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Abstract—Computerized Adaptive Testing (CAT) is emerging
as a promising testing application in many scenarios, such as
education, game and recruitment, which targets at diagnosing the
knowledge mastery levels of examinees on required concepts. It
shows the advantage of tailoring a personalized testing procedure
for each examinee, which selects questions step by step, depending
on her performance. While there are many efforts on developing
CAT systems, existing solutions generally follow an inflexible
model-specific fashion. That is, they need to observe a specific cog-
nitive model which can estimate examinee’s knowledge levels and
design the selection strategy according to the model estimation. In
this paper, we study a novel model-agnostic CAT problem, where
we aim to propose a flexible framework that can adapt to differ-
ent cognitive models. Meanwhile, this work also figures out CAT
solution with addressing the problem of how to generate both
high-quality and diverse questions simultaneously, which can give
a comprehensive knowledge diagnosis for each examinee. Inspired
by Active Learning, we propose a novel framework, namely
Model-Agnostic Adaptive Testing (MAAT) for CAT solution,
where we design three sophisticated modules including Quality
Module, Diversity Module and Importance Module. Specifically,
at one CAT selection step, Quality Module first quantifies the
informativeness of questions and generates candidate subset with
the highest quality. Then, Diversity Module selects one question
at each step that maximizes the concept coverage. Additionally,
we propose Importance Module to estimate the importance of
concepts that optimizes the CAT selection. Under MAAT, we
prove that the goal of maximizing both quality and diversity
is NP-hard, but we provide efficient algorithms by exploiting
the inherent submodular property. Extensive experimental results
on two real-world datasets clearly demonstrate that our MAAT
can support CAT with guaranteeing both quality and diversity
perspectives.

Index Terms—Computerized Adaptive Testing, Model-
Agnostic, Quality, Diversity

I. INTRODUCTION

Designing appropriate tests to evaluate the knowledge states

on required concepts of examinees is a fundamental task

in many real-world scenarios, such as education, game and

job recruit [1], [2]. Traditionally, instructors can organize a

pencil-paper test, which carefully selects a set of questions for

examinees at one time, and therefore we can assess the states

of them from their performances. Although such simple way is

* denotes the corresponding author

effective, it just provides all examinees with the same environ-

ment so it is difficult to guarantee the rationality of all selected

questions [3]. Therefore, recent efforts focus on another testing

form called Computerized Adaptive Testing (CAT), which aims

to build tests that personally adapt to each examinee, tailoring

questions step by step, depending on her performances [4]. In

fact, CAT has many advantages including improving accuracy,

guaranteeing security and enhancing examinee engagement,

which has already been applied in many standard test organiza-

tions, such as Graduate Management Admission Test (GMAT)

[5] and Graduate Record Examinations (GRE) [6].

In practice, a typical CAT system generally consists of

two key components [3], [7]: (1) a cognitive diagnosis model
(CDM) that estimates the knowledge states of examinees

according to their performance; (2) a selection strategy that

chooses a question from the pool to support the testing

procedure. As shown in Fig. 1(a), when an examinee e1
comes, such CAT system can establish an interactive testing

procedure for her. At step t, the system first posts one question

(e.g., qt). Then, she reads and answers it. After receiving

the response (i.e., right or wrong), the system with CDM

estimates her current states and on the basis carefully selects

a new question qt+1 at the next round. This procedure repeats

several times until meeting the termination like reaching the

maximum testing length [8], so that we can realize how much

she has learned about the required concepts (e.g., “Function”

in Math). In this way, even if starting with the same question,

examinees, e.g., e1 and e2 in Fig. 1(b), still can be tailored

personalizations. Therefore, the key issue is how to establish

an optimal CAT system for choosing the appropriate questions

for examinees.

