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Abstract—Cognitive diagnosis is widely applicable in the scenarios where users’ cognitive states need to be assessed, such as games

and clinical measurement. Especially in intelligent education, which has become increasingly popular recent decades, cognitive

diagnosis serves as a fundamental module for discovering the proficiency level of students on specific knowledge concepts. Existing

approaches usually mine linear interactions of student exercising process by manually designed function (e.g., logistic function).

However, the cognitive interactions between students and exercises is a complex process, and excessive simplifications would lead to

under fitting and thus get inaccurate diagnostic results. Besides, the manually designed interaction functions are relatively inflexible and

limits their extensibility. This consequently causes lack of consideration about useful non-numerical information in the cognitive process

besides response logs. In this article, we propose a general Neural Cognitive Diagnosis (NeuralCD) framework as well as several

implemented models (a basic implementation NeuralCDM and three extensions), where we project students and exercises to factor

vectors and incorporates neural networks to learn the complex exercising interactions. To ensure the interpretability of diagnostic

results, which is essential for cognitive diagnosis, we apply an monotonicity assumption to our NeuralCD framework. Moreover,

NeuralCD is a general framework and has good extensibility. We show the generality of NeuralCD through proving how it can cover

some traditional models. Then, we demonstrate the extensibility of NeuralCD, which benefits future developments. On one hand, we

demonstrate content-based extensions where we provide examples of exploring the rich contents of exercise texts (CNCD-Q and

CNCD-F). On the other hand, we demonstrate a knowledge-association based extension to show that NeuralCD is flexible for structural

adjustments so as to solve specific problems. For instance, we improve the diagnostic results on uncovered knowledge concepts of a

student by extending NeuralCD with the knowledge associations consideration (KaNCD). Extensive experimental results on real-world

datasets show the effectiveness of NeuralCD framework with both accuracy and interpretability.

Index Terms—Intelligent education, personalized learning, cognitive diagnosis, neural network

Ç

1 INTRODUCTION

COGNITIVE diagnosis has been studied for decades, and
researchers (especially from psychometrics and educa-

tion) have obtained rich achievements. The purpose of cog-
nitive diagnosis is to discover a person’s cognitive state
(e.g., skill proficiency) from the person’s behaviors (e.g., test

results). It is a necessary and fundamental task in many
real-world scenarios such as games [1], clinical measure-
ment [2], [3] and education, where users’ (e.g., players,
patients, students) abilities require assessments, and thus
attracts wide attention. Specifically, in intelligent educa-
tional systems [4], [5], cognitive diagnosis aims to discover
the states of students in the learning process, such as their
proficiencies on specific knowledge concepts [6]. Fig. 1
shows a toy example of cognitive diagnosis. Generally, stu-
dents usually first choose to practice a set of exercises (e.g.,
e1; . . . ; e4) and leave their responses (e.g., right or wrong).
Then, our goal is to infer their actual knowledge states on
the corresponding concepts (e.g., Equation). In practice,
these diagnostic reports are necessary as they serve as the
basis of further supports, such as exercise recommendation,
targeted training [7] and computerized adaptive testing [8].

In the field of psychometrics, massive efforts have been
devoted for cognitive diagnosis, such as Deterministic
Inputs, Noisy-And gate model (DINA) [9], Item Response
Theory (IRT) [10] and Multidimensional IRT (MIRT) [11].
Despite achieving some effectiveness, these works rely on
handcrafted functions that model the interaction between
student and questions. The interaction functions are
designed based on assumptions that are the simplification
of real interaction process, and are mostly linear, such as
logistic-like function in IRT [10] or inner product in matrix
factorization [12]. However, the interaction between
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students and exercises is a complex non-linear process, and
excessive simplifications would lead to under-fitting of the
process and thus get inaccurate diagnostic results and
restrict the application scope of the models. Besides, these
works were proposed mostly for scale-based tests where a
set of examinees are tested with the same small set of ques-
tions, e.g., terminal examination of schools. In a scale-based
test, all examinees are supposed to answer all the questions,
therefore the response data is complete and usually not
large. While for broader applications of cognitive diagnosis,
the data could be collected via different scenes, such as off-
line examinations and online self-regulated learning. There-
fore, the response data could have large volume but sparse
distribution, and more types of data becomes usable (e.g.,
texts, graph). The interaction patterns behind the data could
be more elusive with simple functions, which makes it
impractical to manually design the interaction functions.
Fortunately on the other hand, the accumulation of data
provides us an opportunity to apply data-driven methods
to discover the complex interaction function[13].

In this paper, we address this issue in a principled way of
proposing a Neural Cognitive Diagnosis (NeuralCD) frame-
work by incorporating neural networks to model complex
non-linear interactions. Although the capability of neural
networks to approximate continuous functions has been
proved in many domains, such as natural language process-
ing [14] and recommender systems [15], it is still highly non-
trivial to adapt to cognitive diagnosis due to the following
domain challenges. First, the interpretability of diagnostic
results, such as getting a student’s mastery on certain
knowledge concepts (e.g., Equation) is essential for cognitive
diagnosis. However, the black-box nature of neural net-
works makes them difficult to get such explainable results.
Second, the information contained in response logs is not
complete for cognitive diagnosis. Extra resources such as
exercise text content has valuable information (e.g., diffi-
culty of reading comprehension) that beneficial for cogni-
tive diagnosis. Thus it is necessary to make sure that our
propose framework is extensible so as to aggregate the
information from these resources. Third, a widely applica-
ble framework should has a structure that is flexible to
extend so as to meet different requirements in different sit-
uations. For example, in Fig. 1, student 1 did not answer
exercises related to Absolute Value and student 2 did not
answer exercises related to Trigonometric Function. This is a
common phenomenon especially in online exercises which
are not scaled based, where the coverage of knowledge con-
cepts in a student’s response log is not complete due to the
large total number of knowledge concepts and limited ques-
tions done by the student. In such situation, diagnostic

models need to handle the knowledge coverage problem so
as to obtain reliable diagnostic results when some knowl-
edge concepts do not appear in a student’s response history.

We propose a NeuralCD framework to address these
challenges. We first introduce how we use NeuralCD to
approximate interactions between students and exercises,
for getting both accurate and explainable diagnostic results.
As proposed in our preliminary work [16], in NeuralCD we
projected students and exercises to factor vectors and lever-
age multi-layers for modeling the complex interactions in
the process of exercise answering. To ensure the interpret-
ability, without which the model would not be able to pro-
vide understandable diagnostic results and thus turns to a
pure predicting model, we applied the monotonicity
assumption taken from educational property [11] on the
multi-layers. Then, we proposed a basic implementation of
the framework called NeuralCDM, where we simply
extracted exercise factor vectors from traditional Q-matrix
and achieved the monotonicity property with nonnegative
full connection layers, which showed feasibility of the
framework. Traditional Q-matrix is an exercise-knowledge
correlation matrix where Qij ¼ 1 if exercise ei contains
knowledge concept kj and 0 otherwise. The Q-matrix of the
exercises in Fig. 1 is shown in Fig. 2.

After that, in this paper, we make further discussions and
demonstrations about the two extra advantages of Neu-
ralCD, i.e., generality and extensibility.

The generality of NeuralCD framework lies in its ability
to cover some traditional models such as MF, IRT, MIRT.
These models can be seen as degenerations of special cases
of NeuralCD. With proper neural network structures, Neu-
ralCD is capable of automatically learn different interaction
functions that are suitable for the data.

As for the extensibility, we emphasize that a cognitive
diagnosis framework should be open to extra information
or better structures that benefit. Therefore we propose mod-
els that demonstrate the extensibility of NeuralCD from two
aspects, i.e., content-based extension and knowledge-associ-
ation based extension. In content-based extension, we dem-
onstrate how information from exercise text can be explored
with neural network to extend the framework. While in

Fig. 1. A toy example of cognitive diagnosis.

Fig. 2. An example of Q-matrix.
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knowledge-association based extension, we provide a struc-
tural extension of NeuralCD to solve the knowledge concept
coverage problem. Specifically, a representation based
method is proposed to capture the associations among dif-
ferent knowledge concepts so as to improve the reliability
of diagnostic results on uncovered knowledge concepts of a
student. These two types of extensions can be combined
together for better performance.

The organization of our work is presented in Fig. 3. We
first introduce our NeuralCD framework in Section 3.2.
Then in Section 3.3, we demonstrate the feasibility of Neu-
ralCD with an implemented model NeuralCDM. After that,
generality and extensibility of NeuralCD are introduced in
Sections 4 and 5 respectively, and the extensibility is further
discussed from two aspects, i.e., content-based extension
and knowledge-association based extension.

