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Abstract—To provide personalized support on educational plat-
forms, it is crucial to model the evolution of students’ knowledge
states. Knowledge tracing is one of the most popular technologies
for this purpose, and deep learning-based methods have achieved
state-of-the-art performance. Compared to classical models, such
as Bayesian knowledge tracing, which track students’ knowledge
proficiencies, deep learning-based knowledge tracing is usually
modeled to predict students’ performances on questions, while
ignoring the interpretability of students’ knowledge states. How-
ever, for many practical applications, such as learning resource
recommendation, it would be more helpful if we could explicitly
track students’ abilities or knowledge proficiencies separately from
performance prediction. Researchers in psychometric area already
designed cognitive diagnosis solutions to quantify the knowledge
states of students in static conditions (e.g., examination), where
the educational priors (i.e., factors related to students’ learning
process) were proved beneficial for student modeling. Inspired by
this, we propose dynamic cognitive diagnosis, which integrates the
interpretability of educational priors from cognitive diagnosis into
deep learning-based knowledge tracing methods. We first discuss
and provide evidence of which educational priors can be integrated,
including question attributes and interaction function. Then we
show the effects of using the educational priors in deep learning-
based knowledge tracing from two aspects, i.e., interpretability
and accuracy. Through extensive experiments and analyses, we
prove that properly chosen priors can enable deep learning-based
methods to evaluate students’ knowledge states in a manner that is
consistent with domain knowledge or human experience. Moreover,
educational priors also improve the accuracy of student perfor-
mance prediction.
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I. INTRODUCTION

A PPLYING artificial intelligence (AI) to enhance the edu-
cational technologies has been an important tide in recent

years and has attracted intensive interest around the world [1],
[2]. Compared to traditional face-to-face learning, students can
access a greater variety of learning resources and receive per-
sonalized support for their learning in intelligent educational
platforms (e.g., intelligent tutoring systems). Advanced AI tech-
nologies are required to handle the massive amounts of data
from learners and learning resources in the learning platforms
and provide effective services for each learner, such as learn-
ing resource recommendation [3], early warning of failure [4],
learning path recommendation [5], and adaptive learning [6].
Among these technologies, modeling the evolution of students’
knowledge states is a crucial task that serves as the backbone
of numerous personalized supports. Knowledge tracing, one of
the most promising solutions for this task, aims to track the
students’ knowledge states and predict their future performances
(e.g., scores) through mining their historical learning activities
(especially question answering).

The most traditional approach to knowledge tracing is
Bayesian knowledge tracing (BKT) [7] and its variations, which
track the student’s mastery of each knowledge concept using
a hidden Markov process. After recurrent neural network was
first used for knowledge tracing in deep knowledge tracing
(DKT) model [8], deep learning-based methods [9], [10] have
achieved state-of-the-art performance in knowledge tracing due
to their advantages in sequence modeling (with recurrent neu-
ral networks, memory networks, etc.).1 However, despite their
success in student performance prediction, most existing deep
knowledge tracing works cannot provide the explicit states of the
students that indicate their levels of mastery of specific knowl-
edge components (knowledge proficiency). Tracking students’
knowledge proficiencies can facilitate the generation of more
detailed reports about the students and will be more helpful

1For convenience, in the remainder of this article, we use deep knowledge
tracing to represent deep learning-based knowledge tracing methods and use
DKT as the abbreviation of the model proposed in [8].
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for practical applications than simply knowing what scores
they would get. For example, when recommending learning
resources, the tutoring system needs to first know the knowledge
components or skills that the student is poor at, and then recom-
mend relevant resources (e.g., teaching videos). This stresses the
importance of diagnosing students’ knowledge proficiencies.

The main weakness of deep knowledge tracing lies in its
modeling of the relation between student knowledge states and
student performance, which lacks adequate interpretability. In
the academic field of psychometrics and education, test theory
has been widely studied to model students’ knowledge states in
static scenes (e.g., examination), where the students’ knowledge
states are assumed to be unchanged when they answer a set of
questions [11]. Among them, cognitive diagnosis is the most
typical. This approach aims to obtain the students’ knowledge
proficiency on each predefined knowledge component (KC; e.g.,
Addition) based on their test performance. Representative works
include item response theory (IRT) [12], multidimensional
item response theory (MIRT) [11], deterministic input, noisy-
and model (DINA) [13], and reparameterized unified model
(RUM) [14], etc. In these works, educational priors, such as
question attributes and interaction functions are used to describe
the cognitive patterns behind the question-answering process.
Question attributes model the characteristics of questions that
influence this answering process (such as question difficulty and
discrimination in IRT and MIRT, or knowledge component, slip
and guess probability in DINA and RUM). Interaction functions
model the relation between students and questions, which take
student knowledge states and question attributes as input and
output the probability of giving a correct answer. For example,
IRT gives the probability of a correct answer with function
f(θ; a, γ) = 1/(1 + exp(−a(θ − γ))); here, θ is the student’s
ability, while a, γ denote question discrimination and difficulty,
respectively [15]. The function indicates that the more difficult
the question is, the higher ability is required to correctly answer
the question. Recently a new cognitive diagnostic framework
named NeuralCD [16] has been proposed, which combines
neural networks and the monotonicity assumption to further
improve the fitting capability of the response function while
retaining the interpretability of the parameters.

In order to compensate for the limitations of deep knowledge
tracing, we propose to combine the educational priors from
cognitive diagnosis with the advantage of sequential modeling in
deep knowledge tracing, an approach that we refer to as dynamic
cognitive diagnosis. Fig. 1 illustrates a toy example. Each time
the student answers a question (can either be recommended
by the systems or chosen by self), our goal is to evaluate the
student’s mastery level on each knowledge component (e.g.,
Addition) from their answering history. The diagnosis results can
be clearly reported, and at the same time used for further services,
such as personalized recommendations of learning resources. To
achieve this goal, we need to answer two questions as follows.

Research Question 1: What educational priors can be brought
to deep knowledge tracing?

Research Question 2: What effects do educational priors
bring to deep knowledge tracing?

Fig. 1. Toy example of dynamic cognitive diagnosis. A student successively
answers some questions (e.g., q1) at different times, and each question is associ-
ated with certain knowledge components (e.g., question q1 contains knowledge
concept kc5, which denotes Multiplication). According to the responses (right
or wrong), we evaluate the student’s level of mastery over each knowledge
component. The diagnostic results can be used for downstream applications,
such as learning resource recommendation.

By answering these questions, the contributions of this work
can be summarized as follows:

1) We discuss the educational priors that can be integrated to
deep knowledge tracing, and propose a dynamic cognitive
diagnosis framework that integrates educational priors
from cognitive diagnosis with deep knowledge tracing.

2) With extensive experiments and analysis, we qualitatively
and quantitatively measure the effects that educational
priors bring about, including better interpretability and
higher prediction accuracy than deep knowledge tracing.

The rest of this article is organized as follows. Section II
reviews the background of this work. Section III presents discus-
sions and examples of the two research questions. Subsequently,
we verify our proposal in Section IV with experiments and
analysis, and make discussions in Section V. Finally, Section VI
concludes this article.

II. BACKGROUND

Knowledge tracing and cognitive diagnosis for students are
the foundations of this research. A brief review of related works
is provided in the following.

A. Knowledge Tracing

Knowledge tracing is a type of task that caters to the demand
of modeling students’ knowledge states. With the learning sys-
tems, students are free to choose learning sources and do exer-
cises by themselves. Their degrees of mastery over knowledge
components can change frequently, which is reflected by their
learning activities in the systems. The goal of knowledge tracing
is to track the knowledge states of students and predict their
future performance based on their historical learning activities
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(e.g., answering questions). Knowledge tracing models the
sequential characteristics of students’ learning activities and
makes dynamic predictions.

The most popular knowledge tracing approach among earlier
works was BKT [7], which modeled student’s mastery of each
knowledge component using a hidden Markov process. Subse-
quent research improved BKT by considering the various fac-
tors that influence the evolution of students’ knowledge states,
such as individualized student parameters [17], forgetting [18],
knowledge topologies [19], and intervention types [20]. Some
works proposed to integrate BKT with latent factor models to
enhance the fitting capability of BKT [21]. Another represen-
tative example is performance factor analysis (PFA) [22], in
which a student’s performance is modeled as the accumulation
of learning from both successful attempts and unsuccessful
attempts. However, PFA did not provide explicit knowledge
proficiencies as BKT-based models do.

