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Abstract

Cognitive diagnosis is a fundamental issue in intelligent ed-
ucation, which aims to discover the proficiency level of stu-
dents on specific knowledge concepts. Existing approaches
usually mine linear interactions of student exercising process
by manual-designed function (e.g., logistic function), which
is not sufficient for capturing complex relations between stu-
dents and exercises. In this paper, we propose a general Neu-
ral Cognitive Diagnosis (NeuralCD) framework, which incor-
porates neural networks to learn the complex exercising inter-
actions, for getting both accurate and interpretable diagnosis
results. Specifically, we project students and exercises to fac-
tor vectors and leverage multi neural layers for modeling their
interactions, where the monotonicity assumption is applied to
ensure the interpretability of both factors. Furthermore, we
propose two implementations of NeuralCD by specializing
the required concepts of each exercise, i.e., the NeuralCDM
with traditional Q-matrix and the improved NeuralCDM+ ex-
ploring the rich text content. Extensive experimental results
on real-world datasets show the effectiveness of NeuralCD
framework with both accuracy and interpretability.

1 Introduction
Cognitive diagnosis is a necessary and fundamental task
in many real-world scenarios such as games (Chen and
Joachims 2016), medical diagnosis (Guo et al. 2017),
and education. Specifically, in intelligent education sys-
tems (Anderson et al. 2014; Burns et al. 2014), cognitive
diagnosis aims to discover the states of students in the learn-
ing process, such as their proficiencies on specific knowl-
edge concepts (Liu et al. 2018). Figure 1 shows a toy exam-
ple of cognitive diagnosis. Generally, students usually first
choose to practice a set of exercises (e.g., e1, · · · , e4) and
leave their responses (e.g., right or wrong). Then, our goal is
to infer their actual knowledge states on the corresponding
concepts (e.g., Trigonometric Function). In practice, these
diagnostic reports are necessary as they are the basis of fur-
ther services, such as exercise recommendation and targeted
training (Kuh et al. 2011).
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In the literature, massive efforts have been devoted for
cognitive diagnosis, such as Deterministic Inputs, Noisy-
And gate model (DINA) (De La Torre 2009), Item Response
Theory (IRT) (Embretson and Reise 2013), Multidimen-
sional IRT (MIRT) (Reckase 2009) and Matrix Factoriza-
tion (MF) (Koren, Bell, and Volinsky 2009). Despite achiev-
ing some effectiveness, these works rely on handcrafted in-
teraction functions that just combine the multiplication of
student’s and exercise’s trait features linearly, such as lo-
gistic function (Embretson and Reise 2013) or inner prod-
uct (Koren, Bell, and Volinsky 2009), which may not be
sufficient for capturing the complex relationship between
students and exercises (DiBello, Roussos, and Stout 2006).
Besides, the design of specific interaction functions is also
labor-intensive since it usually requires professional exper-
tise. Therefore, it is urgent to find an automatic way to learn
the complex interactions for cognitive diagnosis instead of
manually designing them.

In this paper, we address this issue in a principled way of
proposing a Neural Cognitive Diagnosis (NeuralCD) frame-
work by incorporating neural networks to model complex
non-linear interactions. Although the capability of neural
networks to approximate continuous functions has been
proved in many domains, such as natural language process-
ing (Zhang et al. 2018) and recommender systems (Song et
al. 2019), it is still highly nontrivial to adapt to cognitive di-
agnosis due to the following domain challenges. First, the
black-box nature of neural networks makes them difficult to
get explainable diagnosis results. That is to say, it is diffi-
cult to explicitly realize how much a student has mastered
a certain knowledge concept (e.g., Equation). Second, tradi-
tional models are designed manually with non-neural func-
tions, which makes it hard for them to leverage exercise text
content. However, with neural network, it is worthy of find-
ing ways to explore the rich information contained in exer-
cise text content for cognitive diagnosis.

To address these challenges, we propose a NeuralCD
framework to approximate interactions between students
and exercises, yet preserving the explainability. We first
project students and exercises to factor vectors and lever-
age multi-layers for modeling the complex interactions of
student answering exercises. To ensure the interpretability
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Figure 1: A toy example of cognitive diagnosis. The student choose some exercises for practice and leave the response logs.
With cognitive diagnosis methods, we get the diagnostic report containing the student’s proficiency on each knowledge concept.

of both factors, we apply the monotonicity assumption tak-
ing from educational property (Reckase 2009) on the multi-
layers. Then, we propose two implementations on the ba-
sis of the general framework, i.e., NeuralCDM and Neural-
CDM+. In NeuralCDM, we simply extract exercise factor
vectors from traditional Q-matrix (an example is shown in
Figure 6) and achieve the monotonicity property with pos-
itive full connection layers, which shows feasibility of the
framework. While in NeuralCDM+, we demonstrate how
information from exercise text can be explored with neu-
ral network to extend the framework. Particularly, our Neu-
ralCD is a general framework since it can cover many tradi-
tional models such as MF, IRT and MIRT. Finally, we con-
duct extensive experiments on real-world datasets, and the
results show the effectiveness of NeuralCD framework with
both accuracy and interpretability guarantee.