Finally, we conduct extensive experiments on real-world
datasets with basic and extended implementations, and the
results show the effectiveness of NeuralCD framework with
both accuracy and interpretability guarantee.

Our code is available at: https://github.com/bigdata-
ustc/Neural_Cognitive_Diagnosis-NeuralCD

2 RELATED WORK

In this section, we briefly review the related works from the
following three aspects.

Cognitive Diagnosis. Existing works about student cogni-
tive diagnosis mainly came from educational psychology
area. DINA [9], [17] and IRT [10] were two of the most typi-
cal works, which model the result of a student answering
an exercise as the interaction between the trait features of
the student (uuuuuuu) and the exercise (bbbbbbb). Specifically, in DINA, uuuuuuu
and bbbbbbb were multi-dimensional and binary, where bbbbbbb came
directly from Q-matrix (a human labeled exercise-knowl-
edge correlation matrix). Another two exercise factors, i.e.,
guessing and slipping (parameterized as g and s) are also
taken into consideration. The probability of student i cor-
rectly answering exercise j was modeled as P ðrij ¼ 1juuuuuuuiÞ ¼
g
1�hij
j ð1� sjÞhij , where hij ¼

Q
k u

bjk
ik . On the other hand, in

IRT, uuuuuuu and bbbbbbb were unidimensional and continuous latent
traits, indicating student ability and exercise difficulty. The
interaction between the trait features was modeled in a
logistic way, e.g., a simple version is sigmoidðaðuuuuuuu � bbbbbbbÞÞ,
where a is the exercise discrimination parameter. Although
extra parameters were added in IRT [18], [19] and latent
trait was extended to multidimensional(MIRT) [11], [20],
most of their item response functions were still logistic-like.

Recently, some researches from data mining perspective
have demonstrated the feasibility of MF for cognitive diag-
nosis. Student and exercise correspond to user and item in
matrix factorization (MF). For instance, Toscher et al. [21]

improved SVD (Singular Value Decomposition) methods to
factor the score matrix and get students and exercises’ latent
trait vectors. Thai-Nghe et al. [22], [23] applied some recom-
mender system techniques including matrix factorization in
the educational context, and compared it with traditional
regression methods.

The interaction functions of theses traditional models are
manually designed, which is based on various educational
or psychometric theories or assumptions. For example,
Reckase summarized the assumptions adopted by most
IRT/MIRT models [11], including the independence among
students, the invariance of students and exercises during a
test, the monotonicity assumption, etc. In DINA model, a
student is assumed to correctly answer an exercise only in
two conditions: the student has mastered all the skills
required by the exercise without slip, or the student does
not mastered all the required skills but makes a successful
guess. Due to the theories/assumptions chosen, traditional
cognitive diagnosis models might perform well in some sit-
uations. However, the scope of applications are therefore
restricted and excessive simplification of the cognitive pro-
cess would lead to limited fitting ability. In practice,
researchers need to choose suitable models from various
choices ([24]) or even design their own model for specific
usage, which is labor-intensive. Although the professional
theories and assumptions provide valuable suggestions for
cognitive diagnosis, we demand a new type of diagnosis
model which requires less expert knowledge (i.e., automati-
cally learnable), and provide accurate as well as interpret-
able diagnostic results that are easy to understand.

Artificial Neural Network. Techniques using artificial neu-
ral network have reached state-of-the-art in many areas,
e.g., speech recognition [25], text classification [26] and
image captioning [27]. There are also some educational
applications such as question difficulty prediction [28], code
education [29] and formula image transcribing [30]. How-
ever, using neural network for cognitive diagnosis is non-
trivial as it performs poorly in parameter interpretation due
to its inherent traits. To the best of our knowledge, deep
knowledge tracing (DKT) [31] was the first attempt to model
student learning process using recurrent neural network,
followed by some variations[32], [33]. However, these
knowledge tracing models paid more attention on modeling
the changes of student states to predict students’ scores, and
did not explicitly model the effect of students’ knowledge
proficiencies in the learning process with an educational
basis. Thus such models are unsuitable for cognitive diag-
nosis. Few works with neural network have high interpret-
ability for student cognitive diagnosis. Towards this end, in
this paper we propose a neural cognitive diagnosis (Neu-
ralCD) framework which borrows concepts from educa-
tional psychology and combine them with fitting functions
learned from data. NeuralCD could achieve both high accu-
racy and interpretation with neural network. Besides, the
framework is general that can cover many tradition models,
and at the same time easy for extension.

Knowledge Coverage Problem. Knowledge coverage is an
important issue in cognitive diagnosis. Traditional cognitive
diagnosis models mostly deal with scale-based tests where
the amounts of exercises and knowledge concepts are small
and the student responses are intact. The knowledge

Fig. 3. The organization of this work.

8314 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 06,2023 at 17:41:17 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/bigdata-ustc/Neural_Cognitive_Diagnosis-NeuralCD
https://github.com/bigdata-ustc/Neural_Cognitive_Diagnosis-NeuralCD


coverage is complete for each student in these conditions.
However, when the amounts of exercises and knowledge
concepts are large while the responses are sparse, which is
the normal cases in nowadays intelligent education systems,
the knowledge coverage problem becomes non-negligible.
In traditional models such as IRT [10] and MIRT [11], [20],
knowledge concepts are not considered. In models such as
DINA [9], [17], DINO [34] and NIDA [35], knowledge con-
cepts are considered to be independent. The diagnostic
results of these models would be less reliable when knowl-
edge coverage is incomplete. Some researches consider the
relations among the proficiencies on different knowledge
concepts. For example, the AHM [36] considers the hierar-
chical relation among knowledge concepts. De La Torre
et al. [37] proposed HO-DINA which considered low-
dimensional high order latent traits that affect the students’
proficiencies on each knowledge concept. Liu et al. [38] pro-
posed a FuzzyCDF model that a student’s proficiencies on
knowledge concepts are affected by his/her ability parame-
ter. However, to the best of our knowledge, the knowledge
coverage problem has not been explicitly studied yet in
existing works.

3 NEURAL COGNITIVE DIAGNOSIS

We first formally introduce cognitive diagnosis task. Then
we describe the details of NeuralCD framework. After that,
we design a specific diagnostic network NeuralCDM with
traditional Q-matrix to show the feasibility of the frame-
work. In the next two sections, we will introduce the superi-
ority of NeuralCD framework in two aspects, i.e., generality
and extensibility.

3.1 Task Overview

Suppose there are N Students, M Exercises and K Knowl-
edge concepts at a learning system, which can be repre-
sented as S ¼ fs1; s2; . . .; sNg; E ¼ fe1; e2; . . .; eMg and
Kn ¼ fk1; k2; . . .; kKg respectively. Each student will choose
some exercises for practice, and the response logs R are
denoted as set of triplet ðs; e; rÞ where s 2 S; e 2 E and r is
the score (transferred to percentage) that student s got on
exercise e. In addition, we have Q-matrix (usually labeled
by experts) Q ¼ fQijgM�K , where Qij ¼ 1 if exercise ei
relates to knowledge concept (abbreviated as KC) kj and
Qij ¼ 0 otherwise.

Problem Definition. Given students’ response logs R and the
Q-matrix Q, the goal of our cognitive diagnosis task is to mine
students’ proficiency on knowledge concepts through the student
performance prediction process.

3.2 Neural Cognitive Diagnosis Framework

Generally, cognitive diagnosis models are designed to simu-
late the results of students’ exercise answering process
where students use their cognition (e.g., knowledge, skills)
to overcome the obstacles set in exercises. Thus for a cogni-
tive diagnostic system, there are basically three elements
need to be considered: student factors, exercise factors and the
interaction function among them [39]. In this paper, we pro-
pose a general NeuralCD framework to address them by
using multi-layer neural network modeling, which is shown
in Fig. 4. Specifically, for each response log, we use one-hot

vectors of the corresponding student and exercise as input
and obtain the diagnostic factors of the student and exercise.
Then the interactive layers learn the interaction function
among the factors and output the probability of correctly
answering the exercise. After training, we get students’ pro-
ficiency vectors as diagnostic results. Details are introduced
as bellow.

