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ABSTRACT
The fundamental task of intelligent educational systems is to offer

adaptive learning services to students, such as exercise recommen-

dations and computerized adaptive testing. However, optimizing

required models in these systems would always encounter the

collection difficulty of high-quality interaction data in practice.

Therefore, establishing a student simulator is of great value since it

can generate valid interactions to help optimize models. Existing

advances have achieved success but generally suffer from exposure

bias and overlook long-term intentions. To tackle these problems,

we propose a novel Direct-Adversarial Imitation Student Simulator

(DAISim) by formulating it as a Markov Decision Process (MDP),

which unifies the workflow of the simulator in training and gen-

erating to alleviate the exposure bias and single-step optimization
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problems. To construct the intentions underlying the complex stu-

dent interactions, we first propose a direct imitation strategy to

mimic the interactions with a simple reward function. Then, we

propose an adversarial imitation strategy to learn a rational dis-

tribution with the reward given by a parameterized discriminator.

Furthermore, we optimize the discriminator in adversarial imita-

tion in a pairwise manner, and the theoretical analysis shows that

the pairwise discriminator would improve the generation quality.

We conduct extensive experiments on real-world datasets, where

the results demonstrate that our DAISim can simulate high-quality

student interactions whose distribution is close to real distribution

and can promote several downstream services.

CCS CONCEPTS
• Computing methodologies → Adversarial learning; • Ap-
plied computing → E-learning.
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1 INTRODUCTION
As the landscape of education is evolving significantly, intelligent

educational systems (e.g., MOOC and Coursera [16, 41, 45]) have

attracted many students. These systems provide several adaptive

learning services, including personalized recommendations, knowl-

edge tracing (KT), and computerized adaptive testing (CAT) [17, 26,

29, 47]. Figure 1 (left) shows a typical learning interaction proce-

dure between a student and a system. Generally, the system poses

a learning item (i.e., exercise) at each step. After receiving feedback

from the student (e.g., right or wrong), the system provides a new

item according to the student’s personalized needs.

The systems predominantly depend on machine learning al-

gorithms that utilize extensive interaction data, either offline or

online [17, 25], to optimize their models and provide the afore-

mentioned services. Despite their effectiveness, there exist main

drawbacks of such algorithms: On the one hand, offline-trained

systems would be hindered by the bias in the collected data [11].

On the other hand, online systems may offer students inappropriate

learning items during the trial-and-error process, resulting time

wasting, unfairness [23] and high cognitive load [9], etc. To address

these problems, a viable approach is to employ a simulator imitating

real students and interacting with the system, as shown in the left

part of Figure 1. The primary goal of the simulator is to generate

high-quality interactions where the notion of high-quality gener-

ated data refers to the data whose distribution is equivalent to the

real distribution, as shown in the right part of Figure 1. By utilizing

the simulator, the system can undergo initial optimization with

sufficient training before real students become involved, thereby

offering students better adaptive learning services [36].

In the literature, researchers have dedicated their efforts to de-

signing ideal student simulators ranging from the earlier manually

crafted rule-based simulators [27, 33] to recent deep-learning-based

advances [17, 27]. Though they have achieved some successes, there

are still some limitations. First, existing simulators generally en-

counter exposure bias [2] because of the inconsistency between

training and testing. Second, most simulators straightforwardly

treat the learning interaction generation task as a single-step pre-

diction task (i.e., KT task [17, 27, 31]), which generally overlooks

the long-term intention determining how students interact with the

systems. Overall, both problems would hinder generation quality.

In this paper, we tackle the above problems in a principled way

by proposing a novel student simulator framework, namely Direct-
Adversarial Imitation Student Simulator (DAISim). Specifically, we

reformulate the interaction process as a sequential decision-making

task and formalize it as a Markov Decision Process (MDP) to allevi-

ate exposure bias and optimize the long-term intention of students

within a reinforcement learning (RL) paradigm.

However, students’ interactions are complex, and the underlying

intention of interactions is implicit and still needs to be appre-

hended, making it infeasible to manually define the reward func-

tion of MDP. To this end, we reconstruct two reward functions in

two-stage imitation, including direct and adversarial imitation with

inspiration from imitation learning [18], to model intentions and

Imitate

Simulator

Student

System
Generated Interactions

Existing Interactions

EquivalentHigh-quality

Item

Feedback

Feedback

Figure 1: Left: Interaction process of student/simulator. Right:
High-quality data refers to generated interactions equivalent
to real interactions in distribution.

guide generating high-quality interactions. In the direct imitation

stage, we propose direct imitation with a simple reward inspired by

imitation learning by reinforcement learning [10, 32, 38]. Expressly,

we force the generated interactions to recover the real distribution.

Nevertheless, real interactions are sometime sparse [11], causing

insufficiently rational and diverse interaction generation in direct

imitation. Thus, in the second stage, we propose an adversarial imi-

tation strategy to overcome the data sparsity problem. Specifically,

our simulator first generates interactions beyond real interactions

to explore diverse patterns further. Then, the simulator updates

with the reward from a parameterized discriminator. However, the

traditional classification discriminator would provide inappropriate

rewards and hinder the generated distribution of the simulator from

improving. Because its discriminator only tries to distinguish be-

tween the generated and the real interactions rather than explicitly

considering the extent to which the generated interactions differ

from the real ones [19]. We address this by introducing a pairwise

discriminator, which focuses on the degree of the difference be-

tween the generated and real interactions to improve generation

quality. Our theoretical analysis demonstrates that the objective of

the simulator in adversarial imitation is minimizing a divergence

which would be more sensitive to the difference between distribu-

tions than the conventional discriminator.

In summary, we highlight the main contributions as follows:

• To the best of our knowledge, DAISim is the first framework

to formulate the task of building the student simulator as

MDP, further addressing the exposure bias and short-term

objective problems in previous advances.

• We tackle technical challenges such as implicit intentions

underlying interactions, data sparsity, and inappropriate re-

wardswith direct and pairwise adversarial imitation. Through

theoretical analysis, we demonstrate that the simulator with

the pairwise discriminator in adversarial imitationminimizes

a more sensitive divergence.