Our code of NeuralCDM is available at
https://github.com/bigdata-ustc/NeuralCD.

2 Related Work
In this section, we briefly review the related works from the
following three aspects.
Cognitive Diagnosis. Existing works about student cogni-
tive diagnosis mainly came from educational psychology
area. DINA (De La Torre 2009; von Davier 2014) and
IRT (Embretson and Reise 2013) were two of the most typ-
ical works, which model the result of a student answer-
ing an exercise as the interaction between the trait fea-
tures of the student (θ) and the exercise (β). Specifically,
in DINA, θ and β were binary, where β came directly from
Q-matrix (a human labeled exercise-knowledge correlation
matrix, an example is showed in Figure 6). Another two ex-
ercise factors, i.e. guessing and slipping (parameterized as
g and s) are also taken into consideration. The probability
of student i correctly answering exercise j was modeled as
P (rij = 1|θi) = g

1−ηij
j (1 − sj)ηij , where ηij =

∏
k θ

βjk

ik .
On the other hand, in IRT, θ and β were unidimensional
and continuous latent traits, indicating student ability and
exercise difficulty respectively. The interaction between the
trait features was modeled in a logistic way, e.g., a sim-
ple version is sigmoid(a(θ − β)), where a is the exercise
discrimination parameter. Although extra parameters were
added in IRT (Fischer 1995; Lord 2012) and latent trait was
extended to multidimensional(MIRT) (Adams, Wilson, and

Wang 1997; Reckase 2009), most of their item response
functions were still logistic-like. These traditional models
depended on manually designed functions, which was labor-
intensive and restricted their scope of applications.
Matrix Factorization. Recently, some researches from data
mining perspective have demonstrated the feasibility of MF
for cognitive diagnosis. Student and exercise correspond to
user and item in matrix factorization (MF). For instance,
Toscher et al. (2010) improved SVD (Singular Value De-
composition) methods to factor the score matrix and get
students and exercises’ latent trait vectors. Thai-Nghe et
al. (2010) applied some recommender system techniques in-
cluding matrix factorization in the educational context, and
compared it with traditional regression methods. Besides,
Thai-Nghe et al. (2015) proposed a multi-relational factor-
ization approach for student modeling in the intelligent tu-
toring systems. Despite their effectiveness in predicting stu-
dents’ scores on exercises, the latent trait vectors in MF is
not interpretable for cognitive diagnosis, i.e. there is no clear
correspondence between elements in trait vectors and spe-
cific knowledge concepts.
Artificial Neural Network. Techniques using artificial neu-
ral network have reached state-of-the-art in many areas,
e.g., speech recognition (Chan et al. 2016), text classifica-
tion (Zhang, Zhao, and LeCun 2015) and image caption-
ing (Wang, Chen, and Hu 2019). There are also some ed-
ucational applications such as question difficulty predic-
tion (Huang et al. 2017), code education (Wu et al. 2019),
formula image transcribing (Yin et al. 2018) and student
performance prediction (Huang et al. 2019). However, us-
ing neural network for cognitive diagnosis is nontrivial as
it performs poorly in parameter interpretation due to its in-
herent traits. To the best of our knowledge, deep knowledge
tracing (DKT) (Piech et al. 2015) was the first attempt to
model student learning process using recurrent neural net-
work. However, DKT aims to predict students’ scores, and
does not make a distinction between an exercise and the
knowledge concepts it contains, thus it’s unsuitable for cog-
nitive diagnosis. Few works with neural network have high
interpretability for student cognitive diagnosis. Towards this
end, in this paper we propose a neural cognitive diagnosis
(NeuralCD) framework which borrows concepts from ed-
ucational psychology and combine them with interaction
functions learned from data. NeuralCD could achieve both
high accuracy and interpretation with neural network. Be-



sides, the framework is general that can cover many tradition
models, and at the same time easy for extension.