In the literature, there are many efforts on designing CAT,

which have already supported many standard tests [9]. Gener-

ally, existing solutions deeply dig into underlying CDMs, such

as item response theory (IRT) [10] and multidimensional one

(MIRT) [11], and then produces questions via observing the

corresponding model parameters related to examinees’ knowl-

edge states. For example, Lord et al. [12] established a CAT

system, where they proposed a maximum fisher information

strategy that greedily selected the questions with minimizing

the variance of examinee’s parameters obtained by specific IRT
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(a) (b)

Fig. 1. (a) Illustration of a typical CAT system and its testing procedure in
one step. (b) Two toy examples of CAT procedure taken by examinees e1 and
e2. We represent different questions with different colors.

model. Although these works have made great success, they

are all model-specific, i.e., the CAT solution is only suitable

for its designated CDM. In other words, we have to understand

how a specific CDM (e.g., IRT or MIRT) works in detail when

designing a CAT selection strategy. Therefore, existing CAT

systems usually become inflexible since we must redesign the

selection strategy if we replace the CDM behind. However, as

we mentioned above, CAT primarily aims to select appropriate

questions during testing so it gives us an intuition that we only

need to care about the results of examinees’ states no matter

which CDM models we probe. To this end, we argue that an

ideal CAT framework should be model-agnostic, i.e., the CAT

solution can adapt to different CDMs.

To the best of our knowledge, no previous work on CAT

has attempted to achieve the model-agnostic framework. For-

tunately, we notice a similar idea from active learning (AL),

which is a popular framework to alleviate data deficiency in

many tasks including image classification, recommendation,

etc. [13], [14]. In principle, AL framework aims to design

a strategy that selects valuable data step by step to experts

for annotations so that machine learning models can be well

trained in the supervised manner. Intuitively, AL inspires us

for the CAT solution since it can also overlook which machine

learning models we have to use. Therefore, in this paper, we

propose a novel Model-Agnostic Adaptive Testing framework

(MAAT) for CAT solution, where we take advantage of the

general idea of active learning at the macro level.

In order to support MAAT procedure that evaluates the

knowledge states of examinees comprehensively, we argue

that there are two necessary objectives should be considered

in designing the strategy for adaptively selecting questions:

(1) Quality. Primarily, selecting high-quality questions for

testing can make the CAT procedure more efficiently. For

example, it is inappropriate if we always push examinees

to try questions that are either too difficulty or too easy,

because we cannot obtain the accurate diagnosis results about

them at all. Therefore, an effective method that can evaluate

the informativeness of questions is urgent but non-trivial. (2)

Diversity. In a certain domain (e.g., math), there is usually

much knowledge (e.g., “Function”) that examinees should

learn. With CAT process, we are required to evaluate that

how they master all the knowledge concepts. However, if we

follow the traditional solutions [8], [9], the results may be

suboptimal, since few of them directly consider such diversity

issue, leading to very limited question selections on concepts.

Therefore, it is necessary to select questions in MAAT that

cover concepts as much as possible.

To address the above problem with considering both objec-

tives above, we implement our MAAT framework with propos-

ing three modules, i.e., Quality Module, Diversity Module and

Importance Module. Specifically, at one CAT selection step,

Quality Module first generates a small candidate subset of

the most high-quality questions from the pool, where a novel

score function is proposed to quantify the information gain of

questions on knowledge mastery after the examinee has taken.

Different from existing solutions, this module is flexible since

it evaluates the informativeness through the Expected Model

Change (EMC) without awareness of the detailed mechanism

behind the change. Then, Diversity Module selects one ques-

tion from candidates that maximizes the concept coverage

in the whole CAT procedures. We also propose Importance

Module to estimate the importance of concepts that optimizes

the selection procedure. Moreover, we prove that the problem

of maximizing both quality and diversity becomes NP-hard

under our sophisticated coverage score function and provide

efficient algorithms by exploiting the submodular property.

Finally, we conduct extensive experiments on two real-world

datasets. The experimental results demonstrate that our MAAT

can select both high-quality and diverse questions in a model-

agnostic way, which can support many CAT scenarios.

