRadar dataset. The
best results are given in bold.

Dataset MoocRadar
Metric Exp.%(mid) Over.%
MFI 0.13 8.73
KLI 0.19 8.27
MAAT 0.20 11.71
BOBCAT 0.65 16.32
BECAT 0.21 6.09
NCAT 0.17 5.67
LACAT 0.18 3.69

Table 7: The results of ablation studies. We test on
the AUC Metric at time step t = 3, 5, and 10 with the
MoocRadar dataset. The best results are given in bold.

Metric AUC@3 AUC@5 AUC@10

LACAT 69.24 71.66 76.32
LACAT-S 68.19 70.17 74.20
LACAT-C 68.73 70.88 75.17

• LACAT-S does not use the student portrait pro-
vided by the Summarizer module, resulting
in a lack of crucial student information and
subsequent performance deterioration. This
indicates the importance of extracting infor-
mation from students’ response sequences to
construct accurate student portraits.

• Without the Critic module, LACAT-C fails to
correct errors in a timely manner, leading to
performance deterioration. This highlights the
critical role of timely error correction.

6 Conclusion

We introduce LACAT, a framework integrating
large language models with computerized adaptive
testing. It comprises the Summarizer for student
profiling, the Reasoner for question selection and
explanation, and the Critic for process optimization,
enhancing adaptive testing in real educational set-
tings. Compared to traditional rule-based and data-
driven methods, LACAT can generate clearer, more
transparent, and more reasonable questions. This
integration of large language models with comput-
erized adaptive testing demonstrates a promising
avenue for enhancing educational assessment.

Limitations

Our experiment is based solely on a type of IRT
(Item Response Theory) that provides unidimen-
sional ability estimation in the CDM (Cognitive

Diagnostic Model). While many other CDM mod-
els evaluate student ability using complex vec-
tors (Wang et al., 2020; Gao et al., 2021; Zhang
et al., 2024b), translating these vectors into text for
large language models remains challenging. Ad-
ditionally, as this paper is the first to explore CAT
explainability, further research is needed to better
define and enhance evaluation indicators.
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A Baseline Methods

• MFI (Chang et al., 2015): It selects the ques-
tion based on the maximum Fisher informa-
tion.

• KLI (Chang and Ying, 1996): It selects the
question with the maximum moving average
of Kullback-Leibler information.

• MAAT (Bi et al., 2020): It proposes an ac-
tive learning-based method that measures the
informativeness of questions by calculating
the Expected Model Change (EMC) caused
by each question.

• BECAT (Zhuang et al., 2024): It proposes
an effective expected gradient-based selection
algorithm that minimizes the estimation error
term in CAT systems.

• BOBCAT (Ghosh and Lan, 2021): It is the
first bilevel optimization (Franceschi et al.,
2018) framework for CAT that adopts an ap-
proximate gradient estimation method to learn
a data-driven selection algorithm.

• NCAT (Zhuang et al., 2022): It’s a rein-
forcement learning-based method that designs
an attention-based DQN (Van Hasselt et al.,
2016).

B Additional Results

Cost and Efficiency Analysis Experiment We
conducted comprehensive cost and efficiency ex-
periments on the MoocRadar and Exam datasets
using four large language models: GPT-3.5-turbo-
16k, DeepSeek, GPT-4, and GPT-4o-mini. Table 8
presents the average cost and time for 100 students
to complete a 10-step Computerized Adaptive Test
(CAT) exam. The results demonstrate that the cost
is relatively affordable; even the most expensive
model (GPT-3.5-turbo-16k) does not exceed $0.2
per test round, while DeepSeek and GPT-4o-mini
remain under $0.01 per test.

However, efficiency posed a challenge, with the
slowest model, DeepSeek, taking an average of ap-
proximately eight seconds to select a problem. To
address this issue, we devised a strategy to reduce
time consumption: as students progress through the
exercises, problem selection occurs concurrently
based on their correct and incorrect responses. This
approach allows for immediate recommendation
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Table 8: Cost and time per CAT test with 10 steps for
100 students on MoocRadar and Exam datasets. The
best results are given in bold.