• We conduct extensive experiments to evaluate the proposed

framework on two real-world datasets. Quantification dis-

tance measuring between distributions and downstream

adaptive learning services improvement demonstrate that

DAISim enhances these services using its generated data.
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While our proposed framework is initially motivated by the

need for a student simulator in the context of adaptive learning, it

is essential to note that the fundamental idea is generalizable and

applicable to other domains involving user simulation [1, 46].

2 RELATEDWORK
Student Simulation Student simulators, constructed to mitigate

the problem of lacking high-quality interaction data in intelligent

education systems, have been applied in many previous works.

Memory-based [33] and KSS simulators [27] rely on manually

crafted rules to predict student answering or memory behavior.

EERNN [17] and KES [27] use an RNN-based model to predict

the exercise performance of students. Nevertheless, memory-based

and KSS simulators are too simple to simulate complex student

interactions. Moreover, KES and EERNN, optimized in a maximum

likelihood estimation (MLE) manner, may hardly ensure the quality

of generated interactions because of exposure bias and the single-

step optimization [2, 11]. In this paper, we formulate the task of

building a student simulator as an MDP, which overcomes the lim-

itations of existing student simulators, to ensure that generated

interactions resemble real distribution closely.

Imitation Learning Imitation Learning aims to imitate human

behavior in a specific task by learning the map between states and

actions from the trajectories of expert demonstrations [12, 18]. Imi-

tation learning can be divided into the following categories: First,

Behavior Clone (BC) directly learns the map between states and

actions through supervised learning but suffers from compound-

ing error, which means mistakes in testing would cause the agent

to deviate from the learned state distribution and lead to more

mistakes [38]. Traditional KES and EERNN can be viewed as BC

methods. Second, Inverse Reinforcement Learning (IRL) and Gen-

erative Adversarial Imitation Learning (GAIL) learn the implicit

reward of the optimal decision from given expert demonstrations

and alleviate compounding error within a minimax manner [15].

Third, imitation learning by reinforcement learning (ILbyRL), which

is proposed to address the implementation and usage difficulty of

IRL/GAIL [10, 24], generally defines the reward to be 1 for state-

action pairs from the expert trajectory and 0 for other state-action

pairs [10, 32, 38]. In this paper, we adopt the inspiration from imita-

tion learning to reconstruct the implicit intentions underlying real

interactions (i.e., expert demonstrations). Specifically, we propose

two types of rewards in direct and adversarial imitation stages to

model intentions and generate high-quality interactions.

Adaptive Learning Services Intelligent educational systems offer

students adaptive learning services, including Computerized Adap-

tive Testing (CAT) and Knowledge Tracing (KT), to help students

enhance their skills. CAT is an advanced educational measurement

method that evaluates the knowledge level of examinees in minor

exercises [3, 14, 47], while KT is a fundamental education research

that assesses student knowledge proficiency based on their perfor-

mance on previous exercises [6, 13, 26, 30, 31, 35, 42, 43]. Both of

them are of great importance in intelligent educational systems.

However, they have a high demand for high-quality learning in-

teractions, which is generally hard to collect. Thus, in this paper,

we utilize these two services as downstream tasks to evaluate the

quality of the interactions generated by the simulator.

3 DAISIM: DIRECT-ADVERSARIAL
IMITATION STUDENT SIMULATOR

3.1 Problem Statement
Suppose there are |𝑈 | students and |𝐸 | exercises in an intelligent

educational system. Specifically, real student interaction data(i.e.,

expert demonstrations) is recorded as 𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 | }. For
a certain student 𝑢 ∈ U , his/her interactions are denoted as 𝑢 =

{(𝑒1, 𝑎1), (𝑒2, 𝑎2), ...}, where 𝑒𝑡 ∈ 𝐸 represents the exercise that

student 𝑢 practice at step 𝑡 , and 𝑎𝑡 is the response to 𝑒𝑡
1
. If he/she

answers 𝑒𝑡 correctly, 𝑎𝑡 is 1 otherwise 𝑎𝑡 is 0. For a certain exercise

𝑒 ∈ 𝐸, we denote it as 𝑒 = {𝑖, 𝑘}, 𝑖 is the id of exercise, and 𝑘 ∈ 𝐾 is

the corresponding knowledge concepts (e.g., Function, Addition).

In this context, the goal of the simulator is to generate interactions

𝑈 = {𝑢1, 𝑢2, ...} that are equivalent to 𝑈 in distribution. We denote

real and generated distribution as U and
ˆU, respectively.

3.2 Framework Overview
To address the problems of exposure bias and single-step optimiza-

tion, we perceive the interaction process as a sequential decision-

making process and formulate it as a Markov Decision Process

(MDP). The corresponding elements of the MDP are as follows:

• State S: S is the state space that models the state before

the simulator responds. At the step 𝑡 , the state 𝑠𝑡 ∈ 𝑆 is

defined as the combination of prior ability 𝑝0 the historical

interactions of a simulator before 𝑡 and the current exercise

𝑒𝑡 , that is 𝑠𝑡 = {𝑝0, (𝑒0, 𝑎0), (𝑒1, 𝑎1), ..., 𝑒𝑡 }. Note, 𝑝0 is a prior
knowledge vector [𝑝0,1, 𝑝0,2, ..., 𝑝0, |𝐾 | ] over a student, repre-
senting the student’s ability on each concept. Intuitively, a

student with higher 𝑝
0,𝑘 would answer exercises correctly

related to concept 𝑘 with a higher probability.

• Action A: At step 𝑡 , 𝑎𝑡 is the imitated student response to

an exercise 𝑒𝑡 . Whether the simulated student could answer

an exercise correctly is determined by 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ).
• Transition T : The next state 𝑠𝑡+1 is determined by the

current state 𝑠𝑡 , action 𝑎𝑡 and exercises 𝑒𝑡+1. Thus, we set
𝑠𝑡+1 = {𝑠𝑡 , 𝑎𝑡 , 𝑒𝑡+1} = {𝑝0, (𝑒0, 𝑎0), (𝑒1, 𝑎1), ..., (𝑒𝑡 , 𝑎𝑡 ), 𝑒𝑡+1}.

• Reward R: After the simulator taking an action 𝑎𝑡 based on

state 𝑠𝑡 , a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is given to the simulator according

to state 𝑠𝑡 and action 𝑎𝑡 .