II. RELATED WORK

1) Computerized Adaptive Testing: The development of

Computerized Adaptive Testing (CAT) originates from the

belief that tests can be more effective if we tailor them

for examinees [4]. Though there are some variants recently

[15], [16], the primary challenge of CAT lies in designing

a selection strategy which selects appropriate questions for

the examinee step by step. Since current strategies are closely

bound to the underlying cognitive diagnosis models (CDM)

[17], [18], we review them in terms of the CDMs they base

on. Representative CDMs include traditional item response

theory (IRT) family [10], [11] and recently proposed deep

learning models [19], [20]. IRT-based CAT strategies mini-

mize the statistical estimation error of the latent parameter

in IRT [9], [21]. MIRT-based strategies are proposed as

multivariate extensions of the IRT-based ones [22]–[24]. To

the best of our knowledge, little progress has been made

in designing strategies for the deep learning models due to

their parametric complexity. Having made great effect though,

current strategies suffer from two limitations. First, they must

understand how the underlying CDM works in detail, making

CAT systems model-agnostic and inflexible. Second, they

overlook the diversity in question selection, causing potential

imbalance in the diagnosis for knowledge concept mastery. We

provide novel solutions within our proposed model-agnostic

framework, which will be discussed in Section IV.

2) Active Learning: Active learning (AL) is motivated by

the belief that we can train a better model with less data if we

actively select valuable data, and has been applied in many
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supervised learning tasks [13], [14]. Starting with a machine

learning model and a data selection strategy, at each step, AL

framework selects a batch of unlabeled data to be annotated

for supplementing the limited labeled data so that the model

achieves better performance. The key point is how to avoid

using model details in strategy design so that it can apply to

varieties of tasks with different models. Generally, there are

two solutions which utilize model outputs and data features,

respectively [25]. Specifically, uncertainty based algorithms

examine the label predictions output by the model and select

the ones whose predictions contain the most uncertainty [13],

[26]; representativeness based algorithms examine the features

of data samples and select the ones which represent the overall

patterns of unlabeled data best [27]. The methodologies inspire

us to propose a model-agnostic solution for CAT as well,

however with different goals dedicated to CAT (i.e., quality

and diversity) and a novel strategy to optimize the goals.
3) Coverage Measure: The coverage measure has been

extensively studied in tasks related to document summarization

[28], [29], network analysis [30] and recommendation [31],

[32], in which we try to find a subset that covers as much

information in the document or recommendation as possible.

In many scenarios such as recommendation, it is intuitively

better to consider such coverage objective [31], [33]–[36].

Specially, some previous works utilize submodularity in their

design of coverage score function for optimization [28], [30],

[31], which is a mathematical modeling towards the intuitive

diminishing returns property. To the best of our knowledge, our

work is the first attempt to explicitly define the diversity goal

of knowledge concepts in CAT with a formulated coverage

measure, where we provide an efficient optimization algorithm

by exploiting the inherent submodularity property.

III. PRELIMINARIES

This section discusses the terminologies, the goals, and the

reformulation of computerized adaptive testing (CAT).

A. Terminologies
1) Environment: As a specific form of test, a CAT sys-

tem works with a typical testing environment consisting of

examinees and questions. Suppose there is an examinee set

E=
{
e1, e2, ..., e|E|

}
and a question set Q=

{
q1, q2, ..., q|Q|

}
.

We denote the record of examinee ei answering question qj as

a triplet rij =<ei, qj , aij >, where aij equals 1 if ei answers

qj correctly, and 0 otherwise. We denote all the records as

R, and the records belonging to a certain examinee ei as

Ri. In addition, we suppose a set of knowledge concepts

K =
{
k1, k2, ..., k|K|

}
related to the questions. We denote

the association between questions and concepts as a binary

relation G ⊆ Q×K, where (qi, kj) ∈ G if qi is related to kj .
2) Status: Besides the static environment, a CAT system

maintains some dynamic status dedicated to adaptive tests.