Student Factors. Student factors characterize the traits of
students, which would affect the students’ response to exer-
cises. As our goal is to mine students’ proficiency on knowl-
edge concepts, we do not use the latent trait vectors as in
IRT and MIRT[11], which is not explainable enough to
guide students’ self-assessment. Instead, we design the stu-
dent factors as explainable vectors similar to DINA, but has
a major difference that they are continuous. Specifically, We
use a vector Fs to characterize a student, namely proficiency
vector. Each entry of Fs is continuous ([0,1]), which indicates
the student’s proficiency on a knowledge concept. For
example, Fs ¼ ½0:9; 0:2� indicates a high mastery on the first
knowledge concept but low mastery on the second. Fs is
got through the parameter estimation process.

Exercise Factors. Exercise factors are designed to charac-
terize the traits of exercises. We divide exercise factors into
two categories. The first indicates the relationship between
exercises and knowledge concepts, which is fundamental as
we need it to make each entry of Fs correspond to a specific
knowledge concept for our diagnosis goal. We call it knowl-
edge relevancy vector and denote it as Fkn. Fkn has the same
dimension as Fs, with the ith entry indicating the relevancy
between the exercise and the knowledge concept ki. Each
entry of Fkn is non-negative. Fkn is previously given (e.g.,
obtained from Q-matrix). Other factors are of the second
type and are optional. Factors from IRT[19] and DINA[9]
such as knowledge difficulty, exercise difficulty and dis-
crimination can be incorporated if reasonable.

Interaction Function. Interaction function simulates how
student factors interact with exercise factors to get the
response results (e.g., right or wrong). We use artificial neu-
ral network to obtain the interaction function for the follow-
ing reasons. First, the neural network has been proven to be
capable of approximating any continuous function [40]. The
strong fitting ability of neural network makes it competent
for capturing relationships among student and exercise fac-
tors. Second, with neural network, the interaction function
can be learned from data with few assumptions (that behind
traditional models). This makes NeuralCD more general
and can be applied in broad areas. Third, the framework
can be highly extendable with neural network. For instance,

Fig. 4. Structure of NeuralCD framework.
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extra information such as exercise texts can be integrated in
with neural network (We will discuss its extendability in
the following subsections.). Mathematically, we formulate
the output of NeuralCD framework as

y ¼ ’nð. . .’1ðFs; Fkn; Fother; ufÞÞ; (1)

where ’i denotes the mapping function of the ith MLP
layer; Fother denotes factors other than Fs and Fkn (e.g., dif-
ficulty); and uf denotes model parameters of all the interac-
tive layers.

Interpretability Guarantee. Obtaining interpretable results
is indispensable for cognitive diagnosis, as the diagnostic
results are the basis for evaluating students’ learning states
and providing further personalized supports. However,
due to some intrinsic characteristics, neural networks usu-
ally have poor performance on interpretation [41]. To solve
this problem, We take two steps to ensure that the factors
are explainable. The first step is to have the term Fs � Fkn in
the input layer in order to align each dimension of Fs to an
knowledge concept specified by the corresponding dimen-
sion of Fkn. The second step is to utilize the monotonicity
assumption, which is used in some IRT and MIRT mod-
els [11], to make the values in Fs variate in the same direc-
tion with y. Monotonicity assumption is general and
reasonable in almost all circumstance, thus it has less influ-
ence on the generality of NeuralCD framework. The
assumption is defined as follows:

Monotonicity Assumption. The probability of correct response
to the exercise is monotonically increasing at any dimension of the
student’s knowledge proficiency.

This assumption should be converted as a property of the
interaction function. Intuitively, we assume student s to
answer exercise e correctly. During training, the optimiza-
tion algorithm should increase (or at least not decrease) the
student’s proficiency if the model output a wrong predic-
tion (i.e., a value below 0.5). The increment of each knowl-
edge proficiency is otherwise controlled by Fkn (step 1).

After introducing the structure of NeuralCD framework,
we will next show some specific implementations. We first
implement a basic model based on NeuralCD where knowl-
edge relevancy vectors are directly get from pre-given Q-
matrix to show the feasibility of NeuralCD (Section 3.3).
Then we discuss the generality of NeuralCD by showing
that some traditional models can be regarded as its special
cases (Section 4). Further, we show the extendability of Neu-
ralCD from content aspect (Section 5.1) and structure aspect
(Section 5.2).

3.3 Neural Cognitive Diagnosis Model

Here we introduce a specific neural cognitive diagnosis
model (NeuralCDM) under NeuralCD framework. Fig. 5
illustrates the structure of NeuralCDM.

Student Factors. In NeuralCDM, each student is repre-
sented with a knowledge proficiency vector. The student
factor Fs aforementioned is hhhhhhhs here, and hhhhhhhs is obtained by
multiplying the student’s one-hot representation vector xxxxxxxs

with a trainable matrix A. That is,

hhhhhhhs ¼ sigmoidðxxxxxxxs �AÞ; (2)

in which hhhhhhhs 2 ð0; 1Þ1�K; xxxxxxxs 2 f0; 1g1�N;A 2 RN�K .

Exercise Factors. As for each exercise, the aforementioned
exercise factor Fkn is QQQQQQQe here, which directly comes from
the pre-given Q-matrix

QQQQQQQe ¼ xxxxxxxe �Q; (3)

where QQQQQQQe 2 f0; 1g1�K , xxxxxxxe 2 f0; 1g1�M is the one-hot repre-
sentation of the exercise. In order to make a more precise
diagnosis, we adopt other two exercise factors: knowledge
difficulty hhhhhhhdiff and exercise discrimination hdisc. hhhhhhhdiff 2
ð0; 1Þ1�K , indicates the difficulty of each knowledge concept
examined by the exercise, which is extended from exercise
difficulty used in IRT. hdisc 2 ð0; 1Þ, used in some IRT and
MIRT models, indicates the capability of the exercise to dif-
ferentiate between those students whose knowledge mas-
tery is high from those with low knowledge mastery. They
can be obtained by

hhhhhhhdiff ¼ sigmoidðxxxxxxxe � BÞ;B 2 RM�K (4)

hdisc ¼ sigmoidðxxxxxxxe �DÞ;D 2 RM�1; (5)

where B andD are trainable matrices.
Interaction Function. The first layer of the interaction

layers is inspired by MIRT models. We formulate it as

xxxxxxx ¼ QQQQQQQe � ðhhhhhhhs � hhhhhhhdiffÞ � hdisc; (6)

where � is element-wise product. Following are two full
connection layers and an output layer:

fffffff1 ¼ fðW1 � xxxxxxxT þ bbbbbbb1Þ; (7)

fffffff2 ¼ fðW2 � fffffff1 þ bbbbbbb2Þ; (8)

y ¼ fðW3 � fffffff2 þ b3Þ; (9)

where f is the activation function. Here we use Sigmoid.
Different methods can be used to satisfy the monotonic-

ity assumption. We adopt a simple strategy: restrict each
element of W1;W2;W3 to be nonnegative. It can be easily
proved that @y

@hs
k
is nonnegative for each entry hs

k in hhhhhhhs. (Please
refer to Appendix A for detailed proof, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2022.3201037.)
Thus monotonicity assumption is always satisfied during
training.

The loss function of NeuralCDM is cross entropy between
output y and true label r

Fig. 5. Neural cognitive diagnosis model (NeuralCDM).
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lossCDM ¼ �
X
i

ðrilog yi þ ð1� riÞlog ð1� yiÞÞ: (10)

After training, the value of hhhhhhhs is what we get as diagnosis
result, which denotes the student’s knowledge proficiency.

4 GENERALITY OF NEURALCD

In this section we show that NeuralCD is a general frame-
work which can cover many traditional cognitive diagnostic
models. Using Eq. (6) as the first layer, we now show the
close relationship between NeuralCD and traditional mod-
els, including MF, IRT and MIRT. Fig. 6 gives an intuitive
comparison between NeuralCD and these models.

MF[22]. In MF there are student and exercise latent vec-
tors (hhhhhhhs and QQQQQQQe), and we take the basic formation of interac-
tion function QQQQQQQe � hhhhhhhs as an example. It should be noted the
QQQQQQQe in MF is a learnable exercise parameter and cannot indi-
cate the knowledge relevancy. By setting hhhhhhhdiff � 0000000 and
hdisc � 1, the output of the first layer is xxxxxxx ¼ QQQQQQQe � hhhhhhhs. Then in
order to work like MF, all the rest of layers need to do is to
sum up (

P
) the values of each entry in xxxxxxx, which is easy to

achieve. Monotonicity assumption is not applied in MF
approaches.

