Check for
Updates

Item-Difficulty-Aware Learning Path Recommendation: From a
Real Walking Perspective

Haotian Zhang
State Key Laboratory of Cognitive
Intelligence, University of Science and
Technology of China
Hefei, China
sosweetzhang@mail.ustc.edu.cn

Shuanghong Shen
State Key Laboratory of Cognitive
Intelligence, University of Science and
Technology of China & Institute of
Artificial Intelligence, Hefei
Comprehensive National Science

Bihan Xu
State Key Laboratory of Cognitive
Intelligence, University of Science and
Technology of China
Hefei, China
xbh0720@mail.ustc.edu.cn

Center
Hefei, China
closer@mail.ustc.edu.cn

Zhenya Huang’" Jinze Wu Jing Sha
State Key Laboratory of Cognitive iFLYTEK AI Research iFLYTEK AI Research
Intelligence, University of Science and Hefei, China Hefei, China
Technology of China & Institute of hxwjz@mail.ustc.edu.cn jingsha@iflytek.com

Artificial Intelligence, Hefei
Comprehensive National Science
Center
Hefei, China
huangzhy@ustc.edu.cn

Shijin Wang
State Key Laboratory of Cognitive
Intelligence & iFLYTEK AI Research
Hefei, China
sjwang3@iflytek.com

ABSTRACT

Learning path recommendation aims to provide learners with a rea-
sonable order of items to achieve their learning goals. Intuitively, the
learning process on the learning path can be metaphorically likened
to walking. Despite extensive efforts in this area, most previous
methods mainly focus on the relationship among items but overlook
the difficulty of items, which may raise two issues from a real walk-
ing perspective: (1) The path may be rough: When learners tread the
path without considering item difficulty, it’s akin to walking a dark,
uneven road, making learning harder and dampening interest. (2)
The path may be inefficient: Allowing learners only a few attempts
on very challenging items before switching, or persisting with a dif-
ficult item despite numerous attempts without mastery, can result

*Zhenya Huang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °24, August 25-29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3671947

4167

in inefficiencies in the learning journey. To conquer the above limi-
tations, we propose a novel method named Difficulty-constrained
Learning Path Recommendation (DLPR), which is aware of item
difficulty. Specifically, we first explicitly categorize items into learn-
ing items and practice items, then construct a hierarchical graph
to model and leverage item difficulty adequately. Then we design
a Difficulty-driven Hierarchical Reinforcement Learning (DHRL)
framework to facilitate learning paths with efficiency and smooth-
ness. Finally, extensive experiments on three different simulators
demonstrate our framework achieves state-of-the-art performance.

CCS CONCEPTS

« Applied computing — E-learning; - Information systems
— Recommender systems.

KEYWORDS

Learning Path Recommendation, Reinforcement Learning

ACM Reference Format:

Haotian Zhang, Shuanghong Shen, Bihan Xu, Zhenya Huang, Jinze Wu, Jing
Sha, and Shijin Wang. 2024. Item-Difficulty-Aware Learning Path Recom-
mendation: From a Real Walking Perspective. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °24),
August 25-29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3637528.3671947

https://doi.org/10.1145/3637528.3671947
https://doi.org/10.1145/3637528.3671947
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3671947&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25-29, 2024, Barcelona, Spain

Haotian Zhang et al.

Successive relation —» Learning path Concepts /\ Exercises v Feedback () Satisfy [DifficultyA
Without deri @ 1,diff © o 1 digit addition
ithout considering e © 7 _
e o S © Y é A 2+3=
difficulty / \ 3 @2 9] (;?@ %-i;"@': A 234+76=2
] ~~--5(3 2 A . 2 multiplication
0 a b ¢ d e steps
O 4x9=7
1 1+ diff ©C;) ¢ 13XxX25=7
Considering oal o 9 P 3) algebraic equation
difficulty © 7o L
v @ o 2z 5=3
<> 2 _
L, @ z°—4x=5 -
0 a b steps @ P-4

Figure 1: Contrasting Learning Path Recommendation: Considering vs. Without Considering Item Difficulty. When mastering
concept 3 (i.e. “algebraic equation”), the LPR method arranges the learning path for learners to first master prerequisite concepts
(i.e., path a — b from concept 1 to 3) and recommends exercises for practice corresponding to these concepts at each step.

1 INTRODUCTION

Learning path recommendation (LPR) as an essential component of
adaptive learning has seen significant adoption in recent years [25,
38]. Unlike traditional education which employs a “one-size-fits-all”
strategy, learning path recommendation aims to generate personal
learning paths that consider individual differences [2, 21, 28].

In the literature, many works have been devoted to the LPR task.
Existing methods can be categorized into two approaches for path
generation: complete generation, where a fixed path is provided
to learners at once, and step-by-step generation, where a dynamic
path is generated based on real-time feedback from learners [2, 29].
Among them, the complete generation approach is often considered
inflexible as it may disregard the evolving knowledge states (i.e.
mastery level) of learners [7, 28]. In contrast, the step-by-step based
methods, which better account for the dynamic interaction between
learners and items (e.g. concepts, exercises, etc.), have increasingly
gained prominence and are the main focus of this paper. In this
branch, some works use traditional recommendation algorithms or
deep learning-based methods to recommend similar learning paths
to comparable users [9, 27]. On the other hand, since learning path
recommendation can be regarded as a sequential decision making
problem, some works adopt advanced Reinforcement Learning (RL)
methods by formulating the problem as a Markov Decision Process
(MDP) [21, 25, 33].

Despite the significant success achieved by these methods, there
are still some underlying issues that need to be addressed. Intu-
itively, the learning process on the learning path can be metaphor-
ically likened to walking. From a real walking perspective, most
existing methods tend to exhibit the following two issues: 1) The
path may be rough: In the learning path, the included items often
present a range of difficulty levels, with the difficulty levels fluctuat-
ing unpredictably. This dynamic nature of learning can be likened to
walking a dark road with uneven terrain. As illustrated in Figure 1,
when the difficulty of items sharply rises or falls, e.g., recommend
item x — x? = 4 before item 2x — 5 = 3 is correctly solved or
recommend items similar to 2 + 3 after item 23 + 76 has been solved
successfully, it can lead to a decrease in learners’ learning interest
and satisfaction. 2) The path may be inefficient: Treating different

difficulty levels of items in the learning path with equal effort is
akin to taking the same number of steps regardless of the distance
of the journey. As depicted by the dashed backtracking path of
¢ — d — e in the higher half of Figure 1, allowing learners only a
few practice attempts on very challenging items before switching
to others (e.g., only two attempts on concept 3, same as the easier
concept 2), or persisting with a difficult item despite numerous at-
tempts without mastery, can result in inefficiencies in the learning
journey. The root cause of these issues lies in the disregard for item
difficulty, which consequently hinders their ability to recommend
efficient and smooth learning paths that meet learners’ satisfaction.