3 Neural Cognitive Diagnosis
We first formally introduce cognitive diagnosis task. Then
we describe the details of NeuralCD framework. After that,
we design a specific diagnostic network NeuralCDM with
traditional Q-matrix to show the feasibility of the frame-
work, and an improved NeuralCDM+ by incorporating exer-
cise text content for better performance. Finally, we demon-
strate the generality of NeuralCD framework by showing its
close relationship with some traditional models.

3.1 Task Overview
Suppose there are N Students, M Exercises and K Knowl-
edge concepts at a learning system, which can be repre-
sented as S = {s1, s2, . . . , sN}, E = {e1, e2, . . . , eM}
and Kn = {k1, k2, . . . , kK} respectively. Each student will
choose some exercises for practice, and the response logs R
are denoted as set of triplet (s, e, r) where s ∈ S, e ∈ E and
r is the score (transferred to percentage) that student s got
on exercise e. In addition, we have Q-matrix (usually labeled
by experts) Q = {Qij}M×K , where Qij = 1 if exercise ei
relates to knowledge concept kj and Qij = 0 otherwise.

Problem Definition Given students’ response logs R and
the Q-matrix Q, the goal of our cognitive diagnosis task is to
mine students’ proficiency on knowledge concepts through
the student performance prediction process.

3.2 Neural Cognitive Diagnosis Framework
Generally, for a cognitive diagnostic system, there are three
elements need to be considered: student factors, exercise
factors and the interaction function among them (DiBello,
Roussos, and Stout 2006). In this paper, we propose a gen-
eral NeuralCD framework to address them by using multi-
layer neural network modeling, which is shown in Figure 2.
Specifically, for each response log, we use one-hot vectors
of the corresponding student and exercise as input and obtain
the diagnostic factors of the student and exercise. Then the
interactive layers learn the interaction function among the
factors and output the probability of correctly answering the
exercise. After training, we get students’ proficiency vectors
as diagnostic results. Details are introduced as bellow.

Student Factors. Student factors characterize the traits of
students, which would affect the students’ response to exer-
cises. As our goal is to mine students’ proficiency on knowl-
edge concepts, we do not use the latent trait vectors as in IRT
and MIRT, which is not explainable enough to guide stu-
dents’ self-assessment. Instead, we design the student fac-
tors as explainable vectors similar to DINA, but has a major
difference that they are continuous. Specifically, We use a
vector F s to characterize a student, namely proficiency vec-
tor. Each entry of F s is continuous ([0,1]), which indicates
the student’s proficiency on a knowledge concept. For ex-
ample, F s = [0.9, 0.2] indicates a high mastery on the first
knowledge concept but low mastery on the second. F s is got
through the parameter estimation process.

Student One-hot Exercise One-hot
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Figure 2: Structure of NeuralCD framework.

Exercise Factors. Exercise factors denote the factors that
characterize the traits of exercises. We divide exercise fac-
tors into two categories. The first indicates the relationship
between exercises and knowledge concepts, which is funda-
mental as we need it to make each entry of F s correspond
to a specific knowledge concept for our diagnosis goal. We
call it knowledge relevancy vector and denote it as F kn. F kn
has the same dimension as F s, with the ith entry indicat-
ing the relevancy between the exercise and the knowledge
concept ki. Each entry of F kn is non-negative. F kn is pre-
viously given (e.g., obtained from Q-matrix). Other factors
are of the second type and are optional. Factors from IRT
and DINA such as knowledge difficulty, exercise difficulty
and discrimination can be incorporated if reasonable.

Interaction Function. We use artificial neural network
to obtain the interaction function for the following rea-
sons. First, the neural network has been proven to be ca-
pable of approximating any continuous function (Hornik,
Stinchcombe, and White 1989). The strong fitting ability
of neural network makes it competent for capturing rela-
tionships among student and exercise factors. Second, with
neural network, the interaction function can be learned from
data with few assumptions (that behind traditional models).
This makes NeuralCD more general and can be applied in
broad areas. Third, the framework can be highly extendable
with neural network. For instance, extra information such
as exercise texts can be integrated in with neural network
(We will discuss its extendability in the following subsec-
tions.). Mathematically, we formulate the output of Neu-
ralCD framework as:

y = ϕn(. . . ϕ1(F
s, F kn, F other, θf )), (1)

where ϕi denotes the mapping function of the ith MLP
layer; F other denotes factors other than F s and F kn (e.g.,
difficulty); and θf denotes model parameters of all the inter-
active layers.