IRT [10]. Take the typical formation of IRT y ¼
Sigmoidððhs � hdiffÞ � hdiscÞ as example. First, set Qe � 1,
and let hhhhhhhs and hhhhhhhdiff be unidimensional, the output of the
first layer is x ¼ ðhs � hdiffÞ � hdisc. Second, The multi-layer
neural network in NeuralCD degenerates to a single Sig-
moid activation function (s). Monotonicity assumption
could be achieved by limiting hdisc to be positive. Other var-
iations of IRT (e.g., y0 ¼ C þ ð1� CÞy where C is guessing
parameter) can be realized with a few changes.

MIRT [11]. One direct extension from IRT to MIRT is to
use multidimensional trait vectors of exercises and students.
Here we take the typical formation proposed in [20] as an
example

y ¼ eQe�hhhhhhhs�de

1þ eQe�hhhhhhhs�de
; (11)

where Qe is usually a low dimensional parameter learned
from response data instead of the previously given

knowledge relevancy vector. First, let hdisc � 1, the output
of the first layer given by Eq. (6) is xxxxxxx ¼ Qe � ðhhhhhhhs � hhhhhhhdiffÞ. Sec-
ond, make the multi-layers in NeuralCD degenerate to a
summation (

P
) followed by a Sigmoid function (s). Specifi-

cally, by Setting W1 ¼ 1 1 � � � 1½ �; bbbbbbb1 ¼ 0000000 and fðxÞ ¼
SigmoidðxÞ in Eq. (7), we have f1 ¼ SigmoidðQe � hhhhhhhs � deÞ ¼
y (where de ¼ QQQQQQQe � hhhhhhhdiff ). f1 could be output without any
more layers. Monotonicity assumption is not compulsory
but can be realized if each entry of QQQQQQQe is restricted to be
nonnegative.

5 EXTENSIBILITY OF NEURALCD

In this section we show that NeuralCD is an open frame-
work that is easily extendable. We demonstrate two types of
extensions, i.e., utilize extra content information and
explore knowledge associations.

5.1 Content-Based Extension

Due to the limitations of manually designed interaction
functions, traditional cognitive diagnosis models mostly
concentrate on numerical data such as student IDs, exercise
IDs, response results (right or wrong) and the knowledge
concepts of exercises in students’ response logs. However,
these information is not enough to characterize students’
cognitive process which is quite complex. Many other infor-
mation, such as the time duration of when the student
answered exercises and the text content of exercises which
have been proved to be highly related to some exercise fea-
tures (e.g., difficulty, relevant knowledge concepts [28],
[42]), are also relevant to the students’ responses. Thus an
extendable framework should be able to aggregate these
extra information for better diagnostic results. Here we
choose two typical types of information in exercise text, i.e.,
knowledge concepts and extra text-related factor, and dem-
onstrate their utilizations.

5.1.1 Knowledge Extraction From Text Content

The first demonstration is to extract relevant knowledge
concepts from exercise contents. In NeuralCDM we use
manually-labeled Q-matrix to represent the knowledge

Fig. 6. Relation between NeuralCD and some traditional models.
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relevancies of each exercise (a common practice in tradi-
tional works). However, manually-labeled Q-matrix may be
deficient because of inevitable errors and subjective
bias [39], [43]. For example, in Q-matrix, maybe only
’Equation’ is labeled for an equation solving exercise. How-
ever, ’Division’ is also required if we discover the existence
of ’	’ in the text. It is quite common that only target knowl-
edge concepts are marked in Q-matrix while other relevant
knowledge concepts are neglected. An optional strategy to
solve this problem is to leverage the text content to refine
the Q-matrix by discovering ignored knowledge concepts of
exercises, which is feasible with the advantage of neural net-
work. We denote this extended model as content enhanced
NeuralCD with Q-matrix refinement (CNCD-Q), and pres-
ent its structure in Fig. 7.

Specifically, we first pre-train a model that predicts
knowledge concepts related to the input exercise. Lots of
models that suitable for text processing can be used for this
task [44]. As CNN (convolutional neural network) has
advantage of extracting local information in text processing,
it’s able to capture important words from texts (e.g., words
that are highly relative to certain knowledge concepts).
Thus CNN is practically sufficient for our goal. Comparing
or designing more advanced KC prediction models is
beyond this work and we leave it for future research. The
CNN network we use takes concatenated word2vec embed-
ding of words in texts as input, and output the relevancy of
each predefined knowledge concept (that has occurred in
data) to the exercise (more details in Section 6.2). Human-
labeled Q-matrix is used as label for training. We define
V k
i ¼ fVij1 ; Vij2 ; . . .; Vijkg as the set of top-k knowledge con-

cepts of exercise ei outputted by the CNN.
Then we combine V k

i with Q-matrix. Although there are
defects in human-labeled Q-matrix, it still has high confi-
dence. Thus we consider knowledge concepts labeled by Q-
matrix are more relative than fkjjkj 2 V k

i and Qij ¼ 0g. To
achieve this, we adopt a pairwise Bayesian method as fol-
lows. For convenience, we define partial order > þ

i as

a > þ
i b; if Qia ¼ 1 and Qib ¼ 0 and b 2 V k

i ; (12)

and define the partial order relationship set as DV ¼
fði; a; bÞja > þ

i b; i ¼ 1; 2; . . .;Mg. Following traditional
Bayesian treatment, we assume ~Q follows a zero mean
Gaussian prior with standard deviation s of each dimen-
sion. To give Q-matrix labels higher confidence, we define
pða > þ

i bj ~QiÞwith a pairwise logistic-like function

pða > þ
i bj ~QQQQQQQiÞ ¼

1

1þ e��ð ~Qia� ~QibÞ
: (13)

The parameter � controls the discrimination of relevance
values between labeled and unlabeled knowledge concepts.
The log posterior distribution over DV on ~Q is finally for-
mulated as

ln pð ~QjDV Þ ¼ ln
Y

ði;a;bÞ2DV

pða > þ
i bj~QQQQQQQiÞpð ~QQQQQQQiÞ

¼
XM
i¼1

XK
a¼1

XK
b¼1

Iða > þ
i bÞ ln 1

1þ e��ð ~Qia� ~QibÞ

þ C �
XM
i¼1

XK
j¼1

~Q2
ij

2s2
; (14)

where C is a constant that can be ignored during optimiza-
tion. Before using ~Q in NeuralCDM, we need to restrict its
elements to the range (0,1), and set elements of concepts

unlabeled or not predicted to 0. Thus, Sigmoidð ~QÞ �M is

used to replace Q in NeuralCDM, where M 2 f0; 1gM�K is a

mask matrix, andMij ¼ 1 if j 2 V k
i or Qij ¼ 1;Mij ¼ 0 other-

wise. ~Q is trained together with the cognitive diagnostic

model, thus the loss function is

loss ¼ � ln pð ~QjDV Þ þ lossCDM: (15)

5.1.2 Factors Extraction From Text Content

Extracting relevant knowledge concepts is not the only way
to make use of exercise text contents. Some other factors
such as guess, slip [9], [17] and gaming [45] are also consid-
ered as reasons that influence students’ performances. Simi-
larly, other cognitively relevant information is contained in
exercise texts. For example, the understanding of the text
contents is the first stage of solving an exercise. Sometimes
the expression used in the text can be confusing, although
the knowledge concepts examined by the exercise might not
be difficult. Here are two examples:

� E1: 2� 10þ 3 ¼ :
� E2: Alice’s speed is 1 m/s. John is twice as fast as

Alice. John starts at 3m from the starting point of a
straight runway and move forward. How far is John
from the starting point after 10s?

Both E1 and E2 examine the mastery of Addition andMul-
tiplication. The text of E1 is straightforward. However, E2
assumes a practical scenario that the student needs to
understand and switch to the expression like E1 at first.
although the difficulty of knowledge concept examined by
E1 and E2 are close, the possibilities of correctly solving the
exercises are influenced by the student’s understanding of
the text contents.

Traditional cognitive diagnosis models are difficult to
aggregate this type of content information due to their lim-
ited extensibility. Here we show an example of considering
the extra type of exercise factor, i.e., text factor, to extend
our NeuralCD framework (denoted as CNCD-F). The archi-
tecture of CNCD-F is presented in Fig. 8. Inside the dashed
box is the text factor extraction process where given the
exercise text, we first use a TextCNN [46] (which is efficient
to process NLP texts) to get the text embedding eeeeeee 2 Rd0 .