Dataset MoocRadar Exam
Metric Cost (USD) Time (s) Cost (USD) Time (s)
GPT-3.5-turbo-16k 0.1334 65.62 0.0923 68.13
DeepSeek 0.0076 79.96 0.0056 80.58
GPT-4 0.1873 49.28 0.1617 55.77
GPT-4o-mini 0.0083 34.51 0.0051 36.88

of subsequent exercises upon result submission,
significantly reducing overall time expenditure.

While the current cost structure is reasonably
economical, our future work will explore methods
to further reduce computational expenses. This
two-pronged approach—optimizing both time effi-
ciency and cost-effectiveness—aims to enhance the
viability and scalability of large language model
applications in adaptive testing scenarios.

LLM impact on student score prediction per-
formance Following the experimental setup de-
scribed in Section 5.2, we replace the base LLM
with two alternative LLMs: Qwen-1.5-7B (Bai
et al., 2023), developed by Alibaba, and Deepseek-
v2 (Bi et al., 2024), developed by Magic Square,
are both open-source models. These models per-
form well in certain aspects, with Deepseek-v2
even surpassing GPT-3.5 in performance. As As
revealed in Figure 3, the following observations
can be made:

• Firstly, Qwen-1.5-7B performs poorly in
predicting student performance on the
MoocRadar and Exam datasets. Despite using
the same prompt templates as ChatGPT, its
outputs often fail to meet the specified perfor-
mance metrics, even after multiple attempts.
This issue may be attributed to the model’s
handling of extensive context, leading to a
random selection of exercises by default.

• In contrast, Deepseek-v2 demonstrates su-
perior performance, likely due to its ad-
vanced reasoning capabilities. Specifically, on
the MoocRadar dataset, Deepseek-v2 outper-
forms NCAT, although ChatGPT achieves the
highest results. Furthermore, on the Exam
dataset, where ChatGPT performs poorly,
Deepseek-v2 still surpasses the best baseline
performance.

These findings suggest that the framework’s per-
formance is closely related to the reasoning abil-
ities of the selected model. Therefore, choosing

(a) MoocRadar.

(b) Exam.

Figure 3: Student Score Prediction performance across
different LLMs.

Figure 4: The calculation process of ACC(θt).

an appropriate LLM as the core component of the
framework is crucial for achieving optimal perfor-
mance.

C The calculation process of ACC(θt)

As shown in Figure 4, at step t, the selection al-
gorithm selects questions from the support set and
uses the CDM to estimate the student’s ability θt.
It then estimates the student’s performance on the
query set based on the estimated θt and compares
this with the actual performance to calculate accu-
racy (Wang et al., 2023b).

D Detailed Evaluation Method

The primary objective of Computerized Adaptive
Testing (CAT) is to accurately assess a student’s
true ability using the minimum number of test
items. However, true ability is an abstract con-
cept that cannot be directly measured. To evaluate
the effectiveness of a CAT system’s capability es-
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timation, we employ an indirect approach. This
method utilizes the scores (correct or incorrect)
from the questions answered in the retained re-
sponse data. By analyzing these scores, we can
infer the strengths and weaknesses of the CAT sys-
tem’s ability to estimate student capability. This
indirect evaluation serves as a proxy for assessing
the overall performance and accuracy of the CAT
system in achieving its goal of efficient and precise
ability assessment.

E Human Evaluation Criteria

Evaluators will be given explanations generated by
Summarizer and Reasoner. Evaluators will need to
score and annotate the generated explanations from
the following aspects:

Fluency Fluency evaluates the coherence and
readability of the explanation. Evaluators should as-
sess if the generated explanation is well-structured,
easy to read, and free of grammatical or syntax
errors.