However, due to some intrinsic characteristics, neural
networks usually have poor performance on interpreta-
tion (Samek et al. 2016). Fortunately, we find that the mono-
tonicity assumption, which is used in some IRT and MIRT
models (Reckase 2009), can be utilized to ensure the inter-
pretation of student and exercise factors. Monotonicity as-
sumption is general and reasonable in almost all circum-



stance, thus it has little influence on the generality of Neu-
ralCD framework. The assumption is defined as follows:

Monotonicity Assumption The probability of correct re-
sponse to the exercise is monotonically increasing at any di-
mension of the student’s knowledge proficiency.

This assumption should be converted as a property of the
interaction function. Intuitively, we assume student s to an-
swer exercise e correctly. During training, the optimization
algorithm should increase the student’s proficiency if the
model output a wrong prediction (i.e., a value below 0.5).
The increment of each knowledge proficiency is otherwise
controlled by F kn.

After introducing the structure of NeuralCD framework,
we will next show some specific implementations. We first
design a diagnostic model based on NeuralCD with ex-
tra exercise factors (i.e., knowledge difficulty and exer-
cise discrimination)(§3.3), and further show its extendabil-
ity by incorporating text information (§3.4) and generality
by demonstrating how it covers traditional models (§3.5).

3.3 Neural Cognitive Diagnosis Model
Here we introduce a specific neural cognitive diagnosis
model (NeuralCDM) under NeuralCD framework. Figure 3
illustrates the structure of NeuralCDM.
Student Factors. In NeuralCDM, each student is repre-
sented with a knowledge proficiency vector. The student fac-
tor F s aforementioned is hs here, and hs is obtained by
multiplying the student’s one-hot representation vector xs
with a trainable matrix A. That is,

hs = sigmoid(xs ×A), (2)

in which hs ∈ (0, 1)1×K ,xs ∈ {0, 1}1×N ,A ∈ RN×K .
Exercise Factors. As for each exercise, the aforementioned
exercise factor F kn is Qe here, which directly comes from
the pre-given Q-matrix:

Qe = x
e ×Q, (3)

whereQe ∈ {0, 1}1×K , xe ∈ {0, 1}1×M is the one-hot rep-
resentation of the exercise. In order to make a more precise
diagnosis, we adopt other two exercise factors: knowledge
difficulty hdiff and exercise discrimination hdisc. hdiff ∈
(0, 1)1×K , indicates the difficulty of each knowledge con-
cept examined by the exercise, which is extended from exer-
cise difficulty used in IRT. hdisc ∈ (0, 1), used in some IRT
and MIRT models, indicates the capability of the exercise to
differentiate between those students whose knowledge mas-
tery is high from those with low knowledge mastery. They
can be obtained by:

hdiff = sigmoid(xe ×B),B ∈ RM×K (4)

hdisc = sigmoid(xe ×D),D ∈ RM×1 (5)

where B and D are trainable matrices.
Interaction Function. The first layer of the interaction lay-
ers is inspired by MIRT models. We formulate it as:

x = Qe ◦ (hs − hdiff )× hdisc, (6)

where ◦ is element-wise product. Following are two full con-
nection layers and an output layer:

f1 = φ(W1 × xT + b1), (7)
f2 = φ(W2 × f1 + b2), (8)
y = φ(W3 × f2 + b3), (9)

where φ is the activation function. Here we use Sigmoid.
Different methods can be used to satisfy the monotonicity

assumption. We adopt a simple strategy: restrict each ele-
ment of W1,W2,W3 to be positive. It can be easily proved
that ∂y

∂hs
i

is positive for each entry hsi in hs. Thus monotonic-
ity assumption is always satisfied during training.

The loss function of NeuralCDM is cross entropy between
output y and true label r:

lossCDM = −
∑
i

(ri log yi + (1− ri) log(1− yi)). (10)

After training, the value of hs is what we get as diagnosis
result, which denotes the student’s knowledge proficiency.

3.4 NeuralCD Extension with Text Information
In NeuralCDM and some traditional methods (e.g., DINA),
Q-matrix is the source of information about the exercise
knowledge concept. However, manually-labeled Q-matrix
may be deficient because of inevitable errors and subjec-
tive bias (Liu, Xu, and Ying 2012; DiBello, Roussos, and
Stout 2006). On the other hand, exercise texts have been
proved to be highly related to some exercise features (e.g.,
difficulty, relevant knowledge concepts) (Su et al. 2018;
Huang et al. 2017), thus it can be leveraged to refine the Q-
matrix. For example, in Q-matrix, maybe only ’Equation’ is
labeled for an equation solving exercise. However, we may
discover that ’Division’ is also required due to the existence
of ’÷’ in the text. Traditional cognitive models didn’t lever-
age text content due to the limitation of their handcraft non-
neural interaction functions. However, with neural network,
we are able to incorporate text information into our frame-
work. We denote the extended model as NeuralCDM+, and
present its structure in Figure 4.