Fig. 7. CNCD-Q: Content enhanced NeuralCD with Q-matrix refinement.
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Then we translate it to text factor vector hhhhhhhtext 2 Rd1 through

hhhhhhhtext ¼ Wt � eeeeeeeþ bbbbbbbt; (16)

where Wt 2 Rd0�d1 and bbbbbbbt 2 Rd1 are trainable parameters,
and we set d1 ¼ 1. Correspondingly, we extend the matrix
A and Q to ~Að2 RN�ðKþd1ÞÞ and ~Qð2 RM�ðKþd1ÞÞ respec-
tively. The extended dimensions represent the skills corre-
sponding to the text factors (e.g., reading comprehension).
~Q�;ðKþd1Þ ¼ 1. The extended dimensions/factors are exhib-

ited in Fig. 8 using squares with oblique lines.

The overall modeling process is similar to NeuralCDM
except that:

1) Q in Eq. (3) and A in Eq. (2) are replaced with ~Q and
~A respectively.

2) Eq. (6) is changed to

xxxxxxx ¼ QQQQQQQe � ðhhhhhhhs � ðhhhhhhhdiff 
 hhhhhhhtextÞÞ � hdisc: (17)

After training, the values of the first K dimensions in hhhhhhhs

are the diagnosed proficiencies on KCs.

5.2 Knowledge-Association Based Extension

In this subsection we demonstrate that the structure of Neu-
ralCD is flexible to extend so as to adapt to different situa-
tions. Here we propose a knowledge-association based
extension, in order to address the knowledge coverage
problem in cognitive diagnosis. Normally in an intelligent
educational system, there can be numerous knowledge con-
cepts for a single subject. However, due to the limited ques-
tions answered (in a test or a short time span for diagnosis)
by a student, this student’s coverage of knowledge concept
is usually quite low (analyses on real-world datasets are
provided in Fig. 9 and Table 2). For convenience, we call
these untested KCs of a student as weak-KC and those ques-
tions of which more than half of the contained KCs are
weak-KCs as weak-question. In our previous models, the pro-
ficiency values of these weak-KCs are not reliable. For
example, if student s never answered a question related to
Statistics, the corresponding dimension in the student’s
knowledge proficiency vector (hhhhhhhs) would never be trained
as the relevancy is always 0. To make the diagnostic model
more robust, the ability of approximating the proficiencies
on the weak-KCs of a student is necessary.

In this work we address this problem by considering the
relations among knowledge concepts. Existing researches has

revealed that knowledge concepts are not independent [36],
[47]. Knowledge proficiencies are associated with each other,
as well as knowledge difficulties of exercises. We formulated
the proficiency of student si on knowledge kj asProfðsi; kjÞ ¼
Fðsi; kj;RelkÞ, where the Relk denotes the knowledge rela-
tions, e.g., knowledge hierarchy[36], knowledge concept
graph [48]. Considering that these explicit knowledge rela-
tions require expert knowledge and is not always available,
we here provide an example of modeling implicit knowledge
relations purely from response logs.When explicit knowledge
relations are absent, a normal practice is to calculate pairwise
constraints between each pair of item, which requires large
scale of parameters, especially when the constraints are stu-
dent specific or exercise specific. Instead, we adopt a repre-
sentation based method to implicitly model the knowledge
association, and the extended framework is calledKaNCD.

Specifically, we do not directly learn the matrix A
(Eq. (2)). Each student (si) and each KC (kj) are represented
with a d-dimensional (d < K) latent vector respectively (lllllllsi
and lllllllkj ). Each element in A is the result of operation between
the corresponding student and KC vectors. Here we regard
the d dimensions as higher order skills behind the pre-
defined knowledge concepts (inspired by [37]). The values
of each dimension in lllllllkj denotes its preference for each high
order skill, thus lllllllsi is filtered by

aaaaaaa1 ¼ lllllllsi � lllllllkj ; : (18)

Then the proficiency of si on kj is calculated as the weighted
sum of the filtered latent traits in aaaaaaa1 with Sigmoid activation
(in Eq. (2), to limit the proficiency to (0, 1))

Ai;j ¼ WWWWWWWa2 � aaaaaaa1 þ ba2; (19)

whereWWWWWWWa2 2 Rd�1 and bbbbbbba2 2 R are trainable parameters.
Following this way, we apply the same process to the

knowledge difficulty matrix B with the consideration of
knowledge associations. Each exercise (ei) is represented
with a d-dimensional latent vector (lllllllei ). The difficulty of ei
on KC kj is calculated as

bbbbbbb1 ¼ lllllllei � lllllllkj ; (20)

Bi;j ¼ WWWWWWWb2 � bbbbbbb1 þ bb2; (21)

whereWWWWWWWb2 2 Rd�1 and bb2 2 R are trainable parameters.
Overall, the process of KaNCD is as follows. We compute

Ai;jði ¼ 1; . . .; N; j ¼ 1; . . .; KÞ and Bi;jði ¼ 1; . . .;M; j ¼
1; . . .; KÞ to get A and B. Then we feed the training data
with Eqs. (2), (3), (4), (5), (6), (7), (8), and (9) and train the

Fig. 8. CNCD-F: Content enhanced NeuralCD with text factor.
Fig. 9. Knowledge coverage of student response logs.
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parameters (including latent vectors of students, exercises
and KCs) with the same loss function as Eq. (10). After train-
ing, the student proficiencies on KCs can be inferred with
Eqs. (18) and (19) and Eq. (2). In Appendix C, available in
the online supplemental material, we provide comparisons
between KaNCD and some existing relevant models includ-
ing AHM [36], HO-DINA [37] and FuzzyCDF [38].

5.3 Discussion

We have introduced the details of NeuralCD framework
and showed special cases of it. NeuralCD is a general frame-
work that could get accurate and explainable diagnostic
results. Meanwhile, the framework has better extensibility
than traditional models, such as aggregating extra informa-
tion (e.g., text content) and improving framework structure
to solve specific problems (e.g., knowledge coverage prob-
lem). 1) It’s necessary to point out that the student’s profi-
ciency vector Fs and exercise’s knowledge relevancy vector
Fkn are basic factors needed in NeuralCD framework. Addi-
tional factors such as exercise discrimination can be inte-
grated into if reasonable. 2) The formation of the first
interactive layer is not limited, but it’s better to contain the
term Fs � Fkn to ensure that each dimension of Fs corre-
sponds to a specific knowledge concept. 3) The nonnegative
full connection is only one of the strategies that implement
monotonicity assumption. More sophisticated network
structures can be designed as the interaction layers. For
example, recurrent neural network or memory network
may be used to capture the time characteristics of the
student’s learning process. 4) As for the model output, we
focus on objective exercises where responses are correct (1)
or incorrect (0) in this paper, therefore the outputs of Neu-
ralCD models are the probabilities that the students would
correctly answer the exercises. In fact, NeuralCD models
can also handle exercises with non-dichotomous responses.
For example, for exercises with continuous response labels
(e.g., scoring rates in range (0, 1)), the model outputs are
predicted scores; for exercise with polytomous possible
scores, the output layer can be changed to output a classifi-
cation vector which indicates the predicted class (i.e., score).
Better measures could be considered into the modeling,
such as multiple independent components or multiple
sequential steps in an exercise [11], and we leave it for
future research.

6 EXPERIMENTS

In this section, we conducted extensive experiments to dem-
onstrate the effectiveness of our NeuralCD models from
various aspects: (1) the student performance prediction task
against baselines; (2) the model analysis about the interpre-
tation of diagnostic results; (3) the visualization of learned
embeddings of knowledge concepts, exercises and students.

6.1 Dataset Description

We used two real-world datasets in the experiments, i.e.,
Math and ASSIST. Math dataset supplied by iFLYTEK Co.,
Ltd. was collected from the widely-used online learning sys-
tem Zhixue,1 which contains mathematical exercises and

logs of high school examinations. ASSIST (ASSISTments
2009-2010 ”skill builder”) is an open dataset collected by the
ASSISTments online tutoring systems [49], which only pro-
vides student response logs and knowledge concepts.2 We
chose the public corrected version that eliminates the dupli-
cated data issue pointed out by previous work [50]. Table 1
summarizes basic statistics of the datasets.