• 0: Incoherent, difficult to read, and contains
numerous errors

• 1: Mostly fluent, easy to read, with few minor
errors

• 2: Completely fluent, coherent, and error-free

Relevance Relevance measures how well the gen-
erated topic selection reasons or user profiles align
with the student’s knowledge state and the appropri-
ateness of the chosen exercises. Evaluators should
assess whether the explanations are pertinent, co-
herent, and adequately reflect the student’s learning
needs. Main criteria to check (sorted by criticality):

• 0: Irrelevant information or completely mis-
aligned with the student’s knowledge state

• 1: Somewhat relevant information with sev-
eral misalignments or off-topic elements

• 2: Mostly relevant information with minor
misalignments, generally aligned with the stu-
dent’s knowledge state and learning needs

Comprehensiveness Comprehensiveness mea-
sures how thoroughly the generated explanations
cover the student’s knowledge state and the ap-
propriateness of the chosen exercises. Evaluators
should assess whether the explanations fully ad-
dress all relevant aspects of the student’s learning
needs. Main criteria to check (sorted by criticality):

• 0: Incomplete information, missing many crit-
ical aspects of the student’s knowledge state

• 1: Partially complete information, covering
some but not all critical aspects

• 2: Comprehensive information, thoroughly
covering the student’s knowledge state and
learning needs

Overall Score Overall Score evaluates the qual-
ity of the generated explanations by assessing flu-
ency, relevance, and comprehensiveness. Evalua-
tors should consider how clearly the explanations
are articulated, how well they align with the stu-
dent’s knowledge state, and how thoroughly they
address their learning needs. Main criteria to check
(sorted by criticality):

• 0: The explanations are poorly articulated,
largely irrelevant, and do not adequately cover
the student’s knowledge state.

• 1: The explanations are somewhat clear, mod-
erately relevant, and cover some aspects of the
student’s knowledge state.

• 2: The explanations are well-articulated,
highly relevant, and provide a thorough un-
derstanding of the student’s knowledge state
and learning needs.
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F Prompt Templates
In this section, we present some prompt templates used by LACAT.

Prompt Template (Summarizer, Long-term Profile).

You are an expert in educational assessment. You are analyzing the performance of a student based on their correct
and incorrect answers to a set of questions and ability estimation generated by IRT. Your goal is to provide a
comprehensive analysis of the student’s strengths and weaknesses to help them improve.

Correct: {right response records}

Incorrect: {wrong response records}

Ability Estimation: {ability estimation}

Please carefully analyze the student’s performance step by step. Your reasoning process should be thorough and
detailed. First, summarize the students’ strengths based on the correct response records, focusing on what they do
well and the skills or knowledge areas they have mastered. Then, summarize the student’s weaknesses based on the
Incorrect response records, highlighting areas where the student struggles or needs improvement. Ensure your
summary is concise and clear and does not simply repeat existing information.

To help you with this analysis, here are some key points to consider:

Patterns in Correct Answers:
− Look for recurring themes or skills in the correct answers.
− Identify any specific questions or question types where the student consistently performs well.

Patterns in Incorrect Answers:
− Analyze the incorrect answers to find common mistakes or misunderstandings.
− Determine if there are specific questions or question types where the student frequently struggles.

Comparison and Contrast:
− Compare the correct and incorrect answers to understand the student’s overall performance.
− Highlight any discrepancies between what the student knows well and where they need improvement.

Organize your output by strictly following the format below:

Strength: <summary of strengths based on correct answers>

Weakness: <summary of weaknesses based on incorrect answers>
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Prompt Template (Summarizer, Short-term Profile).

You are an expert in educational assessment. You are analyzing the recent performance of a student based on their
profile and their most recent response records in a computer adaptive test. Your goal is to understand the student’s
needs and provide a comprehensive analysis of their performance on the most recent question.

Profile: {student profile}

Last record: {last response record}

Please understand the student’s needs based on their recent performance and analyze their performance on the most
recent question. Your analysis should be concise and clear, focusing on identifying strengths and weaknesses
demonstrated in the last answer.