Based on the above MDP formulation, we can address the prob-

lems of exposure bias and single-step optimization. Specifically,

we first make the training and testing stages consistent with the

definition of 𝑠 to alleviate exposure bias. Then, we optimize a 𝛾-

discounted long-term reward to fit students’ intentions and train

the simulator in the RL manner.

3.3 Imitation Flow
Generally, the student interactions are complex, and the intention

underlying the complex interactions is unknown. Therefore, manu-

ally defining the reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is infeasible. Thus, the
remaining issue now is how to construct the reward. We will fur-

ther construct the reward functions and introduce how to optimize

DAISim in a two-stage imitation learning framework.

1
There are various types of student interactions, we only consider the exercise-

answering interaction here since it is the most common one.
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Figure 2: The overall framework. Left: In the direct imitation stage, the simulator mimics 𝑢𝑎 to recover the interactions of
existing𝑢𝑎 sequentially and receive a pre-defined 𝑟1. In the adversarial imitation stage, the simulator first generates interactions
sequentially beyond the dataset by mimicking another 𝑢𝑏 to answer exercises of 𝑢𝑎 . Then the discriminator accesses the
simulator with 𝑟2 based on the difference between real interactions and generated interactions. Right: Model implementation
of the simulator and the discriminator.

Direct Imitation. To overcome the difficulty of manually de-

signing the intention which drives student interactions, inspired

by ILbyRL [10, 32, 38], we propose a simple supervised reward

function (red line in Figure 2) to imitate students. To be specific, for

a certain student 𝑢 = {(𝑒0, 𝑎0), (𝑒1, 𝑎1), ...} ∈ 𝑈 , we utilize the real

feedback as supervised signals. When the action 𝑎 generated by the

𝜋 (𝑎 |𝑠) is consistent with the real student action 𝑎, the reward is 1;

otherwise, it is 0:

𝑟1𝑡 =

{
1 𝑖 𝑓 𝑎𝑡 == 𝑎𝑡 ,

0 otherwise,
(1)

where 𝑟1𝑡 is the reward at the direct imitation stage. In this way,

𝜋𝜃 will be more inclined to imitate the real response behavior of

students directly.

At this stage, we sample 𝑁 real students 𝜏 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } from
given interactions 𝑈 . In Figure 2, for an individual student 𝑢𝑎 , we

first extract initial state 𝑝𝑎
0
from historical interactions, then we use

exercise list (𝑒0, 𝑒1, 𝑒2, ...) of𝑢𝑎 , and 𝜋𝜃 (𝑎 |𝑠) to sequentially generate
𝑢 = {(𝑒0, 𝑎0), (𝑒1, 𝑎1), ...}. We utilize Proximal Policy Optimization

(PPO) [34] with the reward according to Equation (1):

min

𝜃
E[−𝑟1 log𝜋𝜃 (𝑎 |𝑠)] − 𝐻 (𝜋𝜃 ), (2)

where the 𝐻 (𝜋𝜃 ) is the entropy term serving as a regularizer [15].

Adversarial Imitation. Nevertheless, direct imitation would

encounter the sparsity problem with limited real interactions be-

cause each student would only interact with fractional items. This

problem would cause insufficient rationality and diversity in gener-

ated interaction data of direct imitation [11]. To address this issue,

we propose adversarial imitation by introducing interactions not

presented in the dataset. To enrich the real interactions and ensure

consistency between generated interactions and the real distribu-

tion, wemake an assumption, which takes the real learning scenario

into account, that students with similar abilities are often exposed

to similar exercises. According to the assumption, the simulator gen-

erates new interactions beyond the dataset, as shown in Figure 2: (1)

Sampling 𝑁 real sequences 𝜏 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } from expert demon-

strations 𝑈 ; (2) For student 𝑢𝑎 ∈ 𝜏 with proficiency 𝑝𝑎
0
, finding

another student 𝑢𝑏 with the closest proficiency 𝑝𝑏
0
according to co-

sine similarity; (3) Simulating the response student𝑏 to the exercises

answered by student 𝑎 (i.e.,𝑢𝑎) based on 𝜋𝜃 (𝑎 |𝑠), which introduce a

sequence beyond real interactions. Thus,𝑢𝑎 = {(𝑒0, 𝑎0), (𝑒1, 𝑎1), ...}
is generated, and 𝑢𝑎 and 𝑢𝑎 are regarded as real and fake samples

respectively to train the discriminator.

Generally, some previous GAIL-based works [11, 36] use cross-

entropy loss to optimize the discriminator 𝐷𝜔 :

max

𝜔
E(𝑠,𝑎) ∈𝑈 [log(𝜎 (𝐷𝜔 (𝑠, 𝑎)))] +E(𝑠,𝑎) ∈𝑈̂ [log(1−𝜎 (𝐷𝜔 (𝑠, 𝑎)))] .

(3)

Then 𝜋𝜃 is updated with the reward given by 𝐷𝜔 in a reinforce-

ment learning manner. In this setting, the objective of 𝜋𝜃 is:

min

𝜃
max

𝜔
E(𝑠,𝑎) ∈𝑈 [log(𝜎 (𝐷𝜔 (𝑠, 𝑎)))]+E(𝑠,𝑎) ∈𝑈̂ [log(1−𝜎 (𝐷𝜔 (𝑠, 𝑎)))],

(4)

This objective is isovalent to minimize the JS divergence between

U and
ˆU:

min

𝜃
𝐷𝑖𝑣 𝐽 𝑆 (U, ˆU) − 𝐻 (𝜋𝜃 ), (5)

Here, U and
ˆU represent the distributions of real interactions and

generated interactions, respectively [11, 15].

Pairwise discriminator training strategy. However, the tra-
ditional discriminator would provide improper rewards to hinder

generation quality and stability for these reasons: First, student

interaction is generally complex due to many confounding factors

like guessing and slipping [37]. The discriminator would converge

much faster than the simulator since the recovering distribution

task of the simulator is indeed much more challenging than the task

of the discriminator [11]. Then, the simulator would only receive

negative rewards before it resembles the real distribution and fails

to train. Second, the traditional discriminator would lack sensitivity

to the difference between distributions. Because when the discrimi-

nator reaches optimality, it only tries to distinguish between the
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generated and real interactions and stops considering why real sam-

ples are more "real" than fake samples and vice versa [19]. Therefore,

it is not feasible to utilize the traditional discriminator.