Preprocess. We filtered out students with less than 30 and
15 response logs for Math and ASSIST respectively to guar-
antee that each student has enough data for diagnosis.
Therefore for dataset Math, we got 10,268 students, 2,507
exercises with 497 knowledge concepts for diagnostic net-
work, and the remaining exercises with knowledge con-
cepts not appearing in logs were used for the Q-matrix
refining part of CNCD-Q; for dataset ASSIST, we got 2,493
students, 17,671 exercises and 123 knowledge concepts. We
performed a 80%/20% train/test split of each student’s
response log. As for ASSIST, we divided the response logs
in the same way with Math, but CNCD-Q and CNCD-F
were not evaluated on this dataset as exercise text was not
provided. All models were evaluated with 5-fold cross
validation.

Verification of Static Knowledge Proficiency. Students’
knowledge proficiencies are stable in Math as the dataset
is composed of logs from examinations. However, a
student’s proficiency on a knowledge concept in ASSIST
may change as he will be continually given exercises of
that concept until meeting certain criterion (e.g., answer-
ing 3 relevant exercises correctly in a row). To analyze
whether static models (e.g., NeuralCD and static tradi-
tional models) are suitable to apply on ASSIST, we com-
pare two metrics between Math and ASSIST. The first
metric is the average amount of logs that each student toke
for each knowledge concept

AVG#log ¼
PN

i

PK
j Logði; jÞ

PN
i

PK
j IðLogði; jÞ > 0Þ ; (22)

where Logði; jÞ is the amount of exercises student si
answered that related to knowledge concept kj. Further,
another metric is the mean standard deviation of scores rij
that Logði; jÞ > 1 as

STD#log> 1 ¼ mean
si2S

�
mean

kj2Kn;Logði;jÞ> 1
ðstdijÞ

�
; (23)

TABLE 1
Dataset Summary

Dataset Math ASSIST

#Students 10,268 4,163
#Exercises 917,495 17,746
#Knowledge concepts 1,488 123
#Response logs 864,722 324,572
#Knowledge concepts per exercise 1.53 1.19
AVG#log 2.28 8.05
STD#log> 1 0.305 0.316

1. https://www.zhixue.com
2. https://sites.google.com/site/assistmentsdata/home/assist-

ment-2009-2010-data/skill-builder-data-2009-2010

8320 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 06,2023 at 17:41:17 UTC from IEEE Xplore.  Restrictions apply. 



where stdij is the standard deviation of scores that student
si got for exercises related to knowledge concept kj. As
listed in Table 1, although ASSIST has a much larger
AVG#log than Math, their STD#log> 1 are close. Therefore, it
is reasonable to assume that the knowledge states of stu-
dents in ASSIST are also stable, and our static NeuralCD
models and baselines are applicable for both datasets. There
will be more discussions in Model Interpretation.

Knowledge Coverage Visualization. To illustrate the knowl-
edge coverage of each student’s full response logs (before
splitting the data into training and testing sets), we draw
heat maps for the two datasets. In Fig. 9, the horizontal axis
and vertical axis denote the KC ID and student ID respec-
tively. The blue color means that the corresponding student
has response logs that related to the corresponding KC (i.e
has answered relevant exercises), and the color would be
white otherwise. We could observe that the knowledge cov-
erage of student response logs are quite low on both data-
sets. This confirms the statement we proposed before that
the knowledge concept coverage problem is a common phe-
nomenon and needs attention.

6.2 Experimental Setup

The dimensions of the full connection layers (Eqs. (7), (8),
and (9)) were 512, 256, 1 respectively, and Sigmoid was
used as activation function for all of the layers. We set
hyperparameters � ¼ 0:1 (Eq. (13)) and s ¼ 1 (Eq. (14)).
For k in top-k knowledge concepts selecting, we used the
value that make the predicting network reach 0.85 recall.
That is, in our experiment, k ¼ 20. We initialized the
parameters with Xavier initialization [51], which fill the
weights with random values sampled from Nð0; std2Þ,
where std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ninþnout

q
. nin is the number of neurons feed-

ing into the weights, and nout is the number of neurons
the results is fed to. As for the monotonicity assumption,
the implementation is not limited to certain method. In
our experiments, after each parameter updating using a
batch of data, we clipped all the elements into full con-
nection weights (i.e., WWWWWWW 1;WWWWWWW 2 and WWWWWWW 3 in Eqs. (7), (8), and
(9)) to ½0;þ1Þ.

In CNCD-Q, the CNN contained 3 convolutional layers
followed by a full connection output layer. MaxPooling was
used after 1st and 3rd convolutional layers. The channels of
convolutional layers were 400, 200, 100, and kernel sizes
were set to 3, 4, 5 respectively. We adopted ReLu activation
function for convolution layers and Sigmoid for the output
layer. Multi-label binary cross entropy was used as loss
function for training the CNN.

In CNCD-F, the TextCNN architecture was basically the
same with [46]. We set 150, 150 and 150 filters with kernel
size 3, 4 and 5 respectively. Average pooling was used after
each filter. We adopted ReLu activation function for convo-
lution layers and Sigmoid for the output layer. The dropout
of the output layer was set to 0.5.

To evaluate the performance of our NeuralCD models,
we compare them with previous approaches, i.e., DINA,
IRT, MIRT and PMF. All models are implemented by
PyTorch using Python, and all experiments are run on a
Linux server with four 2.0 GHz Intel Xeon E5-2620 CPUs
and a Tesla K20 m GPU.

6.3 Student Performance Prediction

The performance of a cognitive diagnosis model is difficult
to evaluate as we cannot obtain the true knowledge profi-
ciency of students. As diagnostic result is usually acquired
through predicting students’ performance in most works,
performance on these prediction tasks can indirectly evalu-
ate the model from one aspect [38]. In order to sufficiently
evaluate the models, we applied two methods to split the
datasets. The first is a random split where 80% of each
student’s response logs were randomly chosen as training
set, which is the normal practice in student performance
prediction task. The other is a weak-coverage split which is
designed in the purpose of better comparing model per-
formances in case when the KC coverages of students’ train-
ing data are low. Therefore, we designed a split algorithm
which assign more weak-questions into the test set while
keep the train/test ratio (80%/20%) unchanged. The details
are showed in Appendix A, available in the online supple-
mental material. We design this algorithm in order to con-
trol that the changes of model performances result from the
differences of weak response proportions in test sets instead
of the differences of data size for training. The proportions
of responses to weak-questions in test sets are showed in
Table 2, where we can observe that the weak response pro-
portions of weak coverage split are significantly higher than
random split.

Considering that all the exercises we used in our data are
objective exercises, we use evaluation metrics from both
classification aspect and regression aspect, including accu-
racy, RMSE (root mean square error) [52] and AUC (area
under the curve) [53]. The experimental results of normal
scenario and low-knowledge-coverage scenario are shown
in Tables 3 and 4 respectively, where the error bars after ’�’
are the standard deviations of 5-fold cross validation runs
for each model.

Normal Scenario. From Table 3, we have the following
observations. First, the NeuralCD models outperform
almost all the other baselines on both datasets, indicating
the effectiveness of our framework. Second, the better per-
formance of content based extensions (CNCD-Q and
CNCD-F) over NeuralCDM proves that extra information
more than response logs, such as exercise text contents, is
beneficial to cognitive diagnosis. Moreover, the Q-matrix
refining method we propose is effective, and also demon-
strates the importance of fine estimated knowledge rele-
vancy vectors for cognitive diagnosis. The results of
CNCD-F show that text factors indeed plays an import
role in the cognitive process. Third, comparing KaNCD
and NeuralCDM, we could observe significant improve-
ments, which is benefited from the modeling of knowledge
associations. The improvements of these extended models
proves the future potential of NeuralCD framework.

TABLE 2
Proportion of Response to Weak-Questions in Test Sets

Random Split Weak
Coverage Split

Math ASSIST Math ASSIST

Weak response proportion 0.315 0.040 0.876 0.857
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Weak-Knowledge-Coverage Scenario. From Table 4, we have
the following observations. First, the model performances
drop significantly compared to normal scenario, indicating
that the low coverage problem of KCs has considerable neg-
ative effects on the diagnostic results. Second, the NeuralCD
models still perform better than baselines, which demon-
strates the superiority of our NeuralCD framework. Third,
the improvements of extended NeuralCD models over Neu-
ralCDM are more than those in normal scenario. In other
words, the falls in the model performances are smaller than
NeuralCDM, which proves that the extension methods
increase the tolerance of NeuralCD to the problem of low
KC coverage. The better performances of CNCD-Q and
CNCD-F than KaNCD indicate that extra information (e.g.,
exercise text) has greater positive effect to cognitive diagno-
sis than barely improving the model structure.