Deep learning was first introduced into knowledge tracing
by DKT [8], in which a recurrent neural network (RNN) was
used to model the evolution of students’ knowledge states. This
approach yielded significant improvement in student perfor-
mance prediction. Since then, deep learning-based methods
reached state of the art on knowledge tracing. Compared to
earlier works, deep knowledge tracing methods can achieve
more advanced sequential modeling through their use of deep
learning, such as RNN in the DKT model [8] and key-value
memory network in the DKVMN model [9]. Due to the person-
alized nature of online education platforms, the response data
of students are usually sparse; this was addressed in [10] with
the prerequisite constraint between knowledge components. A
knowledge query network was proposed in [23] in which knowl-
edge components were encoded with positive and unit-length
restrictions.

There have been attempts to integrate educational factors for
improving accuracy. For example, Yang et al. [24] considered
various statistical features, such as question ID, question type,
number of attempts, and hint. Sonkar et al. [25] considered that
questions containing the same knowledge components should
have close probabilities of being answered correctly. Nagatani
et al. [26] considered forgetting behaviors by embedding prac-
tice space and number of attempts into the model input. However,
these factors were integrated mainly through feature embedding,
and the models were still black boxes. Although there were a
few post-hoc analyses about the effects of educational factors
on model predictions, the interpretability of student knowledge
states was still limited due to the model structures and was
rarely quantitatively analyzed. It has been broadly accepted
that some fields require high level of accountability, and thus,
transparency, such as education and medical science [27]. Lack
of interpretability of the models would painfully impede their
practical applications [28].

B. Cognitive Diagnosis

Cognitive diagnosis is an important research branch of test
theories, which studies the relation between students’ knowl-
edge states and their test performances. Different from knowl-
edge tracing, test theories are mostly designed for tests during

which the knowledge states of students are assumed to be static.
Moreover, test theory methods are mostly designed based on
educational or psychometric theories and assumptions; thus,
most of them, especially cognitive diagnosis, can provide ex-
plainable diagnostic reports. Based on diagnostic level, existing
studies can be classified to ability level paradigm and cognition
level paradigm [29].

Approaches belonging to the ability level paradigm diagnose
the students at the macro level. Representative works include
classical test theory (CTT) [30] and IRT [31], [32]. CTT assumed
that the observed test score is the sum of the true score (which
characterizes the student’s ability) and error. Unlike CTT, IRT
outputs the probability of correctly answering a question through
a logistic-like function with unidimensional student ability and
question parameters as input. Question parameters could include
question difficulty [33], discrimination [15], and guess proba-
bility [34].

Approaches belonging to the cognition level paradigm di-
agnose the students at the micro level, which typically an-
alyze the students’ knowledge proficiencies on each knowl-
edge component. Representative works include the rule space
model [35], DINA [36], noisy inputs, deterministic-and model
(NIDA) [37], and RUM [14]. With the use of Q-matrix (a
binary matrix that indicates the knowledge components of each
question) [38], these models are able to diagnose students’
abilities at the knowledge component level. Besides, multi-
dimensional IRT was proposed to improve the fitting abil-
ity of IRT [11]. However, the multidimensional student abil-
ity vector was usually not explainable. Neural network-based
cognitive diagnosis framework (NeuralCD) was recently pro-
posed [16], which used neural network to learn the interaction
function between students and questions, and simultaneously
ensured the interpretability of students’ knowledge proficiency
vectors.

Although cognitive diagnosis focuses on the cognition level
paradigm, works from both paradigms can be the source of
educational priors.

III. DYNAMIC COGNITIVE DIAGNOSIS

In this section, we first present preliminaries of our prob-
lem. Then we review normal structure of deep knowledge
tracing models. After that, through in-depth discussions of
the two research questions (what educational priors can be
brought and what they can bring to deep knowledge tracing)
in detail, we show examples of dynamic cognitive diagnosis
models.

A. Preliminary

1) Problem Definition: Suppose there are N students, M
questions, and K relevant knowledge components. In the
dataset, the response history of a student sn is a sequence
Rn = {(qtn, ytn)|t = 1, 2, . . . , Tn}, where Tn is the sequence
length, qtn is the question that student sn answered at time t,
and ytn is the response (i.e., correct or incorrect).

Definition 1: (Dynamic Cognitive Diagnosis) Given each
student’s response history {R1,R2, . . . }, the goal of dynamic
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Fig. 2. Normal structure of deep knowledge tracing models.

cognitive diagnosis is to train a model such that when a stu-
dent’s (e.g., sn; usually not in the training data) response his-
tory {(qτn,Rτ

n)|τ = 1, 2, . . . , t} is input, the model outputs the

student’s ability θtn ∈ (0, 1) or proficiency θ̃
t

n ∈ (0, 1)K that
denotes sn’s levels of mastery of the knowledge components
kc1, . . . , kcK after time t.

In the definition, we do not place limits on the information
about the questions (e.g., question ID, question knowledge
components) given to the models. We will discuss the question
attributes in detail later in Section III-C.

2) Interpretability: There is currently no consensus on the
definition of “interpretability” in machine learning. In this study,
we first give a definition of interpretability based on previous
attempts [27].

Definition 2 (Interpretability): The interpretability of a model
is the ability to explain the reasoning behind model decisions in
terms understandable to a human.

In our case, it can be further divided into two aspects: 1) the
model decisions (i.e., parameters such as students’ knowledge
states) should be consistent with domain knowledge or human
experience; 2) there is a clear relation between model inputs
(i.e., students’ response histories) and the model’s decisions.

B. Deep Learning-Based Knowledge Tracing

The normal structure of deep knowledge tracing models is
composed of two modules: 1) sequential modeling and 2) per-
formance prediction (Fig. 2). The sequential modeling module
takes the student’s response sequence as input, and fits the evolv-
ing pattern of the student’s hidden state with sequential models,
such as recurrent neural network (used in DKT) and memory
network (used in DKVMN). To facilitate fair comparison and
without loss of generality, we use gate recurrent unit (GRU) as
the sequential module for all models in this work before and
after integrating educational priors. GRU is a recurrent neural
network architecture first proposed in [39], and has achieved
good performance in various sequential modeling tasks [40],
[41]. In GRU, a hidden state vector ht

n is preserved and updated
after each input xt

n, and the update is performed by “forgetting”
part of the information from ht

n and “learning” information
from xt

n. Thus, the sequential modeling process is formulated
as follows:

rtn = σ(W irx
t
n +W hrh

t−1
n + br) (1)

zt
n = σ(W izx

t
n +W hzh

t−1
n + bz) (2)

h̃
t

n = tanh(W ihx
t
n + rtn ◦ (W hh

t−1
n ) + bh) (3)

ht
n = (1− zt

n) ◦ h̃
t

n + zt
n ◦ ht−1

n (4)

where rtn is the reset gate vector that controls what information
should be forgotten from ht−1

n . zt
n is the update gate vector that

controls what information should be updated to the student’s

hidden state. h̃
t

n is the candidate activation gate vector that is
the result of forgetting part of the information from ht−1

n , and
ht
n is the hidden state of sn at time t, which is finally updated

with (4). xt
n is the input vector of student sn at time t, σ is

the Sigmoid function that σ(x) = 1/(1 + exp(−x)), ◦ is the
elementwise product. W ∗∗, and b∗ are parameters that will be
learned after model training.

The the hidden state ht
n is then used to predict the student’s

outcome of answering questions after time t. The performance
prediction can be performed through a questionwise vector
(the dimension of the vector is the number of questions), a
KC-wise vector (the dimension of the vector is the number of
KCs), or multi layers that output a probability. Prediction with
a questionwise vector is the original method described in DKT,
which is implemented with a normal full connection layer that
transforms ht

n into an M-dimensional vector

ŷt
n = σ(W yh

t
n + by) (5)

where W y and by are parameters learned after model training.
The mth element in ŷt

n denotes the probability of student sn
correctly answering question qm.

However, in experiments, questionwise prediction usually
suffers from the sparsity problem [42]. Thus, KC-wise predic-
tion is more frequently adopted. In KC-wise prediction, each
question is represented with its KC tag and the prediction is on
the granularity of KC. It is formulated as follows:

θ̂
t

n = σ(W θh
t
n + bθ) (6)

where W θ and bθ are learnable parameters. The θ̂
t

n is a K-
dimensional vector transformed from ht

n, where the kth element
denotes the probability that student sn correctly answers ques-
tions containing knowledge component kck.