To address the challenges and achieve more stable training of the

student simulator with appropriate rewards, we employ a pairwise

strategy to update the discriminator 𝐷𝜔 . The optimization of 𝐷𝜔
is carried out by:

max

𝜔
E𝑢 [𝑓 (𝐷𝜔 (𝑢)−E[𝐷𝜔 (𝑢)])]+E𝑢̂ [𝑓 (E[𝐷𝜔 (𝑢)]−𝐷𝜔 (𝑢))], (6)

where 𝑓 (Δ) is the transfer function, we use a Log-Sigmoid function

(i.e., 𝑓 (𝑥) = log(𝜎 (𝑥)) + log(2)). Specifically, in Equation (6), for a

real interaction 𝑢, its score should be higher than any randomly

sampled generated interaction 𝑢 as shown in the first expectation,

and vice versa. Through this, the pairwise strategy compels the dis-

criminator to explicitly measure the discrepancy between real and

generated samples, expanding its focus beyond mere discrimination

and enabling a deeper understanding of the authenticity of real

student interaction data. So the reward function for the simulator

in adversarial imitation (green line in Figure 2) is defined as:

𝑟2 = 𝜎 (𝐷𝜔 (𝑢) − E[𝐷𝜔 (𝑢)]), (7)

Then the simulator is optimized by PPO [34] according to:

min

𝜃
E[−𝑟2 log𝜋𝜃 (𝑎 |𝑠)] − 𝐻 (𝜋𝜃 ). (8)

Through the above objectives of the simulator and the discrimi-

nator, according to [20], we find:

Lemma 3.1. Given the objective of the pairwise discriminator in
Equation (6), the maximum of this objective is a divergence:

𝐷𝑖𝑣𝑃 (U, ˆU) = max

𝜔
E𝑥∼U [𝑓 (𝐷𝜔 (𝑥) − E[𝐷𝜔 (𝑥)])] +

E
𝑥∼ ˆU [𝑓 (E[𝐷𝜔 (𝑥)] − 𝐷𝜔 (𝑥))],

(9)

whereU and ˆU represent the distributions of real interactions and gen-
erated interactions, respectively. 𝐷𝑖𝑣𝑃 (U, ˆU) denotes the divergence
between U and ˆU.

Thus, through Lemma 3.1, we can conclude that the objective of

the simulator in adversarial imitation with the pairwise discrimina-

tor is minimizing a divergence 𝐷𝑖𝑣𝑃 , the objective can be written

similar to Equation (5):

min

𝜃
𝐷𝑖𝑣𝑃 (U, ˆU) − 𝐻 (𝜋𝜃 ) . (10)

Compared to the conventional discriminator, our pairwise dis-

criminator surpasses in performance for the following reasons:

First, the pairwise discriminator explicitly considers the degree of

differences between real and generated interactions rather than

solely focusing on distinguishing them [19]. As a result, even if

the discriminator becomes well-trained earlier than the simulator,

the rewards provided to the simulator remain appropriate. These

rewards indicate the extent to which the generated interactions

deviate from the "real" interactions instead of simply categorizing

generated interactions as "not real". Second, the pairwise discrimina-

tor would be more sensitive to the difference between distributions

since it consistently incorporates real interactions and generated

interactions into its gradient [20].

Based on the above intuitive advantages, we further theoretically

analyze why the pairwise discriminator is better than the conven-

tional one. Recall that the objective of the simulator in GAIL is to

minimize Equation (3), which is equivalent to minimizing JS diver-

gence (i.e., Equation (5)). Simplifying without affecting the result,

we denote the Equation (3) as 𝐷𝑖𝑣 𝐽 𝑆 by ignoring some constant

term [19]. We have:

Theorem 3.2. Given Log-Sigmoid function 𝑓 , Let U and ˆU be
probability distribution with support 𝑋 . The following inequality
holds true.

𝐷𝑖𝑣 𝐽 𝑆 (U, ˆU) ≤ 𝐷𝑖𝑣𝑃 (U, ˆU) (11)

Proof. Let:

𝜔∗
0
= argmax

𝜔
E𝑥∼U [log(𝜎 (𝐷𝜔 (𝑥)))] + E𝑦∼ ˆU [log(1 − 𝜎 (𝐷𝜔 (𝑦)))]

(12)

Then:

max

𝜔
E𝑥∼U [log(𝜎 (𝐷𝜔 (𝑥)))] + E𝑦∼ ˆU [log(1 − 𝜎 (𝐷𝜔 (𝑦)))]

= max

𝜔
E𝑥∼U [𝑓 (𝐷𝜔 (𝑥))] + E𝑦∼ ˆU [𝑓 (−𝐷𝜔 (𝑦))]

= 2 E𝑥∼U [ 12 𝑓 (𝐷𝜔∗
0

(𝑥))] + E
𝑦∼ ˆU [

1

2
𝑓 (−𝐷𝜔∗

0

(𝑦))]
= 2 E

𝑥∼U,𝑦∼ ˆU [
1

2
𝑓 (𝐷𝜔∗

0

(𝑥)) + 1

2
𝑓 (−𝐷𝜔∗

0

(𝑦))]
≤ 2 E

𝑥∼U,𝑦∼ ˆU [𝑓 (
1

2
𝐷𝜔∗

0

(𝑥) − 1

2
𝐷𝜔∗

0

(𝑦))]
≤ max

𝜔
2 E

𝑥∼U,𝑦∼ ˆU [𝑓 (𝐷𝜔 (𝑥) − 𝐷𝜔 (𝑦))]
(13)

Let:

𝜔∗
1
= max

𝜔
E
𝑥∼U,𝑦∼ ˆU [𝑓 (𝐷𝜔 (𝑥) − 𝐷𝜔 (𝑦))] (14)