Specifically, within the test for a certain examinee ei ∈ E, the

question set Q is divided into a tested set QT and an untested

set QU . Initially, QU =Q,QT =∅. At each step, one question

is selected from QU to QT . When the test finishes, QT forms

a tailored test sequence for ei.

TABLE I
CONCEPT CORRESPONDENCE BETWEEN CAT AND AL

CAT Concepts AL Concepts Notation
Cognitive diagnosis model Supervised learning model M
Question selection strategy Sample query strategy S

Examinees Expert annotators E
Questions Data samples Q

Tested/Untested questions Labeled/Unlabeled samples QT , QU

3) Components: Finally, we formulate the components of a

CAT system. Following Fig. 1(a), we formally denote a CAT

system as (M,S), where M is a cognitive diagnosis model

(CDM) and S is a question selection strategy. Different from

traditional CAT systems, in our problem, M does not refer

to any specific CDM (e.g., IRT), but an abstract model with

two basic functionalities: (1) M captures the knowledge states

of the examinees with a group of parameters θ without any

assumption about the detailed form or mechanism; (2) given

an examinee ei ∈ E and a question qj ∈ Q, M can output a

performance prediction M(ei, qj |θ) ∈ [0, 1] which measures

how likely ei can answer qj correctly. S accepts QU andM as

input, and outputs a question q ∈ QU , i.e., q = S(QU ,M). In

other words, it makes the selection from the untested question

set according to the current estimated knowledge states.

B. Goals

We now discuss the two goals for the selection strategy S .

1) Quality: Generally, a high-quality question helps reduce

the uncertainty of the examinee’s knowledge states. Therefore,

we quantify the quality of a question through its informative-
ness, i.e., how much information the underlying model M can

obtain from the question to update the estimate for knowledge

states. In this way, achieving the quality goal means to select

the most informative questions. To evaluate informativeness,

after the test for ei∈E, we predict the her performance with

M on the whole question pool, and measure it with some

metric such as AUC. We denote such measurement as Inf(S),
which will be discussed in detail in Section V.

2) Diversity: Generally, we consider a set of questions

to be diverse if it meets certain coverage requirements. We

intuitively measure diversity with knowledge coverage. As a

result, achieving the diversity goal means to select a set of

questions that has the maximum knowledge concept coverage.

After the test, We can evaluate the coverage by the proportion

of the knowledge concepts the tested question set QT covers,

denoted as Cov(S). We will discuss it in detail in Section V.

C. Problem Formulation

Inspired by active learning (Table I), we reformulate our

model-agnostic CAT problem, however, with a key difference

that we aim to achieve the problem considering both quality

and diversity goals as discussed above:

Problem Definition. Given a new examinee ei ∈ E, a

question pool Q with knowledge concepts K, our task is to

design a strategy S to select a N -size question set QT =
{q∗1 , q∗2 , ..., q∗N} step by step that has the maximum quality

and diversity. Before testing, we set up an abstract CDM M
with parameters θ capturing knowledge states. During testing,
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Fig. 2. Overview of our MAAT framework.

at step t (1≤ t≤N), we select one question q∗t = S(QU ,M),
then observe a new interaction test record r∗it =< ei, q

∗
t , a

∗
it >

and update the knowledge states, i.e., θ, in M instantly.

After testing, we measure the effectiveness of S by computing

Inf(S) and Cov(S).
IV. MAAT FRAMEWORK

A. Overview

We present the overview of our MAAT framework in Fig. 2.

For any examinee ei ∈ E, the proposed framework appropri-

ately generates a question set step by step in interaction with

her. At step t, MAAT selects one question from the untested

question set QU to the tested quesion set QT , which optimizes

both quality and diversity goals. The overall architecture can

be seen as three modules: Quality Module, Diversity Module
and Importance Module. Specifically, at step t, in Quality

Module, a candidate question set QC is selected from QU ,

which consists of the top-KC high-quality questions with

maximum informativeness. Then in Diversity Module, one

final question q∗t is selected from QC to QT , which contributes

the maximum marginal gain to the knowledge coverage of QT .