Furthermore, with multi layers, more complicated interac-
tions between students and questions can be modeled. Taking
ht
n and question embedding qm as input, the probability is

ŷtn,m = F(ht
n, qm;ϑ) (7)

where F(·;ϑ) denotes the multilayer function with learnable
parameters ϑ. The function takes qm (qt+1

n during training,
denoting the question that sn answered at time t+ 1 in the
data) and ht

n as input, and outputs the probability that student
sn will correctly answer question qm after time t. F(·|ϑ) can
be implemented with different multilayer structures. We will
provide an example in the experiments (19)–(21).

In conclusion, the hidden states of the students in these deep
knowledge tracing models have limited interpretability, thus
the models are not competent for dynamic cognitive diagnosis.
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Besides, in KC-wise prediction, the question information is lost,
and questions with multiple KCs are not handled properly.

C. Research Question 1: What Educational Priors can Be
Brought to Deep Knowledge Tracing?

In this article, we define educational priors as “the factors from
educational theories or technology research, that are thought of
or discovered related to students’ learning process.” This is a
relatively broad definition. Various factors can be considered
as educational priors, such as the learning and forgetting curves
from memory theory [43], [44], the question types [24] and diffi-
culties [7], [11] from student modeling methods (e.g., cognitive
diagnosis and knowledge tracing). It is not possible to study all
priors in one study. In this article, we focus on educational priors
from cognitive diagnosis.

In more detail, two types of educational priors from cognitive
diagnosis are considered herein: 1) question attribute and 2)
interaction function (also called item response function in IRT).
The former helps distinguish the factors that influence the result
of a response, while the latter models how the response is
given by the student to the given question. After discussing
the educational priors, we go on to show where they can be
integrated into deep knowledge tracing models.

Question Attribute. Here, we discuss three types of ques-
tion attributes frequently considered in cognitive diagnosis: 1)
knowledge component, 2) difficulty, and 3) discrimination.

1) Knowledge Component: The knowledge components re-
quired by the question is the necessary information for diagnos-
ing knowledge proficiency. In cognitive diagnosis models (e.g.,
DINA [36], NeuralCDM [16]), KC is obtained with Q-matrix
Q ∈ {0, 1}M×K , where Qm,k = 1 if question qm contains the
KC kck, and Qmk = 0 otherwise. The Q-matrix can be either
human-labeled or learned from data [45].

2) Difficulty: A more difficult question requires higher profi-
ciency to answer. In IRT models [31], [32], a scalar parameter
γ is used to characterize the overall difficulty of a question.
In NeuralCDM, a K-dimensional-vector parameter β is used
to indicate the difficulty of each KC required by the question.
The difficulty parameter is typically estimated through model
training.

3) Discrimination: The discrimination indicates the ability
of the question to discriminate between students with different
mastery levels [11]. For example, when answering a question
with discrimination a = 0.9, a student with a proficiency 0.8
would much more likely to get a higher score than another with
a proficiency 0.4. By contrast, these students are likely to get
similar scores if a = 0.1. In IRT models and NeuralCDM, the
discrimination a is a scalar parameter and is usually learned
through training.

Notably, although we discuss these question attributes from
the perspective of cognitive diagnosis, the knowledge compo-
nent and difficulty are also considered by BKT models.

Interaction Function. Based on the question attributes and
students’ knowledge states, the interaction function aims to
capture the relation between students and questions and outputs
the final score (or the probability of answering correctly). In

this article, we choose two interaction functions in cognitive
diagnosis, IRT and NeuralCDM, which fall under the ability
level paradigm and cognition level paradigm, respectively.

1) IRT: We consider the IRT model with question difficulty
and discrimination factors. When calculating the probability
of student sn correctly answering question qm, the interaction
function is formulated as follows:

ŷn,m = σ(am(θn − γm)) =
1

1 + e−am(θn−γm)
(8)

where am and γm denote the discrimination and difficulty of
question qm, respectively; these are the parameters estimated
through training. θn is the ability of student sn and is estimated
with reference to the student’s response records.

2) NeuralCDM: The interaction function of NeuralCDM
considers KC, KC difficulty, and question discrimination, and
is learned via neural network. The probability of sn correctly
answering qm is calculated as follows:

xin = Qm ◦ (θ̃n − βm)× am (9)

f1 = φ(W 1x
T
in + b1) (10)

f2 = φ(W 2f1 + b2) (11)

ŷn,m = σ(W 3f2 + b3) (12)

where Qm is the mth row of Q-matrix Q, and φ is the activation
function (here we use tanh). βm and am are learnable parame-
ters denoting the KC difficulties and discrimination of question
qm. θ̃n denotes student sn’s mastery of each KC, and is estimated
with reference to the student’s response records. W ∗, b∗ are
learnable parameters, and all elements in W ∗ are constrained to
be nonnegative in accordance with the monotonicity assumption
in [16].

Other Priors. Some other educational priors have been
considered in previous research and can be integrated into dy-
namic cognitive diagnosis. For example, guess and slip factors,
which, respectively, indicate the probability of making correct
guesses and making mistakes, are considered in some cognitive
diagnosis models [13], [46] and BKT [7]. In [26], the space
of practice and historical practice frequency are considered and
show impacts on student knowledge states. KC relations, such
as KC topologies [19], prerequisite constraints [10], and graph
structure [47], have been proven beneficial for improving predic-
tion accuracy in both BKT and deep knowledge tracing. Some
researchers have also investigated the relationship between stu-
dents’ detailed learning activities and their knowledge states.
For example, multiple attempts at a question, question type, use
of hints, and interaction types are all considered relevant to the
knowledge states of a student [20], [24]. We leave these priors
for future exploration.

Dynamic Cognitive Diagnosis Framework. The question at-
tributes and interaction functions of IRT and NeuralCDM are
presented in Fig. 3(a), while Fig. 3(b) illustrates the structure
of the dynamic cognitive diagnosis model that integrates the
educational priors into knowledge tracing. The overall procedure
has four steps.

Step 1: Construct the input of the sequential modeling module.
First, choose the educational priors of the question that sn
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Fig. 3. (a) Educational priors (i.e., question attributes and interaction functions) from cognitive diagnostic models; and (b) our dynamic cognitive diagnosis
framework. The question attributes and interaction functions are colored blue and orange, respectively. The operations in IRT/NeuralCDM (e.g., −,×, σ in IRT)
form the interaction function (e.g., ŷn,m = σ(am(θn − γm)) for IRT).

answered at time t and get the embedding qt
n. In this article,

we use only question attributes as examples. Depending on the
attribute features we select, the embedding of qtn takes different
forms. Here are some example combinations.

1) Question ID: When using only question ID as the input
feature, the qt

n in (13) is the one-hot vector of ques-
tion ID (It,q

n ). A one-hot vector of question ID is an
M-dimensional indicator vector, of which only the ele-
ment corresponding to the question ID is 1, and all other
elements are 0. For example, if the input question is
the third question (question ID=3) in the dataset, then
qt
n = It,q

n = [0, 0, 1, 0, . . . , 0].
2) KC: When using KC ID as the input feature, the qt

n in (13)
is the multihot vector of the KCs contained by question
(It,kc

n ). A multihot vector of the KCs is a K-dimensional
indicator vector, of which only the elements corresponding
to the KCs (one or more) are set to 1, while all other
elements are 0. For example, if the input question contains
the first and third KCs (KC IDs=1,3), then qt

n = It,kc
n =

[1, 0, 1, 0. . . . , 0].
3) KC + Question difficulty: When both KC IDs and the ques-

tion difficulty in IRT are considered, qt
n = It,kc

n × γt
n.

4) KC + KC difficulty: When both KC IDS and the KC
difficulty in NeuralCDM are considered,qt

n = It,kc
n ◦ βt

n.
5) KC + Difficulty + Discrimination: When discrimination

is also considered, then qt
n = It,kc

n × γt
n × atn or qt

n =
It,kc
n ◦ βt

n × atn.
Subsequently, the input of the sequential modeling module

(GRU in this article) is calculated as follows:

x̃t
n =

{
qt
n ⊕ 0, if ytn = 0

0⊕ qt
n, if ytn = 1

(13)

xt
n = tanh(W qxx̃

t
n + bqx) (14)

where W qx and bqx are learnable parameters. Here, two differ-
ent operations to construct x̃t

n are used for ytn = 0 and ytn = 1.
This activates half of W qx to transform qt

n when ytn = 0 and

activates the other half to transformqt
n when ytn = 1, which both

increases the fitting ability and benefits the model training. As
a result, the calculation of (13) has different effects depending
on the attribute features chosen.