Specifically, we first pre-train a CNN (convolutional neu-
ral network) to predict knowledge concepts related to the
input exercise. CNN has advantage of extracting local in-
formation in text processing, thus it’s able to capture im-
portant words from texts (e.g., words that are highly rela-
tive to certain knowledge concepts). The network takes con-
catenated word2vec embedding of words in texts as input,
and output the relevancy of each predefined knowledge con-
cept (that has occurred in data) to the exercise. Human-
labeled Q-matrix is used as label for training. We define
V ki = {Vij1 , Vij2 , . . . , Vijk} as the set of top-k knowledge
concepts of exercise ei outputted by the CNN.

Then we combine V ki with Q-matrix. Although there
are defects in human-labeled Q-matrix, it still has high
confidence. Thus we consider knowledge concepts labeled
by Q-matrix are more relative than concepts in {kj |kj ∈
V ki and Qij = 0}. To achieve this, we adopt a pairwise
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Bayesian method as follows. For convenience, we define
partial order >+

i as:

a >+
i b, if Qia = 1 and Qib = 0 and b ∈ V ki , (11)

and define the partial order relationship set as DV =
{(i, a, b)|a >+

i b, i = 1, 2, . . . ,M}. Following traditional
Bayesian treatment, we assume Q̃ follows a zero mean
Gaussian prior with standard deviation σ of each dimen-
sion. To give Q-matrix labels higher confidence, we define
p(a >+

i b|Q̃i) with a pairwise logistic-like function:

p(a >+
i b|Q̃i) =

1

1 + e−λ(Q̃ia−Q̃ib)
. (12)

The parameter λ controls the discrimination of relevance
values between labeled and unlabeled knowledge concepts.
The log posterior distribution over DV on Q̃ is finally for-
mulated as:

ln p(Q̃|DV ) = ln
∏

(i,a,b)∈DV

p(a >+
i b|Q̃i)p(Q̃i)

=
M∑
i=1

K∑
a=1

K∑
b=1

I(a >+
i b) ln

1

1 + e−λ(Q̃ia−Q̃ib)

+ C −
M∑
i=1

K∑
j=1

Q̃2
ij

2σ2
,

(13)

where C is a constant that can be ignored during optimiza-
tion. Before using Q̃ in NeuralCDM, we need to restrict its
elements to the range (0, 1), and set elements of concepts un-
labeled or not predicted to 0. Thus, Sigmoid(Q̃)◦M is used
to replace Q in NeuralCDM, where M ∈ {0, 1}M×K is a
mask matrix, and Mij = 1 if j ∈ V ki or Qij = 1;Mij = 0

otherwise. Q̃ is trained together with the cognitive diagnos-
tic model, thus the loss function is:

loss = − ln p(Q̃|DV ) + lossCDM . (14)

3.5 Generality of NeuralCD
In this subsection we show that NeuralCD is a general
framework which can cover many traditional cognitive di-
agnostic models. Using Eq. (6) as the first layer, we now

show the close relationship between NeuralCD and tradi-
tional models, including MF, IRT and MIRT.
MF. Qe and hs can be seen as exercise and student latent
trait vectors respectively in MF. By setting hdiff ≡ 0 and
hdisc ≡ 1, the output of the first layer is x = Qe ◦hs. Then
in order to work like MF (i.e., y = Qe · hs), all the rest of
layers need to do is to sum up the values of each entry in
x, which is easy to achieve. Monotonicity assumption is not
applied in MF approaches.
IRT. Take the typical formation of IRT y = Sigmoid((hs −
hdiff ) × hdisc) as example. Set Qe ≡ 1, and let hs and
hdiff be unidimensional, the output of the first layer is
x = (hs − hdiff ) × hdisc, followed by a Sigmoid ac-
tivation function. Monotonicity assumption is achieved by
limiting hdisc to be positive. Other variations of IRT (e.g.,
y′ = C + (1− C)y where C is guessing parameter) can be
realized with a few changes.
MIRT. One direct extension from IRT to MIRT is to
use multidimensional latent trait vectors of exercises and
student. Here we take the typical formation proposed
in (Adams, Wilson, and Wang 1997) as example:

y =
eQe·hs−de

1 + eQe·hs−de
. (15)

Let hdisc ≡ 1, the output of the first layer given by
Eq. (6) is x = Qe ◦ (hs − hdiff ). By Setting W1 =
[1 1 · · · 1] , b1 = 0 and φ(x) = x in Eq. (7), we have
f1 = Qe · hs − de (where de = Qe · hdiff ). All the
rest of the layers need to do is to approximate the function
g(f1) = 1−Sigmoid(f1), which can be easily achieved with
two more layers. Monotonicity assumption can be realized
if each entry ofQe is restricted to be positive.