In this paper, to conquer the above issues, we propose a novel
method named Difficulty-constrained Learning Path Recommen-
dation (DLPR) to achieve a more satisfactory learning path with
efficiency and smoothness by considering the difficulty of items.
Specifically, unlike most previous methods that primarily focused
on the granularity of single items (e.g. concepts), to adequately
capture the difficulty characteristics of different items and leverage
higher-order information, we first explicitly categorize items into
learning items (e.g. concepts or skills) and practice items (e.g. ex-
ercises or questions). Then construct a hierarchical graph where
each learning item is associated with one or more practice items.
Information from multiple levels of the hierarchy is aggregated
using Hierarchical Graph Neural Network (HGNN) [33]. Next, we
develop the Difficulty-driven Hierarchical Reinforcement Learn-
ing (DHRL) framework, which consists of two agents with item
difficulty awareness. The high-level L-Agent operates at the learn-
ing item level, responsible for selecting subsequent learning items
for practice. The low-level P-Agent operates at the practice item
level, selecting practice items related to the learning item chosen by
the L-Agent. Additionally, a Knowledge State Estimation module
is introduced to generate agents’ states with difficulty awareness.
Further, we devise a Communication Mechanism between the two
agents to facilitate the generation of satisfactory paths in environ-
ments with fluctuating item difficulty. This mechanism allows for
the exchange of difficulty-aware information, enabling informed
decision-making and effective coordination between the agents. By
leveraging this communication mechanism, the agents can adapt

4168

Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

their strategies and ensure the generation of optimal learning paths
that align with the appropriate item difficulty.
Our main contributions are summarized as follows:

We explicitly consider item difficulty, analyzing and addressing
existing learning path issues from a real walking perspective.
This approach resolves the existing “rough” and “inefficient” as-
pects of learning paths, further enhancing both the efficiency
and smoothness of the learning journey.

To fully leverage item difficulty information, we constructed
a hierarchical graph of learning and practice items. Further, a
Difficulty-driven Hierarchical Reinforcement Learning frame-
work (DHRL) is devised. Synchronous consistency of path gener-
ation can be achieved through the division of labor and collabo-
ration between two agents with item difficulty awareness.

We validate our model in three simulators based on two bench-
mark datasets. Our method achieves state-of-the-art performance
with efficiency.

2 RELATED WORK

2.1 Learning Path Recommendation

In online education, Learning Path Recommendation (LPR) stands
as a crucial undertaking, which refers to planning and designing a
structured learning path for learners, enabling them to systemati-
cally and orderly acquire knowledge and skills [21, 25].

Researchers have proposed various methods for the LPR task.
The existing LPR methods can be summarized into two categories
according to the approach of path generation [2, 29]: (1) Complete
generation, a complete path of a specified length is generated and
provided to learners at once. (2) Step-by-step generation, a dynamic
path of a varying length is generated in real-time by considering
the feedback from learners’ interactions at each step with the next
item recommended [21, 25].

For branches of complete generation, many methods have been
proposed using different algorithms and techniques, such as de-
cision tree classifier [22], depth first traversal algorithm [49], re-
current neural network [48], etc. One of the most representative
works is proposed by Chen et al. [2], which formulated the rec-
ommendation task under a set-to-sequence paradigm and used an
encoding-decoding structure to achieve efficient Ranking-Based
Concept-Aware Learning Path Recommendation. Although com-
plete generation methods are widely used by researchers to generate
learning paths, they have several drawbacks. One of the main disad-
vantages is ignoring users’ performance and their cognitive changes
during the learning process, which may lead to users wasting time
on inappropriate or unmanageable paths [28]. Due to its ability to
better consider the dynamic interaction between learners and items,
the step-by-step based methods are rapidly gaining prominence.
In this branch, some works use traditional recommendation algo-
rithms or deep learning-based methods, e.g., using evolutionary
algorithms [12], matrix factorization [27], bayes theorem [41] etc.
On the other hand, since learning path recommendation can be
regarded as a sequential decision making problem, some works
adopt advanced reinforcement learning methods. For example, Liu
et al. [25] used the actor-critic framework with cognitive naviga-
tion as a recommender. Further, Li et al. [21] implemented efficient
goal planning and achieving through hierarchical reinforcement

4169

KDD ’24, August 25-29, 2024, Barcelona, Spain

e’ S es el Flnalscore
“E] @‘ \o)él

Stage for learning item —> Step for practice item

In|t|a| score e1
EP .3 O)

Session

Figure 2: Illustration of Learning Process in One Session.

learning. Despite their success, current methods often neglect item
difficulty, leading to unsatisfactory learning path recommendations.

2.2 Hierarchical Reinforcement Learning in
Education

Hierarchical Reinforcement Learning (HRL) is a reinforcement
learning method designed to solve decision-making problems in
complex tasks [16, 33]. In the educational data mining area, Zhou
et al. [46, 47] exploited hierarchical reinforcement learning to make
decisions at different levels of granularity for effective pedagogical
policy induction. Lin et al. [23] and Zhang et al. [44] introduced
HRL to course recommendation for capturing learner’s different
preferences and interests. It is worth mentioning that, in the field
of learning path recommendation, GEHRL proposed by Li et al.
[21] implemented efficient goal planning and achieving through
Hierarchical Reinforcement Learning. Based on the demonstrated
effectiveness of HRL in the field of education and the hierarchical
graph constructed in this paper, we have chosen to employ HRL
for the task of learning path recommendation. Specifically, our
work differs from GEHRL in two significant aspects: 1) GEHRL
exclusively employs hierarchical reinforcement learning within
the same learning item graph, with both two agents sharing the
same action space. In contrast, our approach extends hierarchical
reinforcement learning to operate across two item graphs, resulting
in distinct action spaces for each of the two agents. 2) Furthermore,
our approach incorporates a mutual communication mechanism
between the two agents, in contrast to the one-way guidance from
the higher-level agent to the lower-level agent employed in GEHRL.

3 PROBLEM AND FRAMEWORK OVERVIEW

In this section, we first formalize the learning path recommendation
problem and then introduce the overview of our framework.

3.1 Problem Statement

We focus on the issue of step-by-step recommendations for session-
based learning paths based on real-time interactions [21, 25]. As
mentioned above, the learner’s learning process typically involves
two types of items: learning items (e.g. concepts or skills) and prac-
tice items (e.g. questions or exercises). Without loss of generality,
we denote the learning item set as £ = {c1, ¢z, ..., cpr} and practice
item set as P7I = {ej, €2, ...,en }. The learner’s learning goals are
denoted as G = {g1,92, ...}, where g; € LT.

A typical session-based (e.g. chapters) learning path is developed
as shown in Figure 2. Before starting learning, a learner is tested
on his learning goals and gets an initial score Es. Then the learning
can be cut into several stages. In each stage, the learner will study a
certain learning item c;, and at each step of the stage, the learner is
presented with a practice item e{ to comprehend c;. Subsequently,

feedback scorelj € {0, 1} is provided after practice, where 1 indicates

KDD ’24, August 25-29, 2024, Barcelona, Spain

Haotian Zhang et al.

|

|
o 998
v | e®%g® |
D & m— TR © - b

Successive Relation Evaluative Relation - —» Referance Path

- e mememooo T Io LTI |
: :f Hierarchical Graph ': : : [DIMKT hi DIMKT hi+1 . _)[DIMKT I :
| : | €t 7‘5 Ciip.i| Thip, €rit1| T Eyip. i+ 115\;, . € r ”f €t p,,I ‘?’ﬁm I
L | I
| ; @ . : : P-Agent [P-Agent] [P-Agent] [P-Agent] P-Agent P-Agent |
I L |

1 a |
:) ® & @) ; : : 76_‘ Communication | | Pi ,’c_’: Communication | | Pi+1 76_; Communication zl I

i ! ° Mechanism h,; ’ Mechanism h; Mechanism
oo o ge il fmal s
R et a L-Agent] L-Agent] e L-Agent Jr} |
| | o SR I sl N
| [- 3 k |

=== Learning Path

@ Current Item @ Goal Item @ Practice Item

@ Learning Item

Figure 3: Framework Overview. On the left is the Hierarchical Graph (HG) module, which establishes item relationships and
uses HGNN to extract enriched representations, emphasizing item difficulty information. The right is the DHRL module, which
employs reinforcement learning with L-Agent and P-Agent to generate efficient and smooth learning paths.

the learner has mastered the item e{ and 0 for the opposite. All
item-score pairs constitute the historical learning record, denoted
as H = (e, score). After time ¢, (e, score;) is added to the historical
record, i.e., Hy = Hr—1 U (e, score;). Finally, a learning path is
generated step-by-step as P = (p1, p2, p3, ...), where p; represents
a learning item or practice item. Here, we set p; as a practice item
to align with previous works. After completing the entire learning
path, a final test is taken on the learning goals to obtain a final
score E. Then we can calculate the learning effectiveness E, [25]:

E, — Es
Esup —E; ,

Ep 1
where Egy,, is the full score of the examination, which equals to
the number of learning goals. Our goal is to maximize the E, by

providing an effective learning path.