1) Question ID: The transformation of (14) is equivalent to
learning a correct-answer embedding and an incorrect-
answer embedding for each question. However, this might
suffer from the data sparsity which is a common problem
for on-line education platforms.

2) KC: The transformation of (14) is equivalent to calculating
the sum of the correct-answer (incorrect-answer) embed-
dings of the contained KCs.

3) KC + Question difficulty: The transformation of (14) is
equivalent to calculating the sum of correct-answer
(incorrect-answer) embeddings of the contained KCs with
a unified weight.

4) KC + KC difficulty: The transformation of (14) is
equivalent to calculating the sum of the correct-answer
(incorrect-answer) embeddings of the contained KCs with
different weights for each KC.

5) KC + Difficulty + Discrimination: The transformation
of (14) is equivalent to calculating the weighted sum of
the correct-answer (incorrect-answer) embeddings of the
contained KCs. The weights depend on both the KCs and
question discrimination.

Step 2: Get the student’s latent state ht
n through sequential

modeling with (1)–(4).
Step 3: Transform the latent state ht

n to the student’s explicit

state θtn or θ̃
t

n. Specifically, overall ability θtn = σ(W hθh
t
n +

bhθ), and knowledge proficiency θ̃
t

n = σ(W hθ̃h
t
n + bhθ̃),

where W ∗∗, b∗∗ and b∗∗ are learnable parameters.
Step 4: Predict the correctness of the student’s response to the

input question qm (in experiments, the question is qt+1
n ) with

the interaction function of IRT (8) or NeuralCDM [(9)–(12)], in
which θn and θ̃n are replaced with θtn and θ̃

t

n, respectively. As a
result, (8) changes to ŷtn = σ(at+1

n (θtn − γt+1
n )), (9) changes
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TABLE I
NOTATIONS USED IN THIS PAPER

TABLE II
COMBINATIONS OF QUESTION ATTRIBUTES AND INTERACTION FUNCTIONS

to xin = Qt+1
n ◦ (θ̃t

n − βt+1
n )× at+1

n , and (12) changes to
ŷtn = σ(W 3f2 + b3).

Table II lists the combinations of question attributes and
interaction functions; each of these is a variant of the dynamic
cognitive diagnosis model and will be evaluated in our experi-
ments (Section IV).

Model Training. It should be noted that the question ID is
previously given in the data as the identification of each question,
and the KCs contained by each question are provided by experts.
While question attribute parameters (i.e., question difficulty, KC
difficulty, and question discrimination) in the models are learned
from data rather than being provided directly.2 When the input
(xt

n) needs to be constructed using the latter type of question
attributes, the values of these attribute vectors are unknown at
first. Therefore, we design a two-stage training strategy when
considering these attributes.

Stage 1: Use KC IDs only to construct question embeddingqt
n

and train the model. All parameters, including neural network
parameters (W ∗, b∗) and question attribute parameters in the
performance prediction module (i.e., IRT or NeuralCDM), are
learned during this stage.

2In our experiments, we find that the models perform poorly if the difficulty
and discrimination parameters are directly calculated with their statistical defi-
nitions. Therefore, we choose to learn the parameters with training.

Stage 2: Use the question attribute parameters learned in stage
1 to form the complete input vectors, then train the model again
with the parameters in IRT or NeuralCDM fixed.

The training objective is to find the optimal parameters that
maximize the predicted probability of the responses

maximize
Θ

P̂ (ŷtn = yt+1
n ; Θ) (15)

where Θ is the set of learnable parameters. As yt+1
n ∈ {0, 1},

the task is equivalent to a binary classification problem. There-
fore, the objective is equivalent to minimizing the binary cross-
entropy loss

minimize
Θ

− [yt+1
n log(ŷtn) + (1− yt+1

n ) log(1− ŷtn)]. (16)

Through averaging the losses on all data samples, the final
loss function can be obtained

L=− 1

N

N∑
n=1

1

Tn

Tn∑
t=2

[yt+1
n log(ŷtn)+(1− yt+1

n ) log(1− ŷtn)].

(17)
The model training (parameter estimation) can be conducted

with normal gradient descent methods; this is currently the most
widely used approach for training deep learning models. For ex-
ample, stochastic gradient descent [48] and Adam optimizer [49]
are two widely adopted gradient descent methods, implemented
by several deep learning frameworks (e.g., PyTorch, Tensor-
Flow).

D. Research Question 2: What Effects do Educational Priors
Bring to Deep Knowledge Tracing?

The effects of educational priors from cognitive diagnosis
include giving interpretability to the student knowledge state
vector (which changes the model from deep knowledge tracing
to dynamic cognitive diagnosis) and improving the accuracy of
prediction (e.g., predicting students’ performances).

Interpretability. In this article, we focus on the first aspect
of interpretability, as interpretable student knowledge states are
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important for downstream applications. In essence, the inter-
pretability of the parameters—including question attributes and

the student’s explicit state vector (θtn or θ̃
t

n)—varies depend-
ing on the interaction functions used. There is a background
assumption in IRT and NeuralCDM called the Monotonicity As-
sumption, which claims that when a student’s ability (knowledge
proficiency) improves, the probability of correctly answering a
question would not drop (i.e., it will rise or at least remain un-
changed) [11], [16]. The assumption is mathematically satisfied
as follows.

1) In IRT, the partial gradient of the output ŷn,m on θn is

∂ŷn,m
∂θn

= ŷn,m(1− ŷn,m)am. (18)

As ŷn,m ∈ (0, 1), if am is constrained to be positive, then
∂ŷn,m/∂θn > 0; in other words, the optimization direction of
θn during training remains the same with the changing direction
of ŷn,m. For example, suppose yn,m = 1while the model output
ŷn,m = 0.2. The optimizer should increase ŷn,m to get closer to
yn,m in order to decrease the loss (i.e., ∂L/∂ŷn,m > 0). Thus
∂L/∂θn > 0, causing θn to increase.

On the other hand, ∂ŷn,m/∂γm = −∂ŷn,m/∂θn and
∂ŷn,m/∂am = ŷn,m(1− ŷn,m)(θn − γm). Thus, the updating
direction of bm is opposite to the optimization direction of ŷn,m;
the updating direction of am is the same as the optimization
direction of ŷn,m if θn and γm have correct partial order,
and opposite to the optimization direction of ŷn,m otherwise.
Therefore, the values of the question attribute parameters are
also learned in an explainable way that is in accordance with
their definitions.

2) In NeuralCDM, the monotonicity assumption is satisfied
by constraining all elements of the weights in multilayers to
be nonnegative. Similarly, we have ∂ŷn,m/∂θ̃n,k ≥ 0 (detailed
gradient deviation is provided in Appendix A). Therefore, the
optimization direction of θ̃n,k during training is the same as
the changing direction of ŷn,m. Moreover, ∂ŷn,m/∂θ̃n,k can
be nonzero only when Qm,k = 1; this means that for samples
answering question qm, only the dimensions corresponding to
the knowledge concepts that are relevant to qm will be updated
during training. With the constraint of interaction function, the
sequence modeling module is forced to learn the evolving pattern
of students’ explainable explicit states instead of unexplainable
latent states. As for ∂ŷn,m/∂βm and ∂ŷn,m/∂am, it is easy
to obtain a similar conclusion with IRT, which proves that the
question attribute parameters are also learned in an explainable
way.

Although the other aspect of interpretation in our definition
(i.e., a clear relation between model input and students’ knowl-
edge states) is not the focus of this article, there have been
explorations in traditional research. For example, models based
on BKT use a hidden Markov process to model the transforma-
tion of knowledge mastery, along with its probabilistic relations
with factors, such as learning rate, difficulty, and forgetting [7],
[18], [24]. Most deep knowledge tracing models fit data better
than BKT models, and by considering factors, such as forgetting
and hints [24], [26], they also reveal that these factors have

something to do with student knowledge states. However, it
is usually difficult to explain how these factors influence the
outputs in deep learning models, as the mechanism of deep
learning is insufficiently transparent. We leave this aspect of
interpretation for future research.