Then:

max

𝜔
2 E

𝑥∼U,𝑦∼ ˆU [𝑓 (𝐷𝜔 (𝑥) − 𝐷𝜔 (𝑦))]
= 2 E

𝑥∼U,𝑦∼ ˆU [𝑓 (𝐷𝜔∗
1

(𝑥) − 𝐷𝜔∗
1

(𝑦))]
= E𝑥∼U [E𝑦∼ ˆU [𝑓 (𝐷𝜔∗

1

(𝑥) − 𝐷𝜔∗
1

(𝑦)) |𝑥]]+
E
𝑦∼ ˆU [E𝑥∼U [𝑓 (𝐷𝜔∗

1

(𝑥) − 𝐷𝜔∗
1

(𝑦)) |𝑦]]
≤ E𝑥∼U [𝑓 (E𝑦∼ ˆU [𝐷𝜔∗

1

(𝑥) − 𝐷𝜔∗
1

(𝑦) |𝑥])]+
E
𝑦∼ ˆU [𝑓 (E𝑥∼U [𝐷𝜔∗

1

(𝑥) − 𝐷𝜔∗
1

(𝑦) |𝑦])]
= E𝑥∼U [𝑓 (𝐷𝜔∗

1

(𝑥) − E
𝑦∼ ˆU [𝐷𝜔∗

1

(𝑦)])]+
E
𝑦∼ ˆU [𝑓 (E𝑥∼U [𝐷𝜔∗

1

(𝑥)] − 𝐷𝜔∗
1

(𝑦))]
≤ max

𝜔
E𝑥∼U [𝑓 (𝐷𝜔 (𝑥) − E𝑦∼ ˆU [𝐷𝜔 (𝑦)])]+

E
𝑦∼ ˆU [𝑓 (E𝑥∼U [𝐷𝜔 (𝑥)] − 𝐷𝜔 (𝑦))]

(15)

Done. □

According to Theorem 3.2, we can conclude that the pairwise

discriminator has an objective with a more prominent upper bound.

Consequently, the simulator guided by the pairwise discriminator

would minimize a divergence 𝐷𝑖𝑣𝑃 (see Equation (10)) that exhibits

a heightened sensitivity to the differences between distributions

compared to the traditional one. The experimental results in Sec-

tion 4.3 also support this conclusion. Thus, the simulator can be

improved to resemble the real distribution more closely with the

pairwise discriminator.

The detail of the two-stage imitation is presented above. We

summarize the two-stage imitation workflow in Algorithm 1.

3.4 Model Implementation
This section will discuss the implementation details of the simulator

and discriminator models. To showcase the effectiveness of the two

imitation stages, we adopt a simple yet effective RNN-based archi-

tecture similar to KES [31] to build the student simulator. And an
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Algorithm 1 DAISim

Input: Real student sequences 𝐷

Output: Simulator 𝜋𝜃
Parameter: 𝜃 , 𝜔
1: Initialize parameter 𝜃 and 𝜔

2: while NOT CONVERGENCE do
3: Sample a batch of Expert Demonstrations 𝜏 from 𝐷 ;

4: (1) Direct Imitation
5: for 𝑖 = 0, 1, 2, ... do
6: 𝑝0 ∼ 𝑢𝑖 , 𝑒1 ∼ 𝑢𝑖 ;
7: for 𝑗 = 0, 1, 2, ... do
8: Predict 𝑎 𝑗 ∼ 𝜋𝜃 (·|𝑠 𝑗 ),
9: Transition 𝑠 𝑗+1,
10: Compute 𝑟1

𝑗
by Equation (1);

11: end for
12: end for
13: Update 𝜃 by PPO according to Equation (2);

14: (2) Adversarial Imitation
15: for i = 0, 1, 2, ... do
16: Find 𝑢𝑏 based on 𝑝0 ∼ 𝑢𝑖 ;
17: 𝑝𝑏

0
∼ 𝑢𝑏 , 𝑒1 ∼ 𝑢𝑖 ;

18: for j = 0, 1, 2, ... do
19: Predict 𝑎 𝑗 ∼ 𝜋𝜃 (·|𝑠𝑏𝑗 ),
20: Transition 𝑠𝑏

𝑗+1,

21: Compute 𝑟2
𝑗
by Equation (7);

22: end for
23: end for
24: Update 𝜔 by Equation (6);

25: Update 𝜃 by PPO by Equation (8);

26: end while

RNN structure serves as the discriminator. Although Transformer-

based backbones are effective sequential models, they are not in-

volved here for these reasons: Firstly, due to the limited availability

of training data for the simulator, using a transformer-based model

may result in poor generalization performance. Secondly, the state

transition in our model depends on each step’s action. However,

the transformer architecture, which heavily relies on parallelization

for efficient computation, is not well-suited for this dependency on

sequential actions here.

First, for each exercise 𝑒𝑡 = {𝑖, 𝑘} at step 𝑡 , we map the id of

exercise 𝑖 and concepts 𝑘 to low-dimensional vectors 𝑣𝑖𝑡 , 𝑣
𝑘
𝑡 ∈ R𝑑

via embedding layers and linear layers. The encoding 𝑥𝑡 of exercise

𝑒𝑡 can be concatenated with its id and knowledge representation,

i.e., 𝑥𝑡 = 𝑣
𝑖
𝑡 ⊕ 𝑣𝑘𝑡 ∈ R2𝑑 , where ⊕ denotes the concat operator.

3.4.1 Simulator Architecture. The simulator should precisely gen-

erate student interaction based on 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) and update state based
on 𝑠𝑡 and 𝑎𝑡 . To implement it, we adopt a structure similar to the

classical and simple deep knowledge tracing model [31, 40] as illus-

trated in the middle part of Figure 2.

• Before generation, as mentioned in section 3.2, the simulator

needs to extract 𝑝0 from historical interactions to set up. Here

we compute the correct rate of each knowledge concept in

historical interactions to set 𝑝0.

Table 1: Dataset statistics.