3.2 Framework Overview

Figure 3 presents an overview of DLPR, which consists of two
primary modules. The left Hierarchical Graph module (Section 4)
establishes relationships between learning and practice items, using
a hierarchical graph neural network to extract enriched item rep-
resentations, emphasizing item difficulty. The right DHRL module
(Section 5), uses hierarchical reinforcement learning with a high-
level L-agent for learning items and a low-level P-agent for practice
items, collaboratively generating efficient and smooth learning
paths. The Hierarchical Graph provides the structural and repre-
sentational foundation for the DHRL module.

4 HIERARCHICAL GRAPH ENHANCED ITEM
REPRESENTATION

In this section, we present a concise overview of the construction
and representation of the Hierarchical Graph for items. This module
thoroughly captures the successive relationships among learning
items and their associations with practice items while considering
item difficulty, serving as a crucial foundation for subsequent item
selection and recommendations.

4170

4.1 Graph Construction

To comprehensively model and consider the difficulty of different
items and their relationships, we categorize items into learning
and practice items and construct a hierarchical graph where one
learning item is associated with one or more practice items.

Specifically, the hierarchical graph of items is defined as HG =
{V, E}, where V is the set of items and E is the set of edges. As shown
in Figure 3, V consists of learning items and practice items and E
contains successive edges between learning items and evaluative
edges between learning items and practice items. To be specific,
a successive edge (c;, cj) represents that c; (e.g. multiplication) is
logically the learning basis for c; (e.g. algebraic equation), while
an evaluative edge (e, c,) indicates that the practice item e, (e.g.
4 X 9) assesses the learning item ¢, (e.g. multiplication) [24, 39].

4.2 Graph Representation

For more comprehensive and effective modeling and utilization
of item difficulty, we first effectively represent item nodes by in-
tegrating difficulty information using MLP, and then aggregate
high-order and structural information through HGNN [42, 45].

Specifically, following some previous works [14, 26, 36, 43], we
calculate the difficulty of the practice item e; as follows:

Z 2 aj ==
ppj =~ X Ap,)
151
where S; is the number of learners who answer the practice items
ej. aj == 0 indicates learners that answered incorrectly and Ap

represents the predefined level of item difficulty. Similarly, learning
item difficulty DL is calculated following a similar process.
Further, we represent all of the items and their difficulty with em-
beddings. Specifically, we use an embedding matrix E,, € RIPTIxdp
to represent all practice items, where dp is the dimension. Besides,
we represent the difficulty embedding of practice items by an em-
bedding matrix Ey;, € RA*ddp where Ap represents the predefined
level of item difficulty and dyj, is the dimension. The E; and Ey;
of learning items are represented similarly. Then we can obtain

Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

the difficulty-aware embedding Xi of learning item c; and X{, of
practice item e; calculating as follows:

X! = W] [E} ®EL;] +by, 3)
©)

where Wy, Wp are the weight matrices, by, bp are the bias terms
and & is the concatenation operation.

Finally, for each practice item e}, it employs the simplified mean
aggregation [5, 42] to aggregate features from learning item neigh-

bors and denoted as:
1 .
- XL,
N

ieN;

i wlie opl
X}, = WH[E) ®E}] +Dp,

i
Xp=Xp® (5)

where X{, represents aggregated embedding of practice item e; and
N indicates the learning item neighbors of e; in the hierarchical
graph HG.

5 DIFFICULTY-DRIVEN HIERARCHICAL
REINFORCEMENT LEARNIN

To create an effective learning path, we use a Knowledge State
Estimation module to track learners’ evolving knowledge states.
This supports two hierarchical agents: a high-level L-Agent, which
recommends learning items considering prerequisite relationships,
and a low-level P-Agent, which suggests practice items related to
those chosen by the L-Agent and manages item difficulty fluctua-
tions for a smooth learning path. To ensure efficiency, the P-Agent
limits practice attempts based on difficulty-aware information from
the L-Agent. Together, the L-Agent and P-Agent collaborate to gen-
erate an efficient and smooth learning path. The pseudo-code of
the DHRL module can be found in Appendix A.

5.1 Knowledge State Estimation

Comprehending learners’ knowledge state is a prerequisite for
recommending suitable learning resources [21, 25]. Knowledge
tracing algorithms have been extensively researched to track the
evolving knowledge states of learners based on their learning se-
quences [37]. Previous works on LPR utilized the Deep Knowledge
Tracing [34] for assessing learners’ knowledge states. However,
given our comprehensive utilization of item difficulty, we employ
DIfficulty Matching Knowledge Tracing (DIMKT) that considers the
item difficulty’s influence on the learner’s cognitive change [36].
Specifically, we retain the original DIMKT while solely replacing

the practice item embedding x; with our aggregated embedding X{D
through HGNN obtained from Section 4.2. This approach allows
us to derive the current learner’s knowledge state h; from their
historical learning records ;1 while taking into full consideration
both the items’ difficulty and structural correlations. Following [21],
we utilize DIMKT’s prediction to estimate the h; rather than directly
utilize the hidden vector used in DIMKT.

5.2 L-Agent

As illustrated in Section 3.1, session-based learning paths involve
planning specific items for each stage. Therefore, we developed the
L-Agent to organize these learning items.

4171

KDD ’24, August 25-29, 2024, Barcelona, Spain

5.2.1 State Encoder. The state of the L-Agent sl{ at learning stage
i contains learning goals G and the learner’s current knowledge
state h;j_1 at the end of stage i-1. Specifically, we use multi-hot
encoding to represent learning goals as G = {0, l}M , where the
learning goals’ indexes are set 1 and others 0 and M is the number
of learning items. The final state of the L-Agent is encoded as:

sl{ =hi-19G. (6)

5.2.2 Adaptive learning action space. The action of the L-Agent c;
refers to recommending the learning item at learning stage i. If the
action space is the whole item set, the search space is very large and
inefficient. To constrain the action space, existing methods often em-
ploy neighbor sampling or embedding similarity sampling [21, 25].
However, these methods are shortsighted, focusing only on items
near the current focal item. They work well when the focal item is
close to the target, but when they are far apart, shortsightedness
may cause navigation to deviate, reducing learning path efficiency.
To overcome these limitations, we propose a reference-path-assisted
adaptive method to help the agent determine the general search
direction and adaptively expand toward the goal item. Specifically,
we first use the A* algorithm [6] to generate the shortest path be-
tween the starting item and the goal item as a reference path. When
generating the learning path, we adjust it based on the learner’s
real-time learning progress. If the learning is smooth, we continue
forward along the reference path. Otherwise, we search with the
current item as the root node and then learn progressively from
nearby to distant items. Whether the learning is smooth is deter-
mined by assessing whether the learner has achieved the expected
mastery state after completing a certain amount of practice items.
Hence, we can dynamically ascertain the candidate action space
Dy.. The pseudo-code can be found in Appendix B.

5.2.3 Policy. After obtaining the learner’s knowledge state and the
action space, we still need to determine the optimal candidate learn-
ing item, which is most beneficial for achieving our learning goals.
We opt to employ the Proximal Policy Optimization (PPO) [35] to
generate actions among Dy given by Section 5.2.2. Specifically, we
use a policy network as the actor to output an action probability
from distribution 7~ (ci|sf; 01) and a value network VL (sg; ¢r) as
the critic to estimate the expected return from each state. where
0r and ¢, are the corresponding network’s parameters. The proba-
bility distribution of learning items and expected return from each
state are calculated as follows:

ci = Softmax(FC(sll-)),
VEGsligr) = FO(s)),

@)
@)

where FC is the fully connected layer.