Accuracy. If appropriate interaction functions and question
attribute features are chosen, they can improve the accuracy of
the diagnosed knowledge states, and consequently benefit the
student performance prediction.

First, the sequential modeling module builds the relationship
between students’ practice history and their current knowledge
states. The obtained relationship would be more precise if the
module could get more information about the practice history.
Moreover, the module structure also influences the accuracy
of sequence modeling. Deep learning-based approaches (e.g.,
GRU) often outperform traditional approaches (e.g., Markov
process in BKT) despite being less interpretable. We use GRU in
all deep learning models in this article, and focus on the influence
of educational priors.

Second, compared to deep knowledge tracing [(5) ∼ (7)], the
interaction functions leverage more attribute information about
questions and capture more reasonable interactions between
students and questions. This not only renders interpretation to
student knowledge states but also leads to better prediction of
student performances.

IV. EVALUATION

To illustrate the effectiveness of our methods, we conduct
experiments on three real-world datasets. We first demonstrate
the influence of educational priors in dynamic cognitive di-
agnosis models on the accuracy through the student perfor-
mance prediction task and compare them with baseline knowl-
edge tracing models. Then we conduct statistical analyses of
the interpretation of the estimated parameters, including stu-
dent knowledge states, question attributes, and the relationship
between their estimated values.

A. Dataset Description

In the experiments, we used three public real-world datasets:
ASSIST2009, ASSIST2012, and KDDCup. ASSIST20093 and
ASSIST20124 are datasets collected by the ASSISTments on-
line tutoring system [50]. For the ASSIST2009 dataset, we
chose the corrected version of the skill-builder subset, which
repaired the duplication problem reported by [51]. KDDCup5 is
a dataset released by PSLC DataShop collected from Carnegie
Learning’s Cognitive Tutor in Algebra, and was provided as one
of the development datasets in the KDD Cup 2010 competition
(labeled as Bridge to Algebra 2006-2007). Notably, the “ques-
tion” referred to in this article is referred to as the “problem”

3[Online]. Available: https://sites.google.com/site/assistmentsdata/home/
2009-2010-assistment-data/skill-builder-data-2009-2010 (last access:
2019/11/5)

4[Online]. Available: https://sites.google.com/site/assistmentsdata/datasets/
2012-13-school-data-with-affect (last access: 2020/04/13)

5[Online]. Available: https://pslcdatashop.web.cmu.edu/KDDCup/
downloads.jsp (last access: 2020/04/11)
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TABLE III
DATA STATISTICS (AFTER PREPROCESSING)

in ASSIST2009 and ASSIST2012 (identified in the data with
problem_id). While in KDDCup, we regard the concatenation
of “problem name” and “step name” as a “question,” because
there may be multiple steps in a problem. For example, a problem
with four steps would be separated into four different questions.
Consequently, a “record” here refers to a response log in the
datasets. Specifically, in ASSIST2009 and ASSIST2012, each
record contains the results of a student’s answer to a problem; in
KDDCup, each record contains the results of a student’s answer
to a step of a problem.

For each dataset, we first deleted questions without a KC
label and those with less than 15 responses. Next, we divided
students with more than 200 responses into multiple dummy
students, each with no more than 200 responses. For example, a
student with 455 responses would be divided into three dummy
students with 200, 200, and 55 responses, respectively. This was
done to avoid extremely long strings of response data, as these
can be harmful to the training speed of recurrent neural networks.
After that, we deleted students with less than 15 response logs.
Table III presents some basic statistics about these datasets
after preprocessing.6 Finally, we opted to select 80% of the
preprocessed response sequences for training, and the remaining
20% of sequences for testing.

B. Experimental Setup

In the student performance prediction experiments, we com-
pared the proposed dynamic cognitive diagnosis models with
knowledge tracing baselines. BKT was chosen as the repre-
sentative of traditional knowledge tracing models, while DKT
and DKVMN are the representatives of deep-learning-based
knowledge tracing. For fairness, models using extra information
(e.g., knowledge graph [47], text [52]) were not compared,
whereas the educational priors discussed in this work can be
naturally integrated into these models.

To show the effects of educational priors, we focused on con-
ducting comparisons with DKT. For a fair comparison, we used
GRU as the sequence modeling module in DKT and our dynamic
cognitive diagnosis models. All three types of prediction module
(5)–(7) were tested as follows.

1) Questionwise (DKT_Q): Only the question IDs were used
as the input feature in (13).

6We also provide the statistics of the original datasets before preprocessing,
and show some data samples in Appendix B.

TABLE IV
QUESTION ATTRIBUTES FOR SEQUENTIAL MODELING MODULAR

2) KC-wise (DKT_KC): Following the experiments in [8] and
[9], each question was represented by its KC ID instead of
question ID (i.e., the question IDs in questionwise were
replaced with KC IDs). It is notable that, in ASSIST2009,
when a question contains more than one KC, its response
is split into multiple logs, each containing one KC. We
regarded the duplicate logs as one response and used the
combination of the KCs as its new joint KC tag.

3) MLP (DKT_MLP): The input of GRU was the same as
the KC-wise prediction, while the output probability was
produced with two full connection layers. Specifically, (7)
was implemented as follows:

f3 = W ϑ3h
t
n (19)

f4 = W ϑ4q
t+1
n (20)

ŷtn,m = σ(W ϑ6 tanh(W ϑ5[f3 ⊕ f4] + bϑ5) + bϑ6)

(21)

where W ϑ∗ and bϑ∗ are learnables parameters. f3 ⊕ f4

means concatenating the vector f3 and f4, which is a
common practice in deep learning when combining infor-
mation from different vectors.

The experiments for dynamic cognitive diagnosis models
were conducted with both IRT and NeuralCDM interaction
functions and using different question attributes (labeled as
DIRT_1 ∼ DIRT_4 and DNeuralCDM_1 ∼ DNeuralCDM_4,
respectively). Table (IV) shows the differences of the input to the
sequence modeling modular. All the models were implemented
by PyTorch v1.5.0 (except BKT7) using Python, and Adam
optimizer [49] was adopted to train the models. Experiments
were run on a Linux server with four 2.0 GHz Intel Xeon
E5-2620 CPUs and a Tesla K20 m GPU.

C. Improvements for Student Performance Prediction

The proposed dynamic cognitive diagnosis models have the
functionality of deep knowledge tracing, which is predicting
students’ performance. We conducted experiments on the three
datasets to show that the prediction accuracy can be improved
if proper educational priors are integrated. We selected area
under curve (AUC) [53] and accuracy as the metrics, which

7[Online]. Available: https://iedms.github.io/standard-bkt/
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TABLE V
EXPERIMENTAL RESULTS OF STUDENT PERFORMANCE PREDICTION

are frequently adopted for classification tasks. The experimental
results are shown in Table (V). From the table, we can ob-
serve that BKT is outperformed by deep learning-based meth-
ods, which is in accordance with previous studies. Among the
deep knowledge tracing models, when there is a nonnegligible
sparsity problem with the questions, models having knowl-
edge component information as input (DKVMN, DKT_KC,
and DKT_MLP) have better performance than DKT_Q, which
is unaware of the knowledge components. This can be ob-
served on the ASSIST2009 and KDDCup datasets, of which
#Records per question is small (Table III). The reason is
that the only information DKT_Q gets about the questions
is question ID, and it is difficult to learn appropriate repre-
sentations for those questions with sparse response logs. By
contrast, in ASSIST2012, the sparsity problem is much less
severe, causing DKT_Q and DKT_MLP to perform better than
DKT_KC.

Through further observation, we can draw the following con-
clusions.

1) Impact of Question Attributes: From DIRT_1 to DIRT_4
(also from DNeuralCDM_1 to DNeuralCDM_4), the
number of question attributes that are input into the
sequential modeling module gradually increases. As
a result, the prediction performances continually im-
prove from DIRT_1 to DIRT_4 (from DNeuralCDM_1
to DNeuralCDM_4). This indicates that all the educa-
tional priors that have been integrated (i.e., KC ID, dif-
ficulty, and discrimination) have a positive impact on
the sequential modeling of students’ knowledge state
evolution.