Dataset Assistment0910 EdNet-KT1

Students 4,163 784,309

Exercises 17,746 13,169

Concepts 123 189

Interactions 324,572 95,293,926

Avg.length 68.00 121.50

Sparsity 0.439% 0.923%

• At step 𝑡 , we further utilize GRU to capture information in

historical interactions, here ℎ𝑡 encodes the last hidden state

ℎ𝑡−1 and interactions (𝑒𝑡−1, 𝑎𝑡−1):

ℎ𝑡 =

{
𝑝0 if 𝑡 = 0,

𝐺𝑅𝑈 (ℎ𝑡−1,𝑚(𝑒𝑡−1, 𝑎𝑡−1)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(16)

Since the right (i.e., 1) and wrong responses (i.e., 0) to the

exercise have different influences, we extend 𝑒𝑡 on all con-

cepts (i.e., 𝑣𝑘𝑡 ) to a feature vector 0𝑥 ∈ R𝑑 with the same

dimensions of 𝑣𝑘𝑡 . We note this operation as𝑚𝑡 :

𝑚𝑡 (𝑒𝑡 , 𝑎𝑡 ) =
{
𝑣𝑘𝑡 ⊕ 0𝑘 if 𝑎𝑡 = 1,

0𝑘 ⊕ 𝑣𝑘𝑡 if 𝑎𝑡 = 0,
(17)

• At step 𝑡 , the simulator makes a decision based on the current

state 𝑠𝑡 :

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) = 𝜎 (𝐿𝑖𝑛𝑒𝑎𝑟 (ℎ𝑡 ⊕ 𝑥𝑡 )). (18)

3.4.2 Discriminator Architecture. In the adversarial imitation pro-

cedure, the discriminator 𝐷𝜔 is designed to distinguish the interac-

tion sequences, which gives a high reward to the real sequences.

Therefore, it forces the simulator to generate reasonable interaction

sequences similar to real ones. As illustrated in the right part of

Figure 2, we also use RNN[7] to build the discriminator. Specifically,

for a generated interaction sequence 𝑢 = {(𝑒1, 𝑎1), (𝑒2, 𝑎2), ...}, the
discriminator assesses it as:

𝐷𝜔 (𝑢 (𝑡 ) ) = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝐺𝑅𝑈 (𝑧𝑡 )), (19)

where𝐷𝜔 (𝑢 (𝑡 ) ) ∈ R is the score and 𝑧𝑡 is concatenated vector from

𝑥𝑡 and 0𝑥 ∈ R2𝑑 as follows:

𝑧𝑡 =

{
𝑥𝑡 ⊕ 0𝑥 if 𝑎𝑡 = 1,

0𝑥 ⊕ 𝑥𝑡 if 𝑎𝑡 = 0.
(20)

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets. We conduct experiments on two educational bench-

mark datasets, namely Assistment0910 and EdNet-KT1. Table 1

shows the basic statistics of the datasets. ASSISTment09102 is

an open dataset that provides interaction log with responses and

knowledge concept. EdNet-KT13 [8] is a large-scale dataset in

Santa with more than 780K users.

As Section 3.2 mentions, the simulator utilizes the initial prior

and exercises to generate interaction sequences. Thus, we separate

the interaction sequence of each student into early data and late

data, where the early data is to extract the initial prior 𝑝0 of students,

and the late data provide exercises for the generation. The exact

2
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data

3
https://github.com/riiid/ednet
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Figure 3: Workflow: computing Forward/Reverse NLL and
FR Distance with raw set and gen set.

separation method of early and late data depends on the statistic of

each dataset.

The data preprocessing is as follows: First, the average length

of interaction sequences in ASSISTment0910 is 68, and the lengths

of over 75% of interaction sequences are less than 60. Thus, for the

reliability of experiments, we only apply this dataset in a short-

sequence scenario. Specifically, we filter the students whose in-

teraction sequences are shorter than 30. Then we select the last

20 interactions as late data and other interactions as early data.

Second, to further evaluate the simulator’s performance on long

sequences, we apply EdNet in our experiments. Since EdNet is too

large [21, 39], we random sample 2 subsets of 5,000 students. The

late data’s length in each subset is respectively set as 20/50 while the

length of early data is limited the same as the ASSISTment0910. Af-

ter data preprocessing, we can get three datasets: Assist, EdNet-20,

and EdNet-50.

4.1.2 Baselines. To demonstrate the effectiveness of our DAISim,

we first compare it with KES [31] and EERNN [26], which were

once used as student simulators in previous work [17, 27]. Second,

we compare it with AICM [11], which is a representative GAIL-

based user simulator in information retrieval. Finally, there are

only a few works investigating student simulation. Thus, for a

convincing comparison, we compare DAISim with other classical or

state-of-the-art knowledge tracing models because KT models are

similar to the simulator in the form of input and output, including

DKVMN [42], SAKT [30], AKT [13].

4.1.3 Implement Details. Our model is implemented by PyTorch.

The dimension of embeddings and the hidden vector is 128. The

parameters of the simulator and discriminator are initialized by

Xavier initialization. The dropout rate is 0.5. We use the Adam [22]

optimizer to optimize our model. The learning rate of the discrim-

inator is 0.0001. The learning rate of the simulator in the direct

imitation stage is 𝑙𝑑 = 0.0001 while in the adversarial imitation

stage is 𝑙𝑎 = 𝜆𝑙𝑑 . The simulator will be updated four times in PPO,

while the discriminator will be updated only once in one step. All

experiments are run on a Linux server with four 2.30GHz Intel

Xeon Gold 5218 CPUs and a Tesla V100 GPU. Our code is available

at https://github.com/bigdata-ustc/DAISim.

4.2 RQ1: Quantification Distance Measuring
The objective of the simulator is that its generated distribution is

close to the real distribution, as mentioned in Section 1.

To set up, we divide students in each dataset with a proportion of

60%/40% into trainset and rawset for training and evaluation. We uti-

lize the trainset dataset to train our DAISim model as well as other

baseline models with a validation dataset derived from the trainset

(20%). Then we use well-trained simulators to generate sequences

based on the exercise list in the rawset. After generation, we can get

a new genset with the same size as rawset. Whether the distribution

of genset is close to that of rawset indicates whether the simulator is

effective in generating high-quality data. However, commonly used

metrics in continuous distribution like JS-divergence are unsuitable

for quantitatively measuring the distance between distributions be-

cause our generated interactions are discrete exercise-answer pairs.

Thus, we apply two quantitative measurements to evaluate the

distance or similarity between the generated and real distribution.

First, we follow the idea of Dai et al. [11] and Zhao et al. [44] to

build a surrogate model to measure the distance between generated

and real data quantitatively. Specifically, we use rawset to train

the surrogate model and evaluate in genset to compute Forward

NLL and compute Reverse NLL conversely as shown in Figure 3.