6.4 Interpretability of Diagnostic Results

The student performance prediction task is not sufficient to
evaluate the cognitive diagnosis models, as the interpret-
ability is an essential part of cognitive diagnostic results.
Specifically, we adopt Degree of Agreement (DOA) [54] as
the evaluation metric for the diagnosed student states (hhhhhhhs).
This metric is based on the intuition that if student a has a
better mastery on knowledge concept k than student b, then
a is more likely to answer exercises related to k correctly
than b [55]. For knowledge concept k,DOAðkÞ is formulated
as3

DOAðkÞ ¼ 1

Z1

XN
a¼1

XN
b¼1

IðFs
ak > Fs

bkÞ
PM

j¼1 IðQjk ¼ 1Þ ^ Jðj; a; bÞ ^ Iðraj > rbjÞ
Z0

; (24)

Z0 ¼
XM
j¼1

IðQjk ¼ 1Þ ^ Jðj; a; bÞ ^ Iðraj 6¼ rbjÞ; (25)

Z1 ¼
XN
a¼1

XN
b¼1

IðFs
ak > Fs

bkÞIðZ0 > 0Þ; (26)

where Fs
ak is the proficiency of student a on knowledge con-

cept k. IðStatementÞ ¼ 1 if Statement is true and
IðStatementÞ ¼ 0 otherwise. Jðj; a; bÞ ¼ 1 if both student a
and b did exercise j and Jðj; a; bÞ ¼ 0 otherwise. It should be
noted that if Z0 ¼ 0, the corresponding ða; b; kÞ triplet is
excluded from the calculation of DOA. We average DOAðkÞ
on all knowledge concepts to evaluate the quality of diag-
nostic result (i.e., knowledge proficiency acquired by mod-
els). It should be noted that although the DOA we define in
Eq. (24) ignores the synergism when an exercise contains
multiple KCs, it does reflect an interpretable cognitive phe-
nomenon to some extent.

Among traditional models, we only compare with DINA,
since for IRT,MIRTandPMF, there are no clear correspondence
between their latent features and knowledge concepts. Besides,
we conduct experiments on two reduced NeuralCDMmodels.
In the first reducedmodel (denoted as NeuralCDM_Q), knowl-
edge relevancy vectors are estimated during unsupervised
training instead of getting from Q-matrix. While in another
reduced model (denoted as NeuralCDM_M), monotonicity

TABLE 3
Experimental Results of Student Performance Prediction With Random Split

Math (Random Split) ASSIST (Random Split)

Model Accuracy RMSE AUC Accuracy RMSE AUC

DINA 0.593�.001 0.487�.001 0.686�.001 0.650�.001 0.467�.001 0.676�.002
IRT 0.782�.002 0.387�.001 0.795�.001 0.674�.002 0.464�.002 0.685�.001
MIRT 0.793�.001 0.378�.002 0.813�.002 0.701�.002 0.461�.001 0.719�.001
PMF 0.763�.001 0.407�.001 0.792�.002 0.661�.002 0.476�.001 0.732�.001

NeuralCDM 0.792�.002 0.378�.001 0.820�.001 0.719�.008 0.439�.002 0.749�.001

KaNCD 0.805�.001 0.368�.002 0.836�.001 0.732�.001 0.424�0.001 0.767�0.001
CNCD-Q 0.804�.001 0.371�.002 0.835�.002 - - -
CNCD-F 0.802�.001 0.370�.002 0.840�.002 - - -

TABLE 4
Experimental Results of Student Performance Prediction With Weak-Coverage Split

Math (Weak-coverage Split) ASSIST (Weak-coverage Split)

Model Accuracy RMSE AUC Accuracy RMSE AUC

DINA 0.223�.001 0.502�.002 0.560�.001 0.471�.001 0.490�.001 0.588�.002
IRT 0.624�.001 0.467�.001 0.638�.002 0.657�.001 0.464�.001 0.633�.002
MIRT 0.620�.001 0.583�.001 0.572�.001 0.637�.001 0.505�.001 0.612�.001
PMF 0.596�.001 0.585�.002 0.625�.001 0.625�.001 0.478�.002 0.730�.003

NeuralCDM 0.735�.002 0.432�.002 0.649�.001 0.710�.003 0.455�.001 0.633�.002

KaNCD 0.736�.001 0.430�.001 0.691�.001 0.720�.001 0.435�.001 0.732�.002
CNCD-Q 0.748�.001 0.418�.001 0.725�.001 - - -
CNCD-F 0.741�.001 0.419�.001 0.732�.001 - - -

3. This formula corrects the mistake in [16].
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assumption is removed by eliminating the nonnegative restric-
tion on the full connection layers. These two reduced models
are used to demonstrate the importance of fine-estimated
knowledge relevancy vector and monotonicity assumption
respectively. Furthermore, we conduct an extra experiment in
which students’ knowledge proficiencies are randomly esti-
mated, and compute theDOA for comparison.

Fig. 10 presents the experimental results, from which we
can observe several conclusions. First, the DINA model,
which is indeed a highly explainable cognitive diagnosis
model, gets the highest DOAs on two datasets. This is
because the type of interpretation of cognitive diagnosis
results that DOAmeasures is highly agree with the intuition
behind DINA. However, considering the results of student
performance prediction task, the cognitive diagnosis results
of DINA are still not suitable as diagnosis report and for fur-
ther learning assist. Second, DOAs of NeuralCD models are
in the order of CNCD-F>NeuralCDM>CNCD-Q>KaNCD.
Although lower thanDINA, their DOAs are still significantly
higher than Random, which reveals their strong interpret-
ability. The reason that the DOA of CNCD-Q is lower than
NeuralCDM is that there are more relevant KCs of each exer-
cise in CNCD-Q, while the increasing synergism of KCs is
not measured by DOA. The lower DOA of KaNCD is the
result of knowledge associations modeled. The DOA of
CNCD-F is even higher than NeuralCDM, which shows that
text factor is a good supplement of the cognitive model,
available in the online supplemental material. For example,
when student A, who has higher knowledge proficiency
than student B, get lower scores on some exercises than B,

the reason might be that A misunderstood the texts of these
exercises. Since the influence of exercise texts is transferred
to text factor, CNCD-F gets higher DOA. Third, comparing
NeuralCDM_Q andNeuralCDM_MwithNeuralCDM, there
are noticeable drops of DOA,which indicates that both infor-
mation from Q-matrix and monotonicity assumption are
important for getting interpretable diagnosis results (knowl-
edge proficiency vectors). Besides, NeuralCDM and KaNCD
performmuch better onMath than onASSIST. This is mainly
due to the contradictions in logs, i.e., a student may answer
some exercises containing knowledge concept kj correctly
while others containing kj wrong (reasonsmay be the change
of knowledge proficiency, or other knowledge concepts con-
tained by the exercises). As showed in Table 1, ASSIST has
much larger AVG#log and slightly higher STD#log> 1 than
Math dataset, whichmakesmore contradictions in logs. Lon-
ger logs withmore contradictions would decrease DOA.

6.5 Analyses On Content-Based Extensions

Exercise text contents provide useful supplementary infor-
mation for cognitive diagnosis, available in the online sup-
plemental material. In Table 5 we present an example from
Math dataset that demonstrates how CNCD-Q leverages
text content to refine the Q-matrix and therefore improve
the diagnostic performance. From the table we could
observe that there is only one KC, i.e., “Number and for-
mula” labeled by Q-matrix, which is inaccurate to describe
the knowledge concepts tested by this exercise. Such inaccu-
racy could results from multiple reasons, such as experts’
focus on main knowledge concepts of an exercise, or lack of
systematically organizing the knowledge concepts. From
the text content, CNCD-Q predicts KCs that are relevant to
the exercise, such as “Positional relationship between a line
a plane in space”. The relevancies of the KCs labeled by Q-
matrix and predicted bv CNCD-Q are discriminated (0.87
and 0.45�0.01 respectively). As we fix the total number of
predicted KCs (i.e., 20), and limited by the performance of
knowledge prediction component in CNCD-Q, some pre-
dicted KCs might not be relevant to the exercise (KCs with-
out underline). Currently, CNCD-Q could not differentiate
the relevancies of the predicted KCs, and this requires
future improvement.

Fig. 10. DOA results of models on two datasets.