2) Impact of Interaction Functions: Compared to DIRT_x,
DNeuralCDM_x (x=1,2,3,4) performs much better. This
is because, in DNeuralCDM, a student’s knowledge state
is represented with a KC-wise proficiency vector rather
than an overall ability (as in DIRT), and the interaction be-
tween the student knowledge state and question attributes
is also better fitted with the neural network. A similar
conclusion can be drawn if we compare DNeuralCDM_2
with DKT_MLP or DKT_KC. These models get the same
input for the sequential modeling module; the difference
lies in the performance prediction module. It is apparent
that an appropriate interaction function from cognitive

diagnosis is superior to simply applying multilayer for
prediction.

3) Overall, the DNeuralCDM models (DNeuralCDM_x,
x=2,3,4) perform better than the baselines, indicating the
positive effects of properly integrated educational priors.
Among the priors investigated herein, the KC assignment
and interaction function (or more specifically, Neural-
CDM) bring the most performance gain.

D. Analysis of Interpretation

We evaluate the interpretability of dynamic cognitive di-
agnosis models from three aspects: 1) interpretation of stu-

dents’ knowledge states (i.e, θtn or θ̃
t

n), 2) interpretation of
question attribute parameters (i.e., a, γ,β), and 3) the rela-
tion between students’ knowledge states and question attribute
parameters.

Interpretation of Students’ Knowledge States. Following [16],
we check whether or not the results of our models are consistent
with the empirical observations that students with better perfor-
mance have higher diagnosed abilities/proficiencies. For exam-
ple, suppose that students n1 and n2 answered the question qm,
and the response results are correct and incorrect, respectively.
Under this circumstance, the diagnosed abilities should have
the relation θn1

> θn2
(in DIRT) or θ̃n1,k > θ̃n2,k∀k ∈ KC(qm)

(in DNeuralCDM), where KC(qm) is the set of KCs that are
contained in qm. When this relation is satisfied, we say that this
pair of samples ((n1, n2) and (n2, qm)) aligns with the empirical
observation.8 To numerically capture how well the models align
with the empirical observations, an intuitive way is to calculate
the percentage of sample pairs that align with the empirical
observations. Therefore, we adopt an adapted measure of degree
of agreement (DOA). DOA was originally proposed in [54] to
evaluate the scoring algorithm in recommender systems, and is
defined as the percentage of item pairs aligning with the empiri-
cal observations. An item pair aligning with empirical observa-
tion means that the item preferred by the user is ranked higher by
the scoring algorithm than another item that is not preferred by
the user. In this study, DOA is defined as the percentage of sample
pairs aligning with empirical observations. As discussed above,
a sample pair that aligns with empirical observation means that
the student (n1) who performs better on question qm has a higher
diagnosed ability (θn1

) or proficiency (θ̃n1,k∀k ∈ KC(qm)) than
another student (n2) with poorer performance on qm. It should
be noted that when the question contains multiple KCs (i.e.,
KC(qm) > 1), all proficiencies should satisfy this relation (i.e.,
θ̃n1,1 > θ̃n2,1, θ̃n1,2 > θ̃n2,2,...). For detailed formulas, please
refer to Appendix C.

We take DKT_KC, which uses the same sequential modeling
module as DIRT and DNeuralCDM models but without priors, as
the baseline for comparison. The DOAs of the models are listed
in Table VI. Generally, the high DOAs in the table reveal that
the models have a strong tendency to assign a higher diagnostic
value (ability, proficiency or probability) after receiving a correct

8It should be noted that this relation is consistent with the monotonicity
assumption but we still need to evaluate it as there is a fitting process of student
performance and model output. The fitting abilities of the models impact a lot
to what degree this relation is actually satisfied.
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TABLE VI
DOA OF STUDENTS’ KNOWLEDGE STATES

response record and a lower value after receiving an incorrect
response record. The DOA of DNeuralCDM_1 is significantly
lower than that of the other DNeuralCDM models because of
the lack of knowledge component information in the inputs.
Moreover, the DOAs of the DNeuralCDM models are lower
than DKT_KC because the questions contain multiple KCs
(except in dataset ASSIST2012, where every question contains
one KC). To prove this, we separately calculate the DOAs of
questions that contain only one KC and denote it as DOAsingle.
As shown in Table VII, we can see an apparent increase of
DOAsingle compared with DOA, which suggests low DOAs of
questions with multiple KCs. The reason is that the assump-
tion behind (29a) is strict. When a question contains multiple
KCs,

∏
k∈KC(qm) δ(θ̃

tn1,m

n1,k
, θ̃

tn2,m

n2,k
) in (29a) equals 1 only if

θ̃
tn1,m

n1,k
> θ̃

tn2,m

n2,k
∀k ∈ KC(qm). That is, student sn1

(who an-
swered correctly) needs to master all relevant KCs better than
another student sn2

(who answered incorrectly), which is in
fact unnecessary. For example, suppose question qm contains
KCs kc1 and kc2 with difficulty 0.4 and 0.7, respectively. sn1

masters kc1 and kc2 with proficiency 0.5 and 0.8, which satisfies
all requirements of the question. On the other hand, sn2 masters
kc1 and kc2 with proficiency 0.55 and 0.6 (<0.7) and fails to
answer the question. Although sn1

received a higher score than
sn2

, sn1
’s proficiency on kc1 is lower than sn2

’s. Instead, we
can assume that there should be at least one KC among KC(qm)
that s1 has mastered better than s2. Therefore, we loosen the
calculation of DOA and call it partial DOA (PDOA). Compared
to DOA, the only difference is that, when the question contains
multiple KCs, only one proficiency needs to satisfy the relation
(i.e., θ̃n1,k > θ̃n2,k, ∃k ∈ KC(qm)). The formula thus changes
to

PDOAθ̃ =
1

Z

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)

δ(yn1,m, yn2,m)

⎡
⎣1− ∏

k∈KC(qm)

δ(θ̃
tn2,m

n2,k
, θ̃

tn1,m

n1,k
)

⎤
⎦ (22a)

Z =

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)δ(yn1,m, yn2,m). (22b)

The PDOAs calculated upon questions with multiple KCs (de-
noted as PDOAmulti) are presented in Table VII, and we can
observe an increase compared to DOA.

Fig. 4 illustrates the tracking of student knowledge states in
an intuitive way. We randomly chose a student in ASSIST2009
and select the answer records related to five KCs that appear
frequently. The upper part (5 × 30 grid) of the figure shows
the changing knowledge proficiencies diagnosed by DNeural-
CDM_2. We can observe that when the student gives a correct
(incorrect) answer, DNeuralCDM_2 tends to increase (decrease)
its diagnosed proficiency on a related KC. The lower part (1 ×
30 grid) of the figure shows the changing ability diagnosed by
DIRT_2. We can further observe that when the student gives
a correct (incorrect) answer, DIRT_2 increases (decreases) its
diagnosed overall ability.

From all the results above, we can conclude that although the
student’s knowledge state vector is separated from the perfor-
mance prediction vector in dynamic cognitive diagnosis models
(unlike DKT_KC), the interpretability of the state vector remains
high. Moreover, the advantage of DNeuralCDM models is that
they are able to handle the change of proficiencies for each KC,
even when the question has multiple KCs. By contrast, deep
knowledge tracing models cannot get the proficiencies on KCs
(e.g., DKT_Q and DKT_MLP) or can only handle questions with
a single KC (e.g., in DKVMN and DKT_KC, multiple KCs in
a question are combined and regarded as a dummy KC).

Interpretation of Question Attribute Parameters. The knowl-
edge components required by the questions are provided by
experts, and both discrimination and difficulty have been studied
in traditional research. In classical test theory, the common
measurement of question discrimination is the point biserial
correlation or biserial correlation between the students’ score
(0 or 1) on the question and their total score on the test [11].
As for question difficulty, it has been determined by many
existing works (e.g., [11], [30], [31]) that the more difficult the
question is, the lower correct rate the question has. In other
words, question difficulty should have a negative correlation
with the question’s correct rate (or a positive correlation with the
incorrect rate). Therefore, the correlation between the estimated
difficulty parameters and the correct rates of questions is a
reasonable measurement for the interpretability of difficulty
parameters.