3.6 Discussion
We have introduced the details of NeuralCD framework and
showed special cases of it. It’s necessary to point out that the
student’s proficiency vector F s and exercise’s knowledge
relevancy vector F kn are basic factors needed in NeuralCD
framework. Additional factors such as exercise discrimina-
tion can be integrated into if reasonable. The formation of



the first interactive layer is not limited, but it’s better to con-
tain the term F s ◦ F kn to ensure that each dimension of
F s corresponds to a specific knowledge concept. The posi-
tive full connection is only one of the strategies that imple-
ment monotonicity assumption. More sophisticated network
structures can be designed as the interaction layers. For ex-
ample, recurrent neural network may be used to capture the
time characteristics of the student’s learning process.

4 Experiments
We first compare our NeuralCD models with some baselines
on the student performance prediction task. Then we make
some interpretation assessments of the models.

4.1 Dataset Description
We use two real-world datasets in the experiments, i.e., Math
and ASSIST. Math dataset supplied by iFLYTEK Co., Ltd.
is collected from the widely-used online learning system
Zhixue1, which contains mathematical exercises and logs
of high school examinations. ASSIST (ASSISTments 2009-
2010 ”skill builder”) is an open dataset collected by the AS-
SISTments online tutoring systems (Feng, Heffernan, and
Koedinger 2009), which only provides student response logs
and knowledge concepts2. We choose the public corrected
version that eliminates the duplicated data issue proposed
by previous work (Xiong et al. 2016). Table 1 summarizes
basic statistics of the datasets.

We filter out students with less than 30 and 15 response
logs for Math and ASSIST respectively to guarantee that
each student has enough data for diagnosis. Therefore for
dataset Math, we got 2,507 exercises with 497 knowledge
concepts for diagnostic network, and the remaining exer-
cises with knowledge concepts not appearing in logs are
used for the Q-matrix refining part of NeuralCDM+. We per-
form a 80%/20% train/test split of each student’s response
log. As for ASSIST, we divide the response logs in the same
way with Math, but NeuralCDM+ is not evaluated on this
dataset as exercise text is not provided. All models are eval-
uated with 5-fold cross validation.

Students’ knowledge proficiencies are stable in Math as
the dataset is composed of logs from examinations. How-
ever, a student’s proficiency on a knowledge concept may
change as he will be continually given exercises of that con-
cept until meeting certain criterion (e.g., answering 3 rele-
vant exercises correctly in a row). To analyze whether static
models (e.g., NeuralCD models and static traditional mod-
els) are suitable to apply on ASSIST, we compare two met-
rics between Math and ASSIST. The first metric is the av-
erage amount of logs that each student toke for each knowl-
edge concept:

AVG#log =

∑N
i

∑K
j Log(i, j)∑N

i

∑K
j I(Log(i, j) > 0)

, (16)

where Log(i, j) is the amount of exercises student si an-
swered that related to knowledge concept kj . Further, an-

1https://www.zhixue.com
2https://sites.google.com/site/assistmentsdata/home/assistment-

2009-2010-data/skill-builder-data-2009-2010

Table 1: Dataset summary.
Dataset Math ASSIST

#Students 10,268 4,163
#Exercises 917,495 17,746
#Knowledge concepts 1,488 123
#Response logs 864,722 324,572
#Knowledge concepts per exercise 1.53 1.19
AVG#log 2.28 8.05
STD#log>1 0.305 0.316

other metric is the mean standard deviation of scores rij that
Log(i, j) > 1 as:

STD#log>1 = mean
si∈S

( mean
kj∈Kn,

Log(i,j)>1

(stdij)), (17)

where stdij is the standard deviation of scores that student si
got for exercises related to knowledge concept kj . As the re-
sults showed in Table 1, although ASSIST has a much larger
AVG#log than Math, their STD#log>1 are close. Therefore,
it is reasonable to assume that the knowledge states of stu-
dents in ASSIST are also stable, and our static NeuralCD
models and baselines are applicable for both dataset. There
will be more discussions in Model Interpretation.