TABLE 5
An Example of Q-Matrix Refinement

Exercise text content Letm;n be two different lines, a;b; g be three different planes. Of the following propositions,
select the correct ones: ____ (1) Ifm k n and nparallela, thenm k a orm � a. (2) Ifm k a; n k
a;m � b; n � b, then a k b. (3) If a ? g;b ? g, then a k b. (4) If a k b;b k g;m ? a, thenm ? g.

KCs labeled by Q-matrix
(relevancy: 0.87)

“Number and formula”

KCs predicted by CNCD-Q
(relevancy: 0.45�0.01)

“Positional relationship between a line and a plane in space”, “Positional relationship
between planes”, “Positional relationship between lines in space”, “Basic properties and
applications of plane”, “Judgment of perpendicularity between planes”, “Judgment of
perpendicularity between a line and a plane”, “Judgment of parallelism between a line and a
plane”, “Properties of perpendicularity between planes”, “Properties of perpendicularity
between a line and a plane”, “Properties of parallel lines and planes”, “Angle between a line
and a plane”, “Angle formed by skew lines”, “Skew lines”, “Set”, “Simple polyhedron”,
“Side area, surface area and volume”, “Distance among points, lines and faces”, “Full
quantifier and existential quantifier”, “Judgment of necessary, sufficient and sufficient
conditions”
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An additional effect that content-based extension brings
is better tolerance of the knowledge coverage problem.
From the results in Table 4, we could observe that although
CNCD-Q and CNCD-F are not designed specifically for
weak-knowledge-coverage scenario, they still perform well,
and sometimes even better than KaNCD, in this scenario.
The reason could be that in CNCD-Q, the predicted knowl-
edge concepts significantly increases the knowledge cover-
age of students’ response logs. As for CNCD-F, the
extended dimension in hhhhhhhs that corresponding to text factor
hhhhhhhtext serves as an important indicator of the students’ abili-
ties, and affect the students’ performance on all exercises
regardless the knowledge coverage problem. In summary,
when exercise text contents are available, taking advantage
of the content information is a better solution to overcome
the knowledge coverage problem.

6.6 Embedding Visualization in KaNCD

Using the trained KaNCD model on ASSIST, we visualize
the embedding vectors of knowledge concepts (lllllllk) by pro-
jecting them to 2-D points with t-SNE [56]. Fig. 11 shows the
visualization result of knowledge concept embeddings. We
group the knowledge concepts into 7 clusters according to
their positions and differentiate them with different colors.
The clusters reveals some reasonable results. For example,
the knowledge concepts in the first cluster are basically
about basic algebra. Some relevant knowledge concepts are
close (e.g., 88 Area Rectangle and 90 Area Triangle). These
knowledge associations are implicitly captured by the
embeddings learn from response logs, which helps improve
the diagnostic results on weak-KCs.

Discussion. In KaNCD, we also represent each student
and exercise with vector embeddings, which should also
capture important information. Some information could
probably be reflected by the distribution or the distances
among embeddings. Thus, we try to visualize the student
embeddings (llllllls) and exercise embeddings (llllllle) using t-SNE
method. To ensure enough training data, we only visualize
the embeddings of students with more than 15 responses
and exercises with more than 10 responses. Finally we
get Figs. 12a and 12b, where we could observe that the
points follow certain patterns instead of scatter randomly.
Although it is difficult to figure out the reasons of why they
appear such patterns, we do find an interesting phenome-
non. If we color the student/exercise points with their cor-
rect rates (i.e., the correct rate of the student’s all responses
and the correct rate of all the responses of the exercise), we

could find that the correct rates gradually increase from bot-
tom-left to top-right in Fig. 12a and from inside to outside in
Fig. 12b. This indicate that the low-dimensioned student/
exercise embeddings have captured the information about
correct rates. There might be some other information (e.g.,
relations with knowledge concepts), and we leave this for
future research.

6.7 Case Study

In Fig. 13 we present an example of a student’s diagnostic
results by NeuralCDM and KaNCD on the public dataset
ASSIST. The table in Fig. 13a shows the Q-matrix of three of
the exercises answered by the student and the correspond-
ing response results. The radar chart behind Q-matrix table
presents the diagnosed results of the student on the corre-
sponding knowledge concepts. As shown in the radar chart,
NeuralCD models could provide explainable diagnosis
reports that indicate students’ proficiencies on different
knowledge concepts. Then, we compare the knowledge dif-
ficulties and the student’s proficiencies. As shown in
Figs. 13a and 13b, where the bars represent the student’s
proficiencies on each relevant knowledge concepts and the
lines with different colors and markers represent the knowl-
edge difficulties of relevant knowledge concepts. We can
observe from the both of the subfigures that when the stu-
dent answered correctly, the diagnosed knowledge profi-
ciencies tend to be higher than knowledge difficulties. For
example, in Fig. 13a, Exercise 3 requires the mastery of
’Ordering Fraction’ and corresponding difficulty is 0.35. The
student answered it correctly, so the diagnosed proficiency
is 0.6. Both knowledge difficulty (hhhhhhhdiff ) and knowledge pro-
ficiency (hhhhhhhs) in our models are explainable as expected. Fur-
thermore, we plot all the proficiencies diagnosed by
NeuralCDM and KaNCD in Fig. 14. The knowledge con-
cepts are resorted so that the first 45 concepts appeared in

Fig. 11. t-SNE visualization of knowledge concept embeddings.

Fig. 12. t-SNE visualizations of student and exercise embeddings.
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the student’s training data and the last 78 knowledge con-
cepts are weak-KCs. We can observe that although there are
variations of NeuralCDM on the first 45 concepts, the profi-
ciencies on weak-KCs are close to 0.5, which remain their
initialized values and never trained. On the other hand, the
proficiencies provided by KaNCD have reasonable varia-
tions on all the knowledge concepts and their average (0.65)
is closer to the student’s overall correct rate (0.75), which
again confirms the observation in 6.6 that the low-dimen-
sional student embeddings have captured the information
about students’ correct rates.

With a deeper observation of the Fig. 14, we could find
that the models provide different diagnostic results. This
arouse a question: which result should we trust, or how we
use the diagnosed results appropriately? As our NeuralCD
framework and implemented models are data-driven, profi-
ciencies diagnosed by different trained models (e.g., with
different data or hyper-parameters), are not strictly guaran-
teed to be comparable. The explanation and usage of diag-
nosed proficiencies should be together with the estimated
exercise attributes (e.g., difficulty), as they are in the same
parameter scale. We leave the comparison of proficiencies
from different trained models and the validation of their
credibility for future exploration.

7 CONCLUSION AND DISCUSSION

In this paper, we proposed a neural cognitive diagnostic
framework, NeuralCD framework, for students’ cognitive
diagnosis. Specifically, we first discussed fundamental stu-
dent and exercise factors in the framework, and placed a
monotonicity assumption on the neural-network-based
framework to ensure both accuracy and interpretability of
diagnostic results. We then implemented specific models

under NeuralCD (i.e., NeuralCDM and three extendedmod-
els), and with extensive experiments on real-world datasets,
we proved the feasibility of the framework. We have prelim-
inarily shown that neural network is competent for cognitive
diagnosis and has better potential than traditional models.
The NeuralCD framework we proposed is not only accurate
and interpretable for cognitive diagnosis, but also has good
generality and extensibility. Specifically, we demonstrated
that some traditional models (e.g., MIRT) can be regarded as
special cases of NeuralCD, while NeuralCD is more flexible
to be extended so as to better simulate the cognitive process.
For example, more types of response data (e.g., exercise text
content) could be aggregated, and the structure of NeuralCD
could be adjusted so as to deal with different situations (e.g.,
knowledge coverage problem).

Serving as the basis of intelligent education, cognitive
diagnosis provides supports to numerous adaptive learn-
ing applications, such as learning feedback, computerized
adaptive testing [8], [57], resource recommendation[58]
and learning path planing [59], [60]. In addition to intelli-
gent education, cognitive diagnosis is also widely applica-
ble in areas where users’ latent traits such as ability or
psychological states require assessments. Clinical assess-
ment is a typical application of cognitive diagnosis[2],
including measuring psychological disorder [34], patient-
report outcomes [3], etc. In game field, a common
demand is to predict players’ matchups and preferences
[1], which requires assessing players’ abilities as well as
their cooperation and competition [61]. In career field, An
et al. [62] tried to assess the proficiencies of trial lawyers.
In summary, cognitive diagnosis is a fundamental task in
many areas, and an important basis for extensive applica-
tions. Considering the high flexibility and potential of
neural network, we hope this work could lead to further
studies for cognitive diagnosis in different areas.
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