For the training, we use classical mean squared loss (MSE) to train
the critic and train the actor based on the PPO-clip loss function,
which is similar to GEHRL [21].

5.2.4 Reward. As mentioned in Section 3.1, our final goal is to
maximize the improvement of learners on the learning goals, and
we can’t avoid learning just because a certain learning item may be
difficult, which may lead to failure in achieving our learning goals.
Therefore, following previous works [21, 25], the reward is set as
the learning effectiveness after the completion of the entire learning

KDD ’24, August 25-29, 2024, Barcelona, Spain

path in Eq. (9), without considering item difficulty variation.

1_ |Ep
-

where E,, is obtained using Eq. (1).

if i is the last learning stage 9

otherwise,

5.3 P-Agent

Given that the L-Agent has selected the learning item for the stage,
we then build the P-Agent to recommend suitable practice items
while managing item difficulty to ensure a smooth learning path.

5.3.1 State encoder. The state of the P-Agent sf ; contains learning
item ¢; in the current learning stage i and the learner’s knowledge
state h; at current learning step t. Specifically, we use one-hot
encoding to represent the learning item as ¢; = {0, 1}, where the
learning item’s index is set 1 and others 0 and M is the number of
learning items. The final state of the P-Agent is encoded as:

(10)

5.3.2 Relation-constrained practice action space. The action of the
P-Agent e;; is to choose the next practice item for a learner to
study learning item c;. In contrast to L-Agent, P-Agent does not
require making action selections within an extensive item space.
Instead, it solely concentrates on the practice items associated with
the current learning item c; at learning stage i. Specifically, the
candidate action space D;'J is got as follows:

s‘zl.:hteaci.

DL =¥(c;) € PI, (11)

where ¥ is a mapping function to obtain the set of practice items
associated with ¢; from HG.

Taking item difficulty into account, the P-Agent starts by favor-
ing items near the initial difficulty d; obtained using Eq. (15) and
later considers the entire D;, as the stage progresses.

5.3.3 Policy. The policy of P-Agent is how to select the next prac-
tice item for a learner. Here we use an actor-critic framework [19]
similar to L-Agent in Section 5.2.3. The main difference between
actor-critic and PPO is in the actor’s training algorithm. The actor-
critic trains based on the simple policy gradient [21].

5.3.4 Reward. As discussed before, learners usually learn knowl-
edge gradually, and the dramatically varying difficulty levels of
recommended practice items may lead to a rough learning path
thus decreasing learners’ interest [15]. Therefore, we design a re-
ward rf ! applying a method proposed by Huang et al. [15] to control
the difficulty fluctuation as:

P! = £(DP,, DP,_1) = —(DP; — DPs_1)%, (12)

where DP; obtained in Eq. 2 can be retrieved from the attribute of
the selected practice item e; ;.

In addition, to assess the effectiveness of the current practice
items, we design the reward rf 2 by examining the changes in learn-
ers’ knowledge states h, which were obtained from DIMKT.

2 _ {hi —hi_y, ifh; > Thre
P2

otherwise,

0. (13)

4172

Haotian Zhang et al.

where h; and h;_1 denote the knowledge state at the end and begin-
ning of the current stage, respectively. Thre is the predetermined
threshold for the knowledge state.

Finally, the reward of P-Agent at each step is merged with a1, a2
balance coefficients as:

P

1 2
' =a1><rf +0:2er ,a1,ap € [0,1].

(14)

5.4 Communication Mechanism

To ensure effective coordination between the L-Agent and P-Agent
and achieve efficient learning path construction, we implement a
communication mechanism between the two agents. The P-Agent
organizes practice items’ initial difficulty and controls the learner’s
maximum practice attempts based on item-difficulty information
passed from the L-Agent.

5.4.1 Initial difficulty control. Initial difficulty control makes L-
Agent provide P-Agent with the initial difficulty information of
practice items as a reference based on the learning item chosen by
L-Agent in the current stage i and the learner’s current knowledge
state h;. This enables the P-Agent to have a good starting point for
recommending practice items that are suitable in difficulty for the
learner. Specifically, inspired by Rasch method [11], we calculate
the initial difficulty for the next learning item as:
Prob;
1— Prob;),
where d; represents the initial reference difficulty level of the prac-
tice items for learning item c;. h; represents the learner’s mastery
level of c;, which is retrieved from h; using indexing, and Prob;
represents the probability of a learner answering an item correctly,
which is flexible in practice.

d; = hi +In((15)

5.4.2 Practice tolerance control. When learners learn learning items
through interactions with practice items, this process should be
finite. In other words, learners cannot practice the same item indef-
initely to master it, as it is inefficient and unreasonable. However,
since each learner has different learning levels and paces, the toler-
ance for the number of practice items should be individualized and
dynamically adjusted. Specifically, denote the tolerance at stage i
as 7;, we get the tolerance as follows:

i = f(pi-1, hi-1,Ti—1, DL;), (16)

where p;_1 and h;_; represent the number of practice items at-
tempted for learning item c;—; and the mastery level at the end of
the last learning stage i — 1. As shown in Figure 3, this information
originates from the P-Agent, and there is mutual communication
between the two agents, which ensures smooth collaboration. DL;
is the difficulty level of c; learning at this stage. f is an MLP that
will be trained. For training of f, we initially simulate 5000 student
learning paths in the simulation system without limiting tolerance.
This yields actual p;, h;, DL; for each learning stage i. To align
tolerance with actual practice frequency, we set 7; = p;, resulting
in training data p, h, 7, DL, which is iteratively trained.

6 EXPERIMENTS

In this section, we first introduce the datasets and simulators. Then,
we demonstrate the superiority of our method through extensive
experimentation and evaluation.

Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

6.1 Datasets

Our experiments are performed on two real-world public datasets:
Junyi! and ASSIST092. Both datasets contain learners’ learning log
data. For the Junyi dataset, we use the “topics” field as learning
items, which are commonly used in education. Additionally, the
Junyi dataset provides a prerequisite graph of items, and we use it
to construct the HG in Section 4. However, the ASSIST09 dataset
does not provide information about the knowledge structure, so we
construct a transition graph [30] as an estimation of the knowledge
structure [21]. The statistics of datasets can be found in Appendix C.

6.2 Simulators

For evaluation, a key issue is that existing realistic data only con-
tains static information. This data cannot directly analyze if practice
items not in a sequence can be answered correctly [15]. Hence, it’s
unsuitable for evaluating learning paths or training reinforcement
learning agents. Following previous works [2, 21, 25], to evaluate
different methods’ recommending effects, we use two kinds of sim-
ilar simulators built in [25]: Knowledge Structure based Simulator
(KSS) and Knowledge Evolution based Simulator (KES).

KSS is a rule-based system evaluating learner performance based
on Item Response Theory (IRT) [10]. KES is a data-based system
utilizing the DKT model [34] to simulate knowledge state changes
of learners. Considering the impact of item difficulty on learner
knowledge state [31, 40], we develop DIMKT [36] to build two
different simulators KES-Junyi and KES-ASSIST based on datasets
Junyi and ASSIST09 respectively, and initial logs from a specific
dataset are used to simulate the learner’s initial state [21].