Additionally, to achieve a more efficient selection procedure,

we propose Importance Module to evaluate the importance

of knowledge concepts, which utilizes historical data for pre-

computation before testing.

B. Quality Module

We first introduce Quality Module, which is the first stage of

step t as shown in the upper left part of Fig. 2. The aim of this

module is to select a candidate set QC from QU consisting of

the top-KC high-quality questions (KC = |QC |). To achieve

that, we propose a score function, namely Expected Model
Change (EMC), which quantifies the quality of questions by

measuring their informativeness, i.e., how much information

they contain. Different from traditional CAT heuristic func-

tions [8], [9], EMC is independent of the details of the CDM.

The general idea behind is as follows. We make use of the

information contained in a question by updating our estimate

to the examinee’s knowledge states after observing her answer.

Therefore, the informativeness can be scored by how much the

diagnosis changes through a question. In MAAT, the knowl-

edge states are carried by the parameters of the abstract CDM,

i.e., θ inM. Regardless of the concrete mechanism, how much

the CDM changes implies the amount of information obtained

from the question. Specifically, if θ has a great change, the

question can be considered to be informative. Otherwise, if θ
hardly changes, knowing the response to the question brings

little information.

The challenge is that it is impossible to know the exam-

inee’s response before selection. Therefore, we compute the

expectation of model change w.r.t. the probability that the

examinee answers the question correctly, which is predicted

by M. Formally, let ΔM(rij) = |θ(Ri ∪ {rij})− θ(Ri)| be

the model change that would be obtained by adding the record

rij =< ei, qj , aij >, where θ(Ri) denotes the parameters

trained with ei’s current records, Ri, and so as θ(Ri ∪{rij}).
For every qj ∈ QU , we define its expected model change as:

EMC(qj) = Eaij∼pΔM(< ei, qj , aij >), (1)

p =M(ei, qj |θ(Ri)). (2)

For computational efficiency, we approximate ΔM(rij) with

the gradient caused by rij instead of retraining the model. This

approaximation is especially efficient for those CDMs using

gradient-based training, such as neural models.

With the EMC score function, for each untested question

qj ∈ QU , we evaluate EMC(qj) (Eq. (1)), and then select a

candidate set of the top-KC high-quality questions QC which

have the maximum informativeness.

C. Diversity Module

Now that we have a candidate set QC containing high-

quality questions, we turn to Diversity Module, which is the

second stage of step t as shown in the upper right part of Fig. 2.

In this module, we aim at selecting one question q∗t from QC

that optimizes the diversity goal. The neccessity of this stage

comes from the observation that our diagnosis will be likely
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one-sided if we overlook the diversity in question selection.

To achieve high diversity as well, we first propose a score

function that quantifies the knowledge coverage of the tested

question set QT , and then search for an algorithm to construct

QT with maximum coverage score by adding questions step by

step. The two main challenges are how to properly construct

the coverage score function and how to design the optimization

algorithm.

To solve the first challenge, we begin with a Naive Knowl-

edge Coverage (NKC) function, which simply calculates the

proportion of knowledge concepts covered by the selected

question set QT to all the knowledge concepts:

NKC(QT ) =

∑
k∈K Cov(k,QT )

|K| , (3)

Cov(k,QT ) = �[∃q ∈ QT , (q, k) ∈ G]. (4)

Although NKC is intuitive, we find it suffer from two practical

drawbacks: (1) It treats all the knowledge concepts equally and

cannot distinguish their importance. For example, in a math

test, if our tests focus more on “Algebra” than “Geometry”,

we should select more questions related to “Algebra” besides

covering both of them. (2) It is too strict since Cov(k,QT )
is binary depending on whether k is covered by QT , which

means that Cov(k,QT ) always equals to 1 as long as at least

one question in QT is related to k, regardless of the exact

count. This strong condition might result in the imbalance

of covered knowledge. For example, choosing 9 questions

related to “Algebra” and 1 question related to “Geometry” is

equivalent to choosing 5 of each under this condition, however

the latter is usually a better choice.