Unfortunately, due to the sparsity problem of questions in
the datasets, it is difficult to select enough questions that have
plenty of response logs to calculate reliable biserial correlations
or point biserial correlations (with p-value 
 0.05). Thus, in
this article, we only compare the estimated values of difficulty
parameters (i.e., the values of γ in DIRT_3 and DIRT_4, or
β in DNeuralCDM_3 and DNeuralCDM_4) with the incorrect
rates of the corresponding questions. We choose the Pearson
correlation coefficient (PCC) [55] to measure their correlation.
For questions with multiple KCs in DNeuralCDM models, we
need to transform the KC difficulties to the questions so as to
calculate PCC. While combining all the difficulties of the KCs
contained in a question could be a reasonable approach, how
exactly this combination should be performed is underexplored.
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TABLE VII
DOA (PDOA) FOR SINGLE AND MULTIPLE KC STATES

Fig. 4. Case of tracking a student’s knowledge state. The leftmost column shows the KCs (with colored squares) or overall ability. The top line records performance
on 30 questions, the colors of which denotes related KCs. The upper 1 × 30 is the diagnosed results of DNeuralCDM, and the lower 1 × 30 grid is the diagnosed
results of DIRT.

TABLE VIII
PCC OF QUESTION DIFFICULTY PARAMETER

Instead, we consider the highest difficulty of the contained KCs
as the question difficulty, because it is most representative of
how difficult the question is, and the #KCs per question is
close to 1.0 on all datasets (Table III). The results are shown in
Table VIII, where p-value 
 0.05. In the table, we can observe
strong correlations between the estimated question difficulties
and incorrect rates. Even on ASSIST2009 and KDDCup, where
the results are influenced by questions with multiple KCs, the
PCCs are still high enough to show strong correlations.

Relation Between Student Knowledge States and Question
Attributes. Different from the interpretation of student knowl-
edge states and question attributes, which need to be evaluated
by calculating the metrics among estimated parameters and
students’ response data, the relation between student knowledge
states and question attributes can be analytically derived once
the model has been trained. For ease of understanding, we show
this relation by presenting some representative examples that il-
lustrate how the output probability of a correct response changes
with student knowledge states and question attributes (difficulty
and discrimination). As this relation is apparent in DIRT (a
logistic-like function), we only discuss DNeuralCDM models
below. Without losing generality, the following experiments are
all conducted with DNeuralCDM_2 on the ASSIST2009 dataset.

First, we show the relation among probability, proficiency,
and KC difficulty in Fig. 5. Specifically, we simulate a question
with one KC kck (randomly selected) and uniformly sample
the proficiency and difficulty of kck in the range [0,1] at 0.02
intervals. We first set the discrimination to a fixed value, and
then feed the student proficiencies and question attributes into
the performance prediction module (i.e., NeuralCDM) to get
the probability. From Fig. 5, we can observe that the probability
increases with proficiency and decreases with difficulty, which
is in line with expectations. Furthermore, if we change the
discrimination (i.e., 0.2 and 0.8), we can observe from Fig. 5(a)
and Fig. (b) that the effect of discrimination is to control the slope
of the curved plane: a higher value of discrimination makes the
probability more sensitive to the difference between proficiency
and difficulty when the values of proficiency and difficulty are
close to each other.

Next, we demonstrate how knowledge proficiency influences
the probabilities for questions with single or multiple KCs in
Fig. 6. In Fig. 6(a), we fix both discrimination and difficulty
to 0.5, then randomly choose ten KCs from data. By feeding
proficiencies sampled from the range [0,1] at intervals of 0.02
into NeuralCDM, we get the probabilities of giving correct
responses. As illustrated in the figure, the changing patterns
of different KCs are not the same. In Fig. 6(b), we fix both
discrimination and difficulty to 0.5, and randomly choose two
KCs that appear simultaneously in one question in the data
(Conversion of Fraction Decimals Percents and Subtraction
Whole Numbers). The sampling of the two proficiencies is done
in the range [0,1] at 0.02 intervals. We can observe that the
weights of the KCs are different in the question.

Compared to deep knowledge tracing, the relation between
student knowledge states and question attributes in dynamic cog-
nitive diagnosis is unique, which separates student performance
prediction and knowledge state tracing. By contrast, in deep
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Fig. 5. Output probability changes with proficiency and difficulty.

Fig. 6. Output probability changes differently with proficiencies on single or multiple KCs.

TABLE IX
AVERAGE TRAINING TIME (S) OF EACH EPOCH

knowledge tracing, DKT_Q and DKT_MLP are unable to trace
the evolution of knowledge proficiency. Although DKT_KC
offers some interpretability, the proficiency tracing and perfor-
mance prediction are mixed, and questions with multiple KCs
are not handled well.

E. Training Cost

In addition to the model accuracy and interpretation, training
cost is also a nonnegligible factor that affects practicability.
Table IX shows the training time of DKT models and our

dynamic cognitive diagnosis models; here each training time
is the average over the first 5 epochs (i.e., five iterations of the
training data). For models trained with the two-stage strategy
(i.e., DIRT_3∼DIRT_4, DNeuralCDM_3∼DNeuralCDM_4),
we only list the training time of the second stage, as their
first stage is exactly the same as DIRT_2 and DNeuralCDM_2,
respectively. From the table, we can observe that although
larger data size obviously results in a longer training time, the
training time of models within the same datasets does not vary
significantly. Considering that no model exhibited the need for
a large number of training epochs, we can conclude that the
integrated educational priors do not introduce a considerable
training burden.

V. DISCUSSION

Although combining deep learning-based knowledge tracing
models with cognitive diagnosis methods is an intuitive thought,
few investigations have been made by researchers. This arti-
cle accordingly has important implications for researchers and
practitioners who are developing AI technologies for education.
In this article, we first present a summary of existing deep
knowledge tracing models. Due to their use of deep learning,
deep knowledge tracing models have made great progress in
sequence modeling with students’ learning data and predicting
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students’ future performance (scores on questions). However,
one of the weaknesses of existing deep knowledge tracing
models is their insufficient ability to provide students’ explicit
knowledge states. Most works do not provide students’ overall
abilities or their mastery levels on each knowledge component.
Although the predicted probability of correctly answering a
question could be seen as the knowledge proficiency if we
were to equate the question with the knowledge component it
contains, this trick ignores the difference between questions and
knowledge components, and is only applicable to questions with
a single knowledge component. Moreover, while several studies
have provided interpretations about their student knowledge
states, these were merely based on their designing and lack of
support from educational theory. Accordingly, we propose to
introduce educational priors from cognitive diagnosis to deep
knowledge tracing in order to address their weaknesses, along
with full discussions, experiments, and analyses. We review
our answers to the two research questions in the following
paragraphs.

Research Question 1: What educational priors can be brought
to deep knowledge tracing? In this article, we mainly study
two types of educational priors: 1) question attribute and 2)
interaction function. These two types of priors are not indepen-
dent, as question attributes are typically components of inter-
action functions (e.g., difficulty and discrimination in IRT). We
conduct analyses and experiments on two interaction functions
(IRT and NeuralCDM) and four educational priors (question
ID, knowledge component, difficulty, and discrimination). IRT
and NeuralCDM are selected because their parameters can be
easily tuned by gradient descent algorithms together with deep
learning-based sequence modeling modules; we use them as
the representation of models that fall under the ability level
paradigm and cognition level paradigm, respectively. It should
be noted that some question attributes, such as difficulty and
discrimination, are not always accessible by human labeling.
Although there might be statistical definitions, these definitions
might not be unified (for example, both biserial correlation
and point biserial correlation can be used to calculate ques-
tion discrimination [11]), and accurate statistical values rely
on reasonable data distribution, which is not always accessible.
Therefore, in this article, we use a two-stage method to get these
attribute values from pretraining (Section III-C).

The main limitation of this work is that we only study the
educational priors from two cognitive diagnosis methods. In
reality, there are various educational priors from educational
research or traditional knowledge tracing research. Factors about
questions (e.g., question type), knowledge components (e.g.,
knowledge topology), and student behaviors (e.g., multiple at-
tempts, practice space, and forgetting) have been proven to be
relevant to students’ knowledge states. It would be excessive to
investigate all priors in a single article. However, most priors can
be integrated into our dynamic cognitive diagnosis framework
in a similar way to the question attributes.