6.3 Experimental Setup

We implement our learning path recommendation framework us-
ing pytorch [32], gym [1], and the simulator code from previous
works [21, 25]. In our experiments, we employed the same data
partitioning, data preprocessing, and simulator settings as in [25].
However, a significant change was made by replacing the origi-
nal DKT component with DIMKT, which has a 128-dimensional
embedding layer, 50 difficulty levels, and a learning rate of 0.002.
To align with DIMKT, we set Ap in Eq. (2) to be 50. Additionally,
we configured the parameters o and a3 in Eq. (14) to be both 0.5.
Moreover, we set the mastery threshold as 0.6 in Eq. (13), which is a
common passing threshold in education. In Eq. (15), we set Prob; as
0.5, indicating that the probability of a learner answering the item
correctly or incorrectly is equal. We use Adam [18] as our optimizer
and the learning rate is set to be 0.001. Our code is available at
https://github.com/sosweetzhang/DLPR.

6.4 Baseline Approaches

o KNN: KNN [4] find similar learners based on their learning paths.
The algorithm determines the next learning item for a new learner
based on the paths of the nearest identified learners.

o GRU4Rec: GRU4Rec [13] is a classic model taking the session
sequence as input and generating a probability distribution that
predicts the learning items likely to appear in the next step.

Uhttps://pslcdatashop.web.cmu.edu/DatasetInfo?datasetld=1198
Zhttps://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data

4173

KDD ’24, August 25-29, 2024, Barcelona, Spain

e DON: DON [3] uses a neural network to assess action values and
recommends the action with the highest value.

Actor-Critic: Use a GRU encoder and vanilla actor-critic frame-
work [19] as a recommender.

CB: Contextual Bandits [17] is a learning path recommendation
method that treats the recommendation process as a contextual
bandit problem.

RLTutor: RLTutor [20] is an adaptive tutoring system that com-
bines a model-based RL approach with DAS3H [8] for learning
item recommendation.

CSEAL: CSEAL [25] is a method using an actor-critic framework
with cognitive navigation as a recommender.

GEHRL: GEHRL [21] implements efficient goal planning and
achieving through Hierarchical Reinforcement Learning. Specifi-
cally, GEHRL-EB is compared for its better performance.

Following previous works [2, 21, 25], we evaluate these methods
based on the promotion E,, (Eq. (1)) given by simulators.

6.5 Overall Performance Comparison

Table 1 presents the average Ep values of all models across the
three simulators, revealing several important insights. Firstly, our
proposed DLPR outperforms all baselines in all three simulators,
highlighting the necessity and value of considering item difficulty
in learning path recommendation. Secondly, Reinforcement Learn-
ing methods, such as CSEAL, GEHRL, and DLPR, exhibit superior
performance due to real-time interactive feedback, long-term cu-
mulative rewards, and consideration of cognitive structure and
action space constraints. Thirdly, a general decline in performance
is observed as the number of recommended steps decreases in the
simulated environment, underlining the need for improved recom-
mendation performance to enhance learning path efficiency. Finally,
as the number of items increases and the structure becomes more
complex, the diminishing returns of specific learning steps align
with intuition. This suggests that learning a larger domain of knowl-
edge requires more steps to reach distant learning goals, indicating
the need for additional time and effort to grasp new concepts and
skills as knowledge expands.

It should be clear that negative values in KES-Junyi and KES-
ASSIST09 are due to the presence of a large number of items in
these simulators, some of which never occurred in the training data.
This can lead to unstable predictions by the KT model, resulting in
negative rewards [21].

6.6 Learning Path Efficiency and Smoothness

To evaluate the effectiveness and smoothness of DLPR in the learn-
ing path recommendation task, we compared it with baselines using
three metrics while achieving learning goals. To be specific, we let
these methods recommend items for a learner to master three spe-
cific concepts random selected (i.e. E¢ = Esyyp in Eq. (1) which means
the learner should correctly answer all questions in the final test).
The Learning-Steps metric captures the average number of steps
required to achieve learning goals, while the Cog-Gap (Cognitive
Gap) metric measures the mean difference between the normalized
difficulty levels of practice items and learners’ knowledge state
values calculated as Eq. (17). Considering that recommending dif-
ficult items to beginners or simple items to experts will increase

KDD ’24, August 25-29, 2024, Barcelona, Spain

Haotian Zhang et al.

Table 1: Performance comparison for learning path recommendation methods. Existing state-of-the-art results are underlined
and the best results are bold. Our DLPR is compared with the SOTA GEHRL and * indicates a p-value < 0.05 in the t-test.

KNN GRU4Rec DQN Actor-Critic CB RLTutor CSEAL GEHRL DLPR
step=5 0.1005 0.1124 0.1559 0.1437 0.0852 0.1999 0.2095 0.2321 0.5583"
KSS step=10 0.3133 0.2767 0.2836 0.4072 0.2643 0.4008 0.4233 0.5644 0.7294*
step=20 0.2972 0.1998 0.3236 0.4931 0.2614 0.5303 0.5716 0.7426 0.8305*
step=5 -0.0902 -0.0047 0.0299 0.1004 0.0666 -0.0007 0.0975 0.1198 0.2049*
KES-Junyi step=10 -0.1455 -0.0721 -0.1058 0.1671 0.1451 -0.0379 0.2021 0.2278 0.3835"
step=20 0.1343 0.0993 0.1536 0.1916 0.2098 -0.1034 0.2505 0.4206 0.6124"
step=5 -0.0549 -0.0536 -0.0495 -0.0004 -0.0563 -0.0611 0.0482 0.0751 0.0807*
KES-ASSIST09 step=10 -0.0731 -0.1003 -0.0934 -0.0327 -0.1294 -0.1096 0.0637 0.0918 0.1544"
step=20 -0.0932 -0.1344 -0.0267 0.0676 0.0038 0.0784 0.1009 0.1971 0.3283"

Table 2: Learning path efficiency and smoothness for learning path recommendation methods. It should be noted that “-” in the
table indicates that the method cannot achieve absolute promotion and meet the learning goals.

KNN GRU4Rec DQN Actor-Critic CB RLTutor CSEAL GEHRL DLPR
KSS Learning-Steps 54 72 48 41 56 34 29 14 8

Cog-Gap 0.3216 0.3889 0.3709 0.3921 0.3514 0.3336 0.3639 0.2436 0.1017
Diff-MAD 0.3886 0.3267 0.3574 0.3749 0.3309 0.3696 0.3231 0.2704 0.1200

. Learning-Steps - - - - 219 - 128 96 33
KES-Junyi Cog-Gap - - - - 0.3413 - 0.3898 03641 0.1313
Diff-MAD - - - - 0.3687 - 0.2791 0.3144 0.1614

Learning-Steps - - - - - 536 378 185 69
KES-ASSIST09 Cog-Gap - - - - - 0.4197 0.3823 0.3562 0.1391
Diff-MAD - - - - - 0.2947 0.2893 0.2998 0.1577

the Cog-Gap, leading to unnecessary practice and more Learning-
Steps, these two metrics are designed to reflect the efficiency of the
learning path. Additionally, the Diff-MAD (Difficulty Mean Abso-
lute Deviation) metric quantifies the average absolute difference in
difficulty levels of practice items throughout the learning process
calculated as Eq. (18). This metric measures the variation in item
difficulty, reflecting the smoothness of the learning path.

251 |hj — DPj|
Cog-Gap = #, (17)
n
377} IDPjs1 - DPj|
Diff-MAD = N , (18)
P

where h;j represents the learner’s knowledge state on practice item
e; and DP; indicates the difficulty level of e; calculated using Eq. (2).
n is the number of learning steps.

Table 2 presents the experimental results, indicating that DLPR
effectively recommends practice items that align with the learner’s
knowledge state while controlling difficulty variations. It signif-
icantly reduces the number of learning steps and improves the
efficiency and smoothness of the learning path. Please note that "-"
in the table indicates that the method cannot achieve significant
improvement and meet the learning goals, therefore making it im-
possible to calculate the metrics used to assess learning paths that
achieve the learning goal.