4.2 Experimental Setup
The dimensions of the full connection layers (Eq. (7) ∼ (9))
are 512, 256, 1 respectively, and Sigmoid is used as acti-
vation function for all of the layers. We set hyperparame-
ters λ = 0.1 (Eq. (12)) and σ = 1 ( Eq. (13)). For k in
top-k knowledge concepts selecting, we use the value that
make the predicting network reach 0.85 recall. That is, in
our experiment, k = 20. We initialize the parameters with
Xavier initialization (Glorot and Bengio 2010), which fill
the weights with random values sampled from N (0, std2),

where std =
√

2
nin+nout

. nin is the number of neurons
feeding into the weights, and nout is the number of neurons
the results is fed to.

The CNN architecture we use in NeuralCDM+ contains
3 convolutional layers followed by a full connection output
layer. MaxPooling are used after 1st and 3rd convolutional
layers. The channels of convolutional layers are 400, 200,
100, and kernel sizes are set to 3, 4, 5 respectively. We adopt
ReLu activation function for convolution layers and Sigmoid
for the output layer. Multi-label binary cross entropy is used
as loss function for training the CNN.

To evaluate the performance of our NeuralCD models, we
compare them with previous approaches, i.e., DINA, IRT,
MIRT and PMF. All models are implemented by PyTorch
using Python, and all experiments are run on a Linux server
with four 2.0GHz Intel Xeon E5-2620 CPUs and a Tesla
K20m GPU.

4.3 Experimental Results
Student Performance Prediction The performance of a
cognitive diagnosis model is difficult to evaluate as we can’t



Table 2: Experimental results on student performance prediction.
Math ASSIST

Model Accuracy RMSE AUC Accuracy RMSE AUC

DINA 0.593±.001 0.487±.001 0.686±.001 0.650±.001 0.467±.001 0.676±.002
IRT 0.782±.002 0.387±.001 0.795±.001 0.674±.002 0.464±.002 0.685±.001
MIRT 0.793±.001 0.378±.002 0.813±.002 0.701±.002 0.461±.001 0.719±.001
PMF 0.763±.001 0.407±.001 0.792±.002 0.661±.002 0.476±.001 0.732±.001
NeuralCDM 0.792±.002 0.378±.001 0.820±.001 0.719±.008 0.439±.002 0.749±.001
NeuralCDM+ 0.804±.001 0.371±.002 0.835±.002 - - -
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Figure 5: DOA results of models. In NeuralCD models,
there is clear correspondence between entries in hs and
knowledge concepts, thus their diagnosis results have high
DOA. Removing Q-matrix or monotonicity assumption
would reduce the performance.
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Figure 6: Diagnosis example of a student in ASSIST. The
upper part is the Q-matrix of 3 exercises and corresponding
response logs. The lower part shows the diagnosed student’s
knowledge proficiencies (bars) and knowledge difficulties
of each exercise (points).

obtain the true knowledge proficiency of students. As di-
agnostic result is usually acquired through predicting stu-
dents’ performance in most works, performance on these
prediction tasks can indirectly evaluate the model from
one aspect (Liu et al. 2018). Considering that all the ex-
ercises we used in our data are objective exercises, we
use evaluation metrics from both classification aspect and
regression aspect, including accuracy, RMSE (root mean
square error) (Pei et al. 2018) and AUC (area under the
curve) (Bradley 1997).

Table 2 shows the experimental results of all models
on student performance prediction task. The error bars af-
ter ’±’ is the standard deviations of 5 evaluation runs for
each model. From the table, we can observe that NeuralCD
models outperform almost all the other baselines on both
datasets, indicating the effectiveness of our framework. In
addition, the better performance of NeuralCDM+ over Neu-
ralCDM proves that the Q-matrix refining method is effec-
tive, and also demonstrates the importance of fine estimated
knowledge relevancy vectors for cognitive diagnosis.

Model Interpretation To assess the interpretability of
NeuralCD framework (i.e., whether the diagnostic result is
reasonable), we further conduct several experiments.

Intuitively, if student a has a better mastery on knowledge

concept k than student b, then a is more likely to answer
exercises related to k correctly than b (Chen et al. 2017).
We adopt Degree of Agreement (DOA) (Pirotte et al. 2007)
as the evaluation metric of this kind of ranking performance.
For knowledge concept k, DOA(k) is formulated as:

DOA(k) =
1

Z

N∑
a=1

N∑
b=1

δ(F sak, F
s
bk)

M∑
j=1

Ijk
J(j, a, b) ∧ δ(raj , rbj)

J(j, a, b)
, (18)

where Z =
∑N
a=1

∑N
b=1 δ(F

s
ak, F

s
bk). F

s
ak is the proficiency

of student a on knowledge concept k. δ(x, y) = 1 if x > y
and δ(x, y) = 0 otherwise. Ijk = 1 if exercise j contains
knowledge concept k and Ijk = 0 otherwise. J(j, a, b) = 1
if both student a and b did exercise j and J(j, a, b) = 0
otherwise. We average DOA(k) on all knowledge concepts
to evaluate the quality of diagnostic result (i.e., knowledge
proficiency acquired by models).