Research Question 2: What effects do educational priors
bring to deep knowledge tracing? The most important effect
that educational priors bring is that they change deep knowledge
tracing models into dynamic cognitive diagnosis models that can

provide explainable student knowledge states. In cognitive diag-
nosis models, the properties of interaction functions enforce the
interpretability of student and question parameters. For instance,
the monotonicity assumption declares that (when keeping other
parameters fixed) the higher a student’s proficiency, the higher
the probability that the student will answer correctly, and vice
versa. In our proposed dynamic cognitive diagnosis models, the
output of the sequential modeling module is part of the interac-
tion function (i.e., student knowledge state), and is therefore
constrained by the interaction function. Then, by integrating
question attributes into the model inputs, we achieve further
improvements in the accuracy of future student performance
prediction. Finally, we can observe from our experimental results
that different educational priors affect the model to different
extents. Among the question attributes we studied, knowledge
components play the most important role, especially when the
questions are impacted by a data sparsity problem. As for the
interaction function, NeuralCDM makes greater improvements
compared to IRT, and also provides a more fine-grained diagno-
sis of students’ knowledge states.

It should be noted that although the interpretability of ma-
chine learning models has attracted broad attention in recent
years, there is currently no commonly accepted definition. The
evaluation of interpretability is also a tricky problem. Basically,
the analysis of model interpretability is either based on prede-
fined model structures or post-hoc analyses. Some models are
designed based on existing knowledge or empirical evidence; the
model structures are usually simple and considered obviously
interpretable. Examples of such models include linear regres-
sion, Bayesian network [56], IRT, and DINA. When it comes to
deep learning models, post-hoc analysis is preferred due to the
complex model structures. One popular type of post-hoc anal-
ysis is to visualize important parts of the model. For example,
Liu et al. [57] visualized the results of the attention mechanism
that compares similar parts of two exercise texts. Piech et al. [8]
and Zhang et al. [9] visualized the clustering of questions
based on their model outputs. Another popular post-hoc analysis
method is to mathematically calculate or observe the influence
of input features or the stimulation of network neurons. For
example, Lu et al. [28] applied a layerwise relevance propagation
method to interpret RNN-based knowledge tracing models. In
our experiments, we evaluate the interpretability from different
aspects. Visualization is used to demonstrate the relation be-
tween student knowledge states and question attributes, as well
as present a case of the evolving of a student’s knowledge states.
Moreover, considering the educational background of this work,
we design novel metrics that measure whether the estimated
values of student and question parameters are consistent with
domain knowledge or human experience. The limitation of this
work is that we do not pay attention to the interpretation of
the sequential modeling module. In other words, we ignore
what has been learned by the neural network about the relation
between input response histories and model decisions (e.g.,
student knowledge states). We opt to use GRU because of its
better fitting ability. However, some traditional approaches, such
as the Markov process in BKT, are more interpretable and
can sometimes outperform neural networks [58], [59]. There is
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usually a tradeoff between accuracy and interpretability, which
merits further exploration.

VI. CONCLUSION

In this article, we studied the task of dynamic cognitive
diagnosis and proposed approaches to solve it by integrating
educational priors into deep learning-based knowledge tracing
models. Specifically, we first discussed the difference between
knowledge tracing and dynamic cognitive diagnosis, along with
the disadvantages of current knowledge tracing models in trac-
ing students’ explicit knowledge states. Next, we introduced
educational priors, including question attributes and interaction
functions from cognitive diagnosis, into deep knowledge tracing.
Through extensive experiments and analyses, we showed that
these priors bring high interpretability to the model parameters,
thereby changing deep knowledge into dynamic cognitive diag-
nosis; the prediction accuracy can also be improved if proper
priors are chosen.

Future research can be conducted to address the limitations
of this work. First, additional educational priors (other than
the question attributes and interaction functions from IRT and
NeuralCDM) can be taken into consideration. Various factors
have been found to be relevant to students’ learning process, such
as slip, guessing, forgetting, and knowledge topology. Second,
the sequential modeling module needs further improvement.
Although there is usually a tradeoff between accuracy and
interpretability, it is valuable to explore the possibility of im-
proving both by combining domain theories with deep learning
technologies.

APPENDIX A
GRADIENT DEVIATION IN NEURALCDM

According to (9)–(12), the partial gradient of the output ŷn,m
on the kth dimension of θn (i.e., θn,k) is

∂ŷn,m

∂θ̃n,k
=

∂xin

∂θ̃n,k
× ∂f1

∂xin
× ∂f2

∂f1
× ∂ŷn,m

∂f2
(23)

∂xin

∂θ̃n,k

= (0, . . . , 0, Qm,k, 0, . . . , 0) (24)

∂f1

∂xin
= W T

1 × diag(f1 ◦ (1− f1)) (25)

∂f2

∂f1
= W T

2 × diag(f2 ◦ (1− f2)) (26)

∂ŷn,m
∂f2

= W T
3 × ŷn,m(1− ŷn,m). (27)

Qm,k ∈ {0, 1}, ŷn,m ∈ (0, 1), all elements in f1 and f2

lie in (0,1) and all elements in W 1, W 2, and W 3

are nonnegative. We could easily get that all elements in
∂xin/∂θ̃n,k, ∂f1/∂xin, ∂f2/∂f1, and ∂ŷn,m/∂f2 are non-
negative, therefore ∂ŷn,m/∂θ̃n,k ≥ 0.

TABLE X
DATA STATISTICS (BEFORE PREPROCESSING)

TABLE XI
DATA EXAMPLES

APPENDIX B
DETAILS ABOUT THE DATASETS

Table X lists some basic statistics about the original datasets
used in our experiments (before preprocessing).

Table XI shows the headings from three datasets, and presents
one record sample for each dataset. The headings of each dataset
correspond to “Record ID,” “Student ID,” “Question ID,” “KC
ID,” and “Response” (which are the terms adopted in this arti-
cle), respectively, (e.g., ASSIST2009 uses “user_id” to indicate
Student ID).

APPENDIX C
DOA FORMULAS

As the output format of DIRT, DNeuralCDM and DKT_KC
are different, the formulas of DOA are slightly different.

The formula for DIRT is as follows:

DOAθ =
1

Z

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)

δ(yn1,m, yn2,m) · δ(θtn1,m
n1 , θ

tn2,m
n2 ) (28a)

Z =

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)δ(yn1,m, yn2,m) (28b)

and for DNeuralCDM the formula is

DOAθ̃ =
1

Z

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)

δ(yn1,m, yn2,m) ·
∏

k∈KC(qm)

δ(θ̃
tn1,m

n1,k
, θ̃

tn2,m

n2,k
) (29a)
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Z =

M∑
m=1

N∑
n1=1

N∑
n2=1

J(qm, sn1
, sn2

)δ(yn1,m, yn2,m) (29b)

where J(qm, sn1
, sn2

) = 1 if both sn1
and sn2

answered qm,
and J(qm, sn1

, sn2
) = 0 otherwise; δ(x1, x2) = 1 if x1 > x2,

and δ(x1, x2) = 0 otherwise; yn1,m is the correctness of sn1
on

qm; tn1,m is the time that sn1
answered qm.

For DKT_KC, if we regard the output probabilities of
DKT_KC (i.e., θ̂) as the proficiencies of corresponding knowl-
edge components, we can calculate the DOA as follows:

DOAθ̂ =
1

Z

K∑
k=1

N∑
n1=1

N∑
n2=1

∑
t1∈T(n1,k)

∑
t2∈T(n2,k)

δ(yt1n1
, yt2n2

)·

δ(θ̂t1n1,k
, θ̂t2n2,k

) (30a)

Z =

K∑
k=1

N∑
n1=1

N∑
n2=1

∑
t1∈T(n1,k)

∑
t2∈T(n2,k)

δ(yt1n1
, yt2n2

) (30b)

where T(n1, k) is the time indexes that sn1
answered questions

containing KC kck; yt1n1
is the correctness of sn1

’s response at

time t1; θ̂t1n1,k
is the value of the kth dimension of θ̂

t1
n1

which is
the output probability vector for sn1

at time t1.

APPENDIX D
ACRONYMS

Here we list the acronyms frequently used in this article, along
with their meanings.
� BKT: Bayesian knowledge tracing.
� DKT: Deep knowledge tracing model proposed in [8].
� IRT: Item response theory.
� MIRT: Multidimensional item response theory.
� DINA: Deterministic input, noisy-and model [13].
� NeuralCD (NeuralCDM): Neural cognitive diagnosis

framework (model) proposed in [16].
� DKVMN: Deep learning-based knowledge tracing model

proposed in [9].
� KC: Knowledge component.
� GRU: Gate recurrent unit (a type of recurrent neural net-

work).
� MLP: Multilayer perceptron.
� DOA: Degree of agreement (an evaluation metric).
� PDOA: Partial degree of agreement (a variant evaluation

metric of DOA).
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