6.7 Ablation Study

In this section, we perform an ablation study on Junyi to analyze the
impact of some key elements in DLPR. We consider four variants of

4174

Table 3: Results of ablation experiments.

Learning Steps Cog-Gap Diff-MAD
w/o ACS 154 0.1707 0.2099
w/o Init-diff 86 0.2133 0.1796
w/o Torlerance | 94 0.2654 0.1832
w/o Diff-reward | 61 0.3516 0.3235
DLPR 33 0.1313 0.1614

DLPR, where each variant removes one element from the original
DLPR. The details of these variants are as follows:

DLPR w/o ACS, which refers to DLPR without adaptive learning
action space in section 5.2.2.

DLPR w/o Init-diff, which eliminates the guidance of initial diffi-
culty control in section 5.4.1.

DLPR w/o Torlerance, which excludes the practice tolerance
control in section 5.4.2.

DLPR w/o Diff-reward, which removes the reward rf ! that con-
trols difficulty variations in section 5.3.4.

From Table 3, several key findings can be drawn. Firstly, the com-
plete model achieved the best overall performance. Secondly, ACS
had the most significant impact on the number of learning steps, em-
phasizing the importance of correct choices and learning direction.
Selecting the right path is crucial for success. Diff-reward had the
greatest influence on cognitive differences and difficulty smooth-
ness, validating the effectiveness of our reward design in controlling
difficulty variations. Init-diff and Tolerance played varying roles
in all three factors. The collaborative synergy of the components
leads to optimal results, as the absence of any component results
in a decline in performance.

Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

—— Item Difficulty = Knowledge State - Threshold

KDD ’24, August 25-29, 2024, Barcelona, Spain

——Item Difficulty —— Knowledge State - Threshold

addition- basic- logical- [N H
subtraction geometry ~ reasoning LO Goal items: 9,16,22 |
@ ® N ™ /\ AN R
05 \ \/\/_ 05 v/ \
ratio- unit-
percentage conversion 0 < 0
'"“'é:s:':l:go" @ @ "a"ne::;’g:j:l:’g; 9 930139 9100168 8 827331916 5 221818 168 8828168 299309 9 9@® 2 81616
(a) Actor-Critic (b) CSEAL
decimals Item Difficulty Knowledge State - Threshold ——Item Difficulty ——Knowledge State - Threshold
polynomials @ @ congruent-triangles 1 07
\ /\ /\ N yd
0.5 N, 04
rates-and-ratios @ @ similar-triangle
0 0.1

quadrilaterals-

calculus
and-polygons

9303030 9@ 2 8028 8161616 8 8 16@913
(c) GEHRL

99 9@ 2 2 8 1616 13 10 10 27 10 10 @
(d) DLPR

Figure 4: Visualization of different learning paths recommended by four selected methods for the same learning goal items.

04
10 30 m50 m100 m500
o]
= 0.3
©
=
()
[v' 4
0.2
©
(<5
>
o
o Ill m
il
RLTutor CSEAL GEHRL DLPR

Figure 5: The performance of some methods under different
predefined difficulty levels.

6.8 Impact of Difficulty Level Segmentation

As our main concern is the item difficulty, to investigate the impact
of item difficulty level on learning path efficiency and smoothness,
we conducted experiments using the ASSIST09 dataset, which of-
fers richer items. Similar to the common practice of categorizing
difficulty levels into three tiers: easy, medium, and hard [39], here
we aim for a more granular analysis of difficulty by classifying
it into 10, 30, 50, 100, and 500 levels (Ap in Eq.(2)). These levels
represent different subdivisions of the same difficulty. Further, we
evaluated the performance of selected RLTutor, CSEAL, GEHRL,
and DLPR under different difficulty levels with a fixed number of
steps set at 20.

Figure 5 illustrates the results and highlights the importance of
properly defining difficulty level segmentation. When the segmen-
tation is too low, the distinguishability between items decreases,
leading to poorer performance in modeling learner interactions and
knowledge state changes. This also reduces the selectivity in recom-
mending suitable learning items, resulting in inferior outcomes. On
the other hand, excessive segmentation also deteriorates the perfor-
mance of the models. Additionally, with excessively fine-grained
segmentation, there may be a scarcity of appropriately difficult prac-
tice items for the same learning item. Interestingly, lower difficulty
segmentation may favor methods that do not consider difficulty
(e.g. CSEAL), as reduced granularity reduces difficulty fluctuations.

6.9 Case Study

Figure 4 shows the learning path recommendations of four models
in the KES-junyi simulator for a learner with specific goals. The

4175

left side of Figure 4 provides a partial knowledge structure diagram
of the KES-junyi environment for better understanding. On the
right side, four images depict the recommended paths by the se-
lected models, along with changes in practice item difficulty and the
learner’s knowledge states on the learning item. To be specific, the
horizontal axis represents the recommended items in the learning
path, where item ids may repeat due to multiple practices of the
same item. The vertical axis denotes the normalized knowledge
mastery and difficulty levels, ranging from 0 to 1. The figure re-
veals that: (1) The Actor-Critic method ignores knowledge structure
and item difficulty, resulting in disorganized recommendations and
failure to achieve goals. (2) CSEAL considers knowledge structure
but lacks planning between goals, resulting in poor learning out-
comes with only one item being accomplished. (3) GEHRL plans for
multiple goals but overlooks item difficulty, leading to detours and
incomplete goal achievement. (4) Our method, considering both
knowledge structure and item difficulty, efficiently recommends
paths with smoothness and achieves all goals.

7 CONCLUSION

In this paper, we addressed two special issues “rough” and “in-
efficient” of learning paths from a real walking perspective and
proposed an effective and smooth learning path recommendation
method considering item difficulty. To be specific, we constructed a
hierarchical graph of learning and practice items to capture their dif-
ficulty and higher-order correlations. Then we designed a Difficulty-
driven Hierarchical Reinforcement Learning framework to generate
learning paths smoothly and efficiently through two agents’ col-
laboration. Extensive experimental results validate the superiority
of our framework in providing highly satisfactory learning path
recommendations by thoroughly considering item difficulty. Never-
theless, as we primarily conducted the experiments in the simulated
environments, further research will develop the system and test
the model in practical settings in the real-world environments to
investigate broader impacts.

ACKNOWLEDGMENTS

This research was partially supported by grants from the National
Science and Technology Major Project (No. 2022ZD0117103), the
National Natural Science Foundation of China (No. 62106244), and
the University Synergy Innovation Program of Anhui Province (No.
GXXT-2022-042).

KDD ’24, August 25-29, 2024, Barcelona, Spain

REFERENCES

(1]

[2

[

[10]

(11

[12]

[13

[14]

[15]

[16

[17

[18

[19

[20]

[21

[22

[23

[24

[25]

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

Xianyu Chen, Jian Shen, Wei Xia, Jiarui Jin, Yakun Song, Weinan Zhang, Weiwen
Liu, Menghui Zhu, Ruiming Tang, Kai Dong, et al. 2023. Set-to-sequence ranking-
based concept-aware learning path recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 5027-5035.

Yunxiao Chen, Xiaoou Li, Jingchen Liu, and Zhiliang Ying. 2018. Recommendation
system for adaptive learning. Applied psychological measurement 42, 1 (2018),
24-41.

Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification.
IEEE transactions on information theory 13, 1 (1967), 21-27.

Zigiang Cui, Haolun Wu, Bowei He, Ji Cheng, and Chen Ma. 2024. Diffusion-
based Contrastive Learning for Sequential Recommendation. arXiv e-prints (2024),
arXiv-2405.