Forward and Reverse NLL reflect the asymmetric discrepancy be-

tween distributions to some extent. Thus the distance between the

generated and real distribution can be approximately defined as

the average of the above two values. We name it FR Distance,
where a lower value indicates a better performance of the simu-

lator. Here we utilize a simple RNN as a surrogate model because

the performance of different surrogate models is not our concern.

Second, we introduce ROUGE, widely used in NLP and sensitive to

the generations beyond reality, to compute the similarity between

generated sequences and the given sequences because our data

is discrete exercise-answer pair sequences similar to texts. Here

we compute ROUGE-2 and ROUGE-L by viewing rawset as the
reference and genset as the generation, where the higher value, the
better performance.

Table 2 reports the performance of our proposed model and

baseline models on the two datasets. From the experiment results,

we have the following observations: First, DAISim outperforms

all baseline methods on each dataset, demonstrating that the dis-

tribution generated by DAISim covers the real distribution best.

The reason may be as follows: (1) reconstructing the long-term

intentions and alleviating exposure bias in DAISim could help cover

complex patterns; (2) taking reverse KL divergence, which con-

strains the simulator to generate patterns that are not in real dis-

tribution, into account in both imitation stages further to ensure

data quality [4, 19]. Second, KES, which has a similar model ar-

chitecture with DAISim but is trained in the MLE manner with

exposure bias and single-step optimization, performs worse than

DAISim. This observation strengthens that the MDP formulation

and two-stage imitation learning help the model recover the real dis-

tribution better. Third, AICM, which has a similar MDP formulation

and GAIL-based training procedure with DAISim, performs worse

than DAISim. Such a result may be caused by: (1) its traditional

classification training manner in its discriminator may impact neg-

atively due to unstable training; (2) its model is designed based on

preference rather than a student simulator based on knowledge

proficiency. In other words, it is not suitable for modeling student

interactions. Finally, Although transformer-based KT models out-

perform RNN-based models in the KT task, they perform worse

than RNN-based models in ROUGE-2, ROUGE-L, and FR Distance.

This observation demonstrates that the KT task and the simulation

task prefer different models, and RNN-structure is more suitable

for the simulation task. In summary, we can conclude that DAISim
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Table 2: Experimental results on quantification distance measuring. The second-best results are marked by an underline, while
the best results are bold. * indicates significant difference (p-value < 0.01 in the t-test).

Data Distribution

Assist EdNet-20 EdNet-50

ROUGE-2 ↑ ROUGE-L ↑ FR Distance ↓ ROUGE-2 ↑ ROUGE-L ↑ FR Distance ↓ ROUGE-2 ↑ ROUGE-L ↑ FR Distance ↓
KES 0.4342 0.6052 0.7295 0.4014 0.6276 0.7260 0.4359 0.6520 0.7412

EERNN 0.3931 0.5778 0.6536 0.4105 0.6320 0.6761 0.3606 0.6037 0.6506

DKVMN 0.3044 0.4943 0.6344 0.3096 0.5453 0.6558 0.2507 0.4919 0.6762

SAKT 0.3176 0.5190 0.7356 0.3227 0.5522 0.6398 0.3117 0.5415 0.6799

AKT 0.3786 0.5624 0.7437 0.3949 0.6193 0.6363 0.3525 0.5848 0.6560

AICM 0.2634 0.4981 0.6354 0.2763 0.5227 0.6352 0.3069 0.5583 0.6940

DAISIM 0.4392* 0.6331* 0.6292* 0.4243* 0.6492* 0.6263* 0.4596* 0.6788* 0.6314*

DAISIM-DI 0.4220 0.6301 0.6346 0.4008 0.6312 0.6315 0.4354 0.6602 0.6337

DAISIM-GAIL 0.3793 0.5724 0.7540 0.2728 0.4994 0.9826 0.2831 0.5505 0.6882

DAISIM-PAIR 0.3463 0.5690 0.6891 0.3299 0.5523 0.7422 0.3643 0.5968 0.6307

DAISIM-DI+GAIL 0.4136 0.6183 0.6348 0.4049 0.6343 0.6311 0.4365 0.6618 0.6318
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Figure 4: Rouge-2 performance on test set during training.

is effective by taking full advantage of the long-term objective and

two stages of imitation to generate a distribution better recovering

real distribution.

4.3 RQ2: Ablation Study
To further investigate the contributions of the imitation flow and

pairwise strategy in DAISim, we conduct some ablation studies on

both datasets with the same setting as Section 4.2:

• DAISim-DI, only contains the direct imitation stage.

• DAISim-GAIL, only contains the adversarial imitation stage

with a classification discriminator and minimizes JS diver-

gence as Equation (5).

• DAISim-PAIR, only contains the adversarial imitation stage

with a pairwise discriminator and minimizes divergence

defined in Equation (9).

• DAISim-DI+GAIL contains the direct and adversarial imita-

tion stages, but its discriminator is optimized in the classifi-

cation manner.

The experimental results are listed in Table 2 and Figure 4, from

which we can get some interesting observations: First, ROUGE-2,

ROUGE-L, and FR distance of DAISim-DI are typically better than

almost all baselines, indicating that the long-term objective and

alleviating exposure bias are helpful. Also, all DI-based methods

converge fast, as shown in Figure 4, demonstrating the essentiality

of the direct imitation stage. Second, DAISim and DAISim-DI+GAIL
outperform DAISim-DI, indicating that interactions beyond the

given dataset can help the simulator cover real distribution. It is

reasonable because these interactions may introduce various pat-

terns, and the discriminator helps choose the patterns consistent

Table 3: The improvement of KT models.

Data Argumentation-KT

Model Train AUC Arg AUC Impr Train ACC Arg ACC Impr

DKT 0.5983 0.6013 0.5% 0.6861 0.7189 4.8%

EERNN 0.5078 0.5113 0.7% 0.5287 0.6446 21.9%

SAKT 0.5773 0.6059 5.0% 0.6176 0.7206 16.7%

AKT 0.6565 0.6530 -0.5% 0.7251 0.7346 1.3%

Table 4: The improvement of CAT strategies.