To this end, following the idea in [31], we add two novel

features to NKC (Eq. (3)): (1) to take importance of knowledge

concepts into consideration, we add an importance weight

wk for each knowledge concept k ∈ K; (2) to alleviate the

imbalance caused by the strict binary Cov(k,QT ) in Eq. (4),

we improve it into a soft form with incremental property, i.e.,

the value gradually grows from 0 to 1 as there are more and

more questions related to the knowledge concept. Formally,

we proposed an advanced score function named Importance
Weighted Knowledge Coverage (IWKC):

IWKC(QT ) =

∑
k∈K wk × IncCov(k,QT )∑

k∈K wk
, (5)

IncCov(k,QT ) =
cnt(k,QT )

cnt(k,QT ) + 1
, (6)

cnt(k,QT ) =
∑

q∈QT

�[(q, k) ∈ G], (7)

where wk is the added importance weight for concept k, which

is a positive constant. We will discuss the computation of wk in

Section IV-D. IncCov(k,QT ) is the incremental improvement

to Cov(k,QT ) in Eq. (4). For example, when the number

of questions related to k is 0, 1, 2, 3, ..., IncCov(k,QT )
gradually reaches 0, 0.5, 0.67, 075, ..., respectively, while as

Cov(k,QT ) discontinuously jumps from 0 to 1.

Note that though IWKC has been well constructed, the

sophisticated structure still brings the second challenge, i.e.,

how to select a set of questions which has the maximum

IWKC score in a step-by-step way. Indeed, this optimization

problem is proved to be NP-hard (Section IV-E). Fortunately,

we find a suboptimal solution with acceptable performance

by exploiting the submodular property of IWKC. Generally,

submodularity can be seen as a mathematical modelling to the

narural diminishing returns property [37]. For a submodular

set function, as the set gets larger, the marginal gain obtained

by adding one more element will decrease. Specifically, in

our case, as QT grows larger with selection steps going on,

the gain in coverage (i.e., IWKC) caused by adding the same

question will get slower. For clarity of our discussion, we

leave the formal proof later in Section IV-E. The submodular

property of IWKC provides us with a performance-guaranteed

greedy selection algorithm [37]. Generally, at step t in the

test, for each candidate question qj ∈ QC , we evaluate the

marginal gain of IWKC for QT if qj were added to QT , and

greedily select the one maximizing the marginal gain as the

t-step selection q∗t :

q∗t = argmaxqj∈QC
Δqj IWKC(QT ), (8)

Δqj IWKC(QT ) = IWKC(QT ∪ {qj})− IWKC(QT ). (9)

With the above algorithm, the ratio of QT ’s IWKC to the

optimal value is guaranteed to be at least 1− 1
e .

D. Importance Module

After demonstrating the two-stage procedure to select an

optimal question at each step during testing, we turn to

solve the problem of computing the importance weight wk in

IWKC (Eq. (5)). As shown in the lower right part of Fig. 2,

Importance Module pre-computes wk for each knowledge

concept before the test begins. The general idea is to consider

a knowledge concept to be important if its associated questions

are more representative. Typically, a question is considered to

be representative if it has similar characteristics with many

other questions. With a representative question, we can im-

plicitly examine many questions at the same time. To quantify

the representativeness of questions, we firstly represent them

with feature vectors so that each question can be seen as a

point in the embedding metric space. The closer a question is

to its neighbors, the more representative the question. Finally,

we obtain the importance weight of each knowledge concept

by averaging the representativenss (i.e., the density) of its

related questions. To accomplish the computation, we utilize

the historical data of the CAT system. Specifically, we have

historical examinees whose records are persisted and can be

used for training, which we denote as H = (EH , RH).
1) Test-Effect Embedding: The key point of embedding

questions is to define the distance metric between questions.