Frantisek Duchorn, Andrej Babinec, Martin Kajan, Peter Betio, Martin Florek,
Tomas3 Fico, and Ladislav Juriica. 2014. Path planning with modified a star
algorithm for a mobile robot. Procedia engineering 96 (2014), 59-69.

Guillaume Durand, Nabil Belacel, and Francois LaPlante. 2013. Graph theory
based model for learning path recommendation. Information Sciences 251 (2013),
10-21.

Pragya Dwivedi, Vibhor Kant, and Kamal K Bharadwaj. 2018. Learning path
recommendation based on modified variable length genetic algorithm. Education
and information technologies 23 (2018), 819-836.

Lumbardh Elshani and Krenare Pireva Nuci. 2021. Constructing a personalized
learning path using genetic algorithms approach. arXiv preprint arXiv:2104.11276
(2021).

Susan E Embretson and Steven P Reise. 2013. Item response theory. Psychology
Press.

Gerhard H Fischer and Ivo W Molenaar. 2012. Rasch models: Foundations, recent
developments, and applications. (2012).

Kannan Govindarajan, Vivekanandan Suresh Kumar, et al. 2016. Dynamic learn-
ing path prediction—A learning analytics solution. In 2016 IEEE eighth interna-
tional conference on technology for education (T4E). IEEE, 188-193.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

Zhenya Huang, Qi Liu, Enhong Chen, Hongke Zhao, Mingyong Gao, Si Wei, Yu
Su, and Guoping Hu. 2017. Question Difficulty Prediction for READING Problems
in Standard Tests. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 31.

Zhenya Huang, Qi Liu, Chengxiang Zhai, Yu Yin, Enhong Chen, Weibo Gao,
and Guoping Hu. 2019. Exploring multi-objective exercise recommendations in
online education systems. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1261-1270.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. 2022. Hierarchical
reinforcement learning: A survey and open research challenges. Machine Learning
and Knowledge Extraction 4, 1 (2022), 172-221.

Wacharawan Intayoad, Chayapol Kamyod, and Punnarumol Temdee. 2020. Rein-
forcement learning based on contextual bandits for personalized online learning
recommendation systems. Wireless Personal Communications 115, 4 (2020), 2917-
2932.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural
information processing systems 12 (1999).

Yoshiki Kubotani, Yoshihiro Fukuhara, and Shigeo Morishima. 2021. RLTutor:
Reinforcement Learning Based Adaptive Tutoring System by Modeling Virtual
Student with Fewer Interactions. arXiv preprint arXiv:2108.00268 (2021).
Qingyao Li, Wei Xia, Li’ang Yin, Jian Shen, Renting Rui, Weinan Zhang, Xianyu
Chen, Ruiming Tang, and Yong Yu. 2023. Graph Enhanced Hierarchical Reinforce-
ment Learning for Goal-Oriented Learning Path Recommendation. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge Manage-
ment. 1318-1327.

Chun Fu Lin, Yu-chu Yeh, Yu Hsin Hung, and Ray I Chang. 2013. Data mining for
providing a personalized learning path in creativity: An application of decision
trees. Computers & Education 68 (2013), 199-210.

Yuanguo Lin, Fan Lin, Wenhua Zeng, Jianbing Xiahou, Li Li, Pengcheng Wu,
Yong Liu, and Chunyan Miao. 2022. Hierarchical reinforcement learning with
dynamic recurrent mechanism for course recommendation. Knowledge-Based
Systems 244 (2022), 108546.

Fei Liu, Chenyang Bu, Haotian Zhang, Le Wu, Kui Yu, and Xuegang Hu. 2024.
FDKT: Towards an interpretable deep knowledge tracing via fuzzy reasoning.
ACM Transactions on Information Systems (2024).

Qi Liu, Shiwei Tong, Chuanren Liu, Hongke Zhao, Enhong Chen, Haiping Ma,
and Shijin Wang. 2019. Exploiting Cognitive Structure for Adaptive Learning.

4176

[26

[27]

(28]

[30

[31

(32]

@
&

(34

[35

[36

®
=

[38

[39

[40

[41

[42

[43

[44

[47

Haotian Zhang et al.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. New York, NY, USA, 627-635.

Sein Minn, Feida Zhu, and Michel C Desmarais. 2018. Improving knowledge trac-
ing model by integrating problem difficulty. In 2018 IEEE International conference
on data mining workshops (ICDMW). IEEE, 1505-1506.

Amir Hossein Nabizadeh, Daniel Goncalves, Sandra Gama, Joaquim Jorge, and
Hamed N Rafsanjani. 2020. Adaptive learning path recommender approach using
auxiliary learning objects. Computers & Education 147 (2020), 103777.

Amir Hossein Nabizadeh, José Paulo Leal, Hamed N Rafsanjani, and Rajiv Ratn
Shah. 2020. Learning path personalization and recommendation methods: A
survey of the state-of-the-art. Expert Systems with Applications 159 (2020), 113596.
Amir Hossein Nabizadeh, Alipio Mario Jorge, and José Paulo Leal. 2017. Rutico:
Recommending successful learning paths under time constraints. In Adjunct
publication of the 25th conference on user modeling, adaptation and personalization.
153-158.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. 2019. Graph-based
knowledge tracing: modeling student proficiency using graph neural network.
In [EEE/WIC/ACM International Conference on Web Intelligence. 156-163.
Zachary A Pardos and Neil T Heffernan. 2011. KT-IDEM: Introducing item
difficulty to the knowledge tracing model. In User Modeling, Adaption and Per-
sonalization: 19th International Conference, UMAP 2011, Girona, Spain, July 11-15,
2011. Proceedings 19. Springer, 243-254.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical reinforcement learning: A comprehensive survey. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1-35.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas J Guibas, and Jascha Sohl-Dickstein. 2015. Deep knowledge tracing.
Advances in neural information processing systems 28 (2015).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

Shuanghong Shen, Zhenya Huang, Qi Liu, Yu Su, Shijin Wang, and Enhong Chen.
2022. Assessing Student’s Dynamic Knowledge State by Exploring the Question
Difficulty Effect. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 427-437.

Shuanghong Shen, Qi Liu, Zhenya Huang, Yonghe Zheng, Minghao Yin, Minjuan
Wang, and Enhong Chen. 2024. A survey of knowledge tracing: Models, variants,
and applications. IEEE Transactions on Learning Technologies (2024).

Dagian Shi, Ting Wang, Hao Xing, and Hao Xu. 2020. A learning path recom-
mendation model based on a multidimensional knowledge graph framework for
e-learning. Knowledge-Based Systems 195 (2020), 105618.

Jinze Wu, Haotian Zhang, Zhenya Huang, Liang Ding, Qi Liu, Jing Sha, Enhong
Chen, and Shijin Wang. 2024. Graph-based Student Knowledge Profile for Online
Intelligent Education. In Proceedings of the 2024 SIAM International Conference on
Data Mining (SDM). SIAM, 379-387.

Bihan Xu, Zhenya Huang, Jiayu Liu, Shuanghong Shen, Qi Liu, Enhong Chen,
Jinze Wu, and Shijin Wang. 2023. Learning behavior-oriented knowledge tracing.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 2789-2800.

Dihua Xu, Zhijian Wang, Kejia Chen, and Weidong Huang. 2012. Personalized
learning path recommender based on user profile using social tags. In 2012 Fifth
International Symposium on Computational Intelligence and Design, Vol. 1. IEEE,
511-514.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. 2023.
Simple and efficient heterogeneous graph neural network. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 10816-10824.

Haotian Zhang, Chenyang Bu, Fei Liu, Shuochen Liu, Yuhong Zhang, and Xue-
gang Hu. 2022. APGKT: Exploiting associative path on skills graph for knowledge
tracing. In Pacific Rim International Conference on Artificial Intelligence. Springer,
353-365.

Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. 2019.
Hierarchical reinforcement learning for course recommendation in MOOCs. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 435-442.

Lei Zhang, Wuji Zhang, Likang Wu, Ming He, and Hongke Zhao. 2023. SHGCN:
Socially enhanced heterogeneous graph convolutional network for multi-
behavior prediction. ACM Transactions on the Web 18, 1 (2023), 1-27.

Guojing Zhou, Hamoon Azizsoltani, Markel Sanz Ausin, Tiffany Barnes, and Min
Chi. 2019. Hierarchical reinforcement learning for pedagogical policy induction.
In Artificial Intelligence in Education: 20th International Conference, AIED 2019,
Chicago, IL, USA, June 25-29, 2019, Proceedings, Part I 20. Springer, 544-556.
Guojing Zhou, Hamoon Azizsoltani, Markel Sanz Ausin, Tiffany Barnes, and
Min Chi. 2022. Leveraging granularity: Hierarchical reinforcement learning for
pedagogical policy induction. International journal of artificial intelligence in
education 32, 2 (2022), 454-500.

Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

[48] Yuwen Zhou, Changqin Huang, Qintai Hu, Jia Zhu, and Yong Tang. 2018. Person-
alized learning full-path recommendation model based on LSTM neural networks.
Information sciences 444 (2018), 135-152.

Haiping Zhu, Feng Tian, Ke Wu, Nazaraf Shah, Yan Chen, Yifu Ni, Xinhui Zhang,
Kuo-Ming Chao, and Qinghua Zheng. 2018. A multi-constraint learning path
recommendation algorithm based on knowledge map. Knowledge-Based Systems
143 (2018), 102-114.

[49]

A PSEUDO-CODE FOR DHRL

The pseudo-code of the DHRL module is presented in Algorithm 1.
The details are presented in Section 5. First, initialize the simulation
environment and set the learning path £ = @. During the learn-
ing process, the L-Agent recommends a learning item c;. Then its
initial practice difficulty d; and practice tolerance 7; are passed to
the P-Agent. The P-Agent then recommends practice items e; ; for
this learning item step by step and records the practice count p;.
Feedback from each practice item is used to update the student’s
knowledge state. Once practice ends (upon reaching the mastery
threshold or practice tolerance), the practice count p; and updated
knowledge state h; are sent back to the L-Agent for the next rec-
ommendation. This process is repeated until the learning goals are
achieved.

Algorithm 1 DHRL

Initialize simulation environment;
Initialize learning path P = @;
1: while Learning goals not met do
2 Recommend learning item c; by L-Agent; (Section 5.2)
3 Obatain d; and 7; according c; ;(Section 5.4)
4 Pass ¢j, d; and 7; from L-Agent to P-Agent;
5: Set current practice count p; to 0;
6 while h; < threshold and n < 7; do
7 if n == 0 then
8 Recommend practice item e;; according d; by P-
Agent; (Section 5.3)
9: else
Recommend adaptive practice item e; ; by P-Agent;
(Section 5.3)

11: end if

12: Practice count p;+ = 1;

13: Add e;,; to learning path P;

14: Get the feedback scorei;

15: Evolve and wupdate learner’s knowledge state

h¢;(Section 5.1)

end while

Pass p; and h; from P-Agent to L-Agent;
8: end while
. return P

16:

_
o

B PSEUDO-CODE FOR ADAPTIVE LEARNING
ACTION SPACE

The pseudo-code of the adaptive learning action space is presented
in Algorithm 2. In the algorithm input, G; refers to the learning item

4177

KDD ’24, August 25-29, 2024, Barcelona, Spain

graph, which is equivalent to the ‘learning item’ layer at the bottom
of the hierarchical graph (HG). Additionally, the shortest path is

obtained using the A* algorithm, a highly efficient and widely used
algorithm. Prerequisite(c) represents all the predecessor neighbor

nodes of ¢ in the graph G;. If there are no predecessor nodes, it
returns empty. More details about Algorithm 2 can be found in
Section 5.2.2.

Algorithm 2 Adaptive Learning Action Space

Input: Cy: start learning item; G;: a learning item graph; 7: learn-
ing target; threshold: level of proficiency target
Output: V d € Dy has a shortest path to 7 in G;.
1: initial D} = @ and Q = @;

2: obtain the shortest candidate path P = {cg, ..., i, ...T };
3: add Cs; to Dr;
4: Q =P
5: while Q # @ do
6: for ¢ in Q do
7: add c to Dy,
8: Study ¢ and get the mastery level h,.
9: if he > threshold then
10: ¢ « Q.pop()
11: else
12: add prerequisite(c) to top of Q
13: end if
14: end for

15: end while
16: return Dy,

C STATISTICS ON ITEM QUANTITY AND
DIFFICULTY

The statistics of datasets are provided in Table 4. Further, as shown
in Figure 6, we depict the relationship between the number of
learning items and practice items in the two datasets, along with
the variation in difficulty levels among different practice items. In
Figure 6(a) and 6(c), the blue boxplots illustrate the difficulty distri-
bution of all practice items associated with the learning item. The
red line represents the difficulty of the learning item. As mentioned
above, in real learning scenarios, a single learning item is typically
assessed by multiple practice items, each with potentially different
difficulty levels.

Table 4: Dataset Statistics.

Dataset Junyi ASSIST09
learning items 36 97
practice items 711 16,836

learners 245,511 4,092

records 25,367,573 397,235

number of edges in HG 267 683

KDD ’24, August 25-29, 2024, Barcelona, Spain Haotian Zhang et al.

1.0 oono! ‘ooo cooo 1000 1.0%% g g s S
H 8 °
0.8 ‘ L3 2|l Es00 0.8 £40
z E z 2
506 ‘ ‘ ‘ H £ 600 506 £30
£ 2 £ 2
a04 8400 ;04 820
02 g 8
‘ ‘ ‘ ‘ £ 200 02 E,
sl L1 LTLTULTUTTIOOLTT =7, o)
0 24 6 810121416 18 20 0 20 40 .60 80 100 0 5 10 15 20 25 30 35 0 10 20 30
Learning item id Learning item id Learning item id Learning item id
(a) Item-diff distribution in ASSIST09 (b) Practice items in ASSIST09 (c) Item-diff distribution in Junyi (d) Practice items in Junyi

Figure 6: Statistical information on the quantity and difficulty of practice items associated with a learning item. In (a), the
ASSIST09 dataset contains numerous learning items, and we randomly selected 20 of them for clarity. It is evident that in real
learning scenarios, a learning item typically includes multiple practice items with varying difficulty levels.

4178

	Abstract
	1 Introduction
	2 Related work
	2.1 Learning Path Recommendation
	2.2 Hierarchical Reinforcement Learning in Education

	3 PROBLEM AND FRAMEWORK OVERVIEW
	3.1 Problem Statement
	3.2 Framework Overview

	4 Hierarchical Graph Enhanced Item Representation
	4.1 Graph Construction
	4.2 Graph Representation

	5 Difficulty-driven Hierarchical Reinforcement Learnin
	5.1 Knowledge State Estimation
	5.2 L-Agent
	5.3 P-Agent
	5.4 Communication Mechanism

	6 EXPERIMENTS
	6.1 Datasets
	6.2 Simulators
	6.3 Experimental Setup
	6.4 Baseline Approaches
	6.5 Overall Performance Comparison
	6.6 Learning Path Efficiency and Smoothness
	6.7 Ablation Study
	6.8 Impact of Difficulty Level Segmentation
	6.9 Case Study

	7 Conclusion
	Acknowledgments
	References
	A PSEUDO-CODE FOR DHRL
	B PSEUDO-CODE FOR Adaptive learning action space
	C Statistics on Item Quantity and Difficulty