Data Augmentation-CAT

@5 @10

Strategy Train ACC Arg ACC Impr Train ACC Arg ACC Impr

FSI 0.5410 0.6567 21.38% 0.5373 0.6567 22.22%

KLI 0.5597 0.6082 8.67% 0.5597 0.6045 8.00%

MAAT 0.5933 0.6940 16.98% 0.6045 0.6978 15.43%

with real distribution to improve the simulator. Thus, this observa-

tion confirms that adversarial imitation is crucial in student inter-

action generation. Third, as shown in Figure 4, DAISim-PAIR and

DAISim are respectively better and more stable than DAISim-GAIL
and DAISim-DI+GAIL. This observation and the theoretical analysis

indicate that the pairwise discriminator can better differentiate

between real and generated interactions and provide appropriate

rewards to help the simulator resemble the real distribution.

4.4 RQ3: Adaptive Learning Improvement
The primary goal of student simulators is to improve adaptive

learning services with generated data. To evaluate our proposed

DAISim, we choose the standard KT and CAT as our evaluation

tasks since they are representative, of great value in education, and

sensitive to high-quality data [27, 31, 47], where KT is often used to

track student knowledge states, and CAT estimates students’ ability

with minor exercises. In a word, if the generated data can improve

the performance of KT and CAT, it demonstrates that our proposed

model is adequate.

To set up, we first divide students in Assist the same as Sec-

tion 4.2 and train our simulator with trainset. Then, to simulate the

situation that offline training data of the adaptive learning services

is biased in the actual scenario, we divide students in rawset with
60%/40% into dtrainset and dtestset according to the initial state of
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Figure 5: FR Distance in different 𝜆 and 𝛾 values.

each student to make the dtrainset and dtestset apart in distribu-

tion. Next, we use DAISim to augment dtrainset. Specifically, we
randomly generate the initial states. Then we use the exercise lists

in dtrainset and the generated initial states to generate new student

interaction sequences and merge these sequences into dtrainset as
a new dataset, named argset. In the KT task, we use dtrainset and
argset to train some representative KT models [13, 26, 30, 31], and

evaluate these models by dtestset. To verify the tracking perfor-

mance of models, we utilize commonly used AUC and ACC in KT

task. In the CAT task, we use dtrainset and argset to train the CDM

(IRT) and then evaluate by different question selection strategies,

including FSI [28], KLI [5], and MAAT [3] at different interaction

steps (@5, @10) in dtestset. Then, we utilize the commonly used

metric ACC to evaluate its estimation performance.

The results are listed in Table 3 and Table 4. The results show that

almost all models and strategies can get promotion with the help

of DAISim. They further indicate that DAISim can easily generate

high-quality interactions with randomly initialized students and

enrich the given dataset because it can resemble real distribution.

4.5 RQ4: Hyper-parameter Influence
The learning rate proportion 𝜆 and discount factor 𝛾 in the PPO

algorithm [34] are crucial factors in our framework. Precisely, the

𝜆 in Section 4.1.3 controls the impact of two stages in the training

process. Moreover, the discount factor 𝛾 determines the weight of

the long-term reward when making current actions.

The result is obtained from the experiment with the same setting

as Section 4.2 in Assist and shown in Figure 5. We can have such

observations: First, the simulator performs best when 𝜆 is 0.8 and

performs worst when 𝜆 is 0, which indicates that the contribution

of different imitation stages to the parameter update also influences

the quality of distribution recovery. Second, the simulator performs

worst when 𝛾 is 0, while it performs best when 𝛾 is 0.9, showing

that the long-term objective is helpful when generating student

interaction sequences.

4.6 Case Study
To demonstrate the quality of interaction sequences from DAISim,

we conduct case studies illustrated in Figure 6. In Case 1, two stu-

dents A and B are compared. 𝑝𝐴
0
for each knowledge concept is 1,

while 𝑝𝐵
0
is all zeros. After assigning exercises and recording correct

answer probabilities, it’s evident that A outperforms B, aligning

with the expectation that higher prior ability leads to better perfor-

mance. Moving to Case 2, student C, who only masters concept 0,

is considered. Two sets of exercises are given to C: one related to

concept 0, the other unrelated. Student C’s higher correct answer

probability for concept 0-related exercises (e.g., exercises 79, 80, ...)

Case 1

Case 2

A

B

C

exercise concept

147 1, 24, 31, 48

148 1, 24, 31, 48

149 1, 24, 31, 48

150 1, 24, 31, 48

79 0

80 0

81 0

82 0

Legend

Figure 6: The initial state 𝑝0 of student A is represented as
[1, 1, ..., 1], student B as [0, 0, ..., 0], and student C as [1, 0, ..., 0].
The heat bar indicates the probability of answering the exer-
cises correctly. For instance, student A has a 0.9 probability of
correctly answering exercise 147. The legend table provides
the correspondence between exercise ID 𝑖 and the associated
concept 𝑘 . For example, exercise 79 is related to concept 0.

aligns logically with the anticipated outcome. Notably, both cases

reveal that practicing mastered exercises (e.g., A and the upward

sequence of C) enhances performance. For instance, A’s probability

of correctly answering exercise 147 improves from 0.9 to 0.92 upon

repeated practice. Conversely, practicing exercises not mastered

(e.g., B and the lower sequence of C) yields no improvement. This

phenomenon is intuitive because one can hardly naturally master

an exercise by practicing again and again without help from the

teacher, but once one has mastered an exercise, keeping practicing

strengthens proficiency and memory. In summary, these observa-

tions underscore the congruence of generated interactions with

common sense, affirming their high quality.

5 CONCLUSION
In this paper, we proposed a novel framework named DAISim, al-

leviated exposure bias and single-step optimization in existing ad-

vances by formulating the task of building the student simulator

as an MDP. One step further, the two imitation stages, together

with the pairwise discriminator, tackled the technical challenges

to realize DAISim, including implicit intentions, data sparsity, and

inappropriate rewards. Experimental results and our theoretical

analysis demonstrated the effectiveness of DAISim in distribution

matching and enhancing the downstream adaptive learning tasks.

There are still some potential future directions: First, in addition

to answering, students also have clicking, hesitating, buying, quit-

ting, and other behaviors when interacting with the agent. They

are of great value and can be added in the future. Second, we have

theoretically analyzed the optimization objective of the simulator

in adversarial imitation, and it is also valuable to further analyze

the error bound or convergence of DAISim.
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