Among traditional models, we only compare with DINA,
since for IRT, MIRT and PMF, there are no clear corre-
spondence between their latent features and knowledge con-
cepts. Besides, we conduct experiments on two reduced
NeuralCDM models. In the first reduced model (denoted
as NeuralCDM-Qmatrix), knowledge relevancy vectors are
estimated during unsupervised training instead of getting
from Q-matrix. While in another reduced model (denoted



as NeuralCDM-Monotonocity), monotonicity assumption is
removed by eliminating the positive restriction on the full
connection layers. These two reduced models are used to
demonstrate the importance of fine-estimated knowledge
relevancy vector and monotonicity assumption respectively.
Furthermore, we conduct an extra experiment in which stu-
dents’ knowledge proficiencies are randomly estimated, and
compute the DOA for comparison.

Figure 5 presents the experimental results. From the fig-
ure we can observe that DOAs of NeuralCDM and Neural-
CDM+ are significantly higher than baselines, which proves
that knowledge proficiencies diagnosed by them are reason-
able. The DOAs of NeuralCDM-Qmatrix and NeuralCDM-
Monotonicity are much lower than NeuralCDM, which indi-
cates that both information from Q-matrix and monotonicity
assumption are important for getting interpretable diagno-
sis results (knowledge proficiency vectors). DOA of DINA
is slightly higher than Random due to the use of Q-matrix.
Besides, NeuralCDM performs much better on Math than
on ASSIST. This is mainly due to the contradictions in logs,
i.e., a student may answer some exercises containing knowl-
edge concept kj correctly while others containing kj wrong
(reasons may be the change of knowledge proficiency, or
other knowledge concepts contained by the exercises). As
showed in Table 1, ASSIST has much larger AVG#log and
slightly higher STD#log>1 than Math dataset, which makes
more contradictions in logs. Longer logs with more contra-
dictions would decrease DOA.

Case Study. Here we present an example of a student’s
diagnostic result of NeuralCDM on dataset ASSIST in Fig-
ure 6. The upper part of Figure 6 shows the Q-matrix of three
exercises on five knowledge concepts and the response of a
student to the exercises. The bars in the underneath subfig-
ure represent the student’s proficiency on each knowledge
concept. The lines with different colors and markers rep-
resent the knowledge difficulties of the three exercises (for
clarity, we only present difficulties of relevant knowledge
concepts for each exercise). We can observe from the figure
that the student is more likely to response correctly when
his proficiency satisfies the requirement of the exercise. For
example, exercise 3 requires the mastery of ’Ordering Frac-
tion’ and corresponding difficulty is 0.35. The student’s pro-
ficiency on ’Ordering Fraction’ is 0.60, which is higher than
required, thus he answered it correctly. Both knowledge dif-
ficulty (hdiff ) and knowledge proficiency (hs) in Neural-
CDM are explainable as expected.

4.4 Discussion.
From the above experiments, we can observe that NeuralCD
models provide both accurate and interpretable results for
cognitive diagnosis.

There still some directions for future studies. First, we
may make our effort to design a more efficient model for
knowledge concept prediction, which would promote the
performance of NeuralCDM+. Second, the positive restric-
tion on neural network weights may limit the approximate
ability, thus we would like to explore more flexible meth-
ods to satisfy the monotonicity assumption. Third, since

students’ knowledge statuses change in many online self-
learning circumstances, we would like to extend NeuralCD
for dynamic cognitive diagnosis.

5 Conclusion
In this paper, we proposed a neural cognitive diagnostic
framework, NeuralCD framework, for students’ cognitive
diagnosis. Specifically, we first discussed fundamental stu-
dent and exercise factors in the framework, and placed a
monotonicity assumption on the framework to ensure its in-
terpretability. Then, we implemented a specific model Neu-
ralCDM under the framework to show its feasibility, and
further extended NeuralCDM by incorporating exercise text
to refine Q-matrix. Extended experimental results on real-
world datasets showed the effectiveness of our models with
both accuracy and interpretability. We also showed that Neu-
ralCD could be seen as the generalization of some traditional
cognitive diagnostic models (e.g., MIRT). The structure of
the diagnostic network in our work is designed intuitively.
However, with the high flexibility and potential of neural
network, we hope this work could lead to further studies.
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