To help you with this analysis, here are some key points to consider:

Understanding the Student’s Profile:

Identify the student’s strengths and areas for improvement based on their profile.
Consider their learning style, preferences, and any specific goals or challenges mentioned in the profile.
Analyzing the Last response record:

Review the student’s performance on the most recent question to determine their current understanding.
Note any patterns or specific errors that may indicate areas needing further practice.
Assess the approach the student took to solve the question and identify any misconceptions.
Providing Feedback:

Offer specific, actionable feedback based on the student’s performance.
Suggest strategies or resources that can help the student address their weaknesses.
Organize your output by strictly following the format below:

Thought: <the analysis of the student’s performance on the most recent question>
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Prompt Template (Critic).

You are an expert in educational assessment. Your role is to inspect the recommendations given to a student to ensure
they are appropriate and free from basic errors. Below are some typical error types and corresponding examples. If
you encounter errors that do not fall into common categories, please infer the type of error and provide hints
accordingly.

Typical Errors:

The recommended exercise is too difficult, exceeding the student’s ability.

Example: Recommending advanced calculus problems to a student struggling with basic algebra.
The recommended exercise is too easy, below the student’s actual ability.

Example: Recommending basic addition problems to a student ability in algebra.
The recommended exercise is knowledge−saturated, covering material the student has already mastered.

Example: Recommending the same set of geometry problems repeatedly to a student who has already demonstrated
ability in that area.
Here is the student recommendation that you need to check:

student_profile: {profile}

last_recommended_exercise: {exercise}

Please check if the recommendation has made any of the above errors and provide your judgment. Your judgment
should be clear and concise, pointing out any errors and the type of error identified.

To help you with this inspection, here are some key points to consider:

Understanding the Student’s Profile:

Review the student’s mastery of various knowledge points.
Identify the students strengths and weaknesses based on recent performance and assessments.
Evaluating the Recommended Exercise:

Assess whether the exercise is appropriately challenging for the student.
Determine if the exercise introduces new concepts or reinforces recently taught material.
Ensure the exercise is not redundant with previously mastered content.
Making a Judgment:

Clearly state whether the exercise is appropriate for the student.
If an error is found, specify the type of error and provide a concise explanation.
Offer a brief suggestion or adjustment if necessary.
Organize your output by strictly following the format below:

Hint: <some short reminders you would like to give>
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Prompt Template (Reasoner).

By thinking step by step about the student’s strengths and weaknesses, select the most suitable question from the
candidate questions, considering difficulty, discrimination, and knowledge coverage. Use the principles of
computerized adaptive testing so that after the student answers this question, their ability can be measured more
accurately. In your reasoning process, you need to think carefully.

Long−term profile: {strength}

candidate questions: {candidate_questions}

Short−term profile: {thought}

hint: {hint}

To begin the selection process, carefully analyze the student’s long−term and short−term performance:

Analyze Long−term Performance:

Identify the student’s strengths and weaknesses over an extended period to understand which knowledge points they
have mastered and which require improvement.
Review Short−term Performance:

Examine recent response records to determine the student’s current understanding and ability, reflecting their
immediate learning needs.
Based on this analysis, consider the following characteristics when evaluating candidate questions:

Difficulty:

Ensure the question is appropriately challenging, providing a balance between too easy and too difficult.
Discrimination:

Choose questions that effectively differentiate between varying levels of student ability.
Knowledge Coverage:

Select questions that cover key knowledge areas necessary for the student to reinforce or master.
Incorporate the principles of computerized adaptive testing (CAT):

Dynamic Adjustment:

Adjust the difficulty of questions based on the student’s real−time performance to assess their ability accurately.
Precise Measurement:

Ensure each question helps in narrowing the estimation of the student’s ability, increasing the accuracy of the
assessment.
Emphasize the reasoning behind your selection, providing a clear and logical explanation:

Explain the Selection:
Clearly state why you selected the particular question from the candidate list.
Detail how this question addresses the student’s current strengths and weaknesses.
Explain how the question will help in detecting and measuring the student’s cognitive state and ability.
Now start selecting and organizing your output by strictly following the output format below:

Reason: Explain why you select the question, how to detect cognitive state with the question

Selected question with index: the selected question here with the index, following the output format like <the index>,
only one index here
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