The general idea is that the historical examinees’ performance

on the question can characterize the question itself, such as

difficulty and differentiation. Thus we declare that questions

on which examinees perform similarly have Test-Effect sim-
ilarity, and define the question embedding following such

similarity as Test-Effect embedding. In order to train Test-

Effect embeddings, we extend the idea from Item2Vec [38].
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Specifically, for each historical record rij =< ei, qj , aij >,

we set up an input xij to represent both which question was

answered and if the question was answered correctly:

xij =

{
1|Q|(j)⊕ 1|Q|(j), if aij = 1

1|Q|(j)⊕ 0|Q|, if aij = 0
, (10)

where 1|Q|(j) denotes a |Q|-length one-hot vector with only
the jth position equal to 1, 0|Q| denotes a |Q|-length zero
vector, and ⊕ denotes vector concatenation. Then we train a
Skip-Gram Negative Sampling (SGNS) model [39]. Specifi-
cally, given a historical examinee ek ∈ EH , the optimization
objective is formulated as:

max
1

|RH
k |

∑

rki∈RH
k

∑

rkj∈RH
k

,j �=i

log p(rkj |rki), (11)

p(rkj |rki) = σ((Wxki)
Tvj)

Nneg∏

l=1

σ(−(Wxknl)
Tvnl), (12)

where Nneg is the negative sampling size, σ(x) = 1
1+e−x

is the Sigmoid function, W is a d × 2|Q| parameter matrix,

and vj is our Test-Effect embedding of qj with dimension d,

which we denote as qTE
j .

2) Test-Effect Density: Since the questions have been rep-

resented in the Test-Effect embedding space, we quantify the

representativeness of questions. First, We compute Test-Effect

similarity between two questions qi and qj as

SimTE(qi, qj) = e−γ|qTE
i −qTE

j |, (13)

where | · | is Euclidean norm and γ is a positive smoothing

parameter. Next, we define the Test-Effect density of each

question qj as the average similarity to its neighbors:

DenTE(qj) =
1

KN

∑
qi∈N (qj)

SimTE(qi, qj), (14)

where N (qj) contains the KN -nearest-neighbors of qj in the

Test-Effect embedding space. The larger Test-Effect density a

question has, the more representative it is.
3) Knowledge Importance: At last, we define the knowl-

edge importance of each knowledge concept k, i.e., wk, by

averaging the Test-Effect density of the questions related to it:

wk =
1∑

(q,k)∈G 1

∑
(q,k)∈G

DenTE(q). (15)

Substituting Eq. (15) into Eq. (5), we get the complete IWKC.

E. Theoretical Analysis
To be rigorous, we supplement the theoretical proofs about

the optimization with IWKC score function (Section IV-C).

Formally, we define the IWKC Maximization Problem as

follows: given a question set Q with associated knowledge

concepts K, the target is to identify a N -size subset QT with

the maximum IWKC:

max
QT⊂Q,|QT |=N

IWKC(QT ). (16)

First, we demonstrate the complexity of this problem:

Theorem. The IWKC maximization problem is NP-hard.

Proof: First, we introduce a classic NP-hard question,

namely weighted maximum coverage problem: given a number

k, a collection of sets S = {S1, S2, ..., Sm}, a domain of

elements E = {e1, e2, ..., en} each of which has a weight

wi, i=1, ..., n, the objective is to find a subset Sopt ⊂ S such

that |Sopt| ≤ k and the total weights of the elements covered

by
⋃

Si∈Sopt
Si is maximized. Next, we reduce the IWKC

maximization problem to the weighted maximum coverage

problem. We consider the knowledge concepts as the corre-

sponding elements, and the question set Q= {q1, q2, ..., qm}
covering concepts as the corresponding collection of sets. The

weight of each concept k corresponds to wk × IncCov(k,Q)
as defined in Eq. (5). Under this situation, the IWKC max-

imization problem is equivalent to the weighted maximum

coverage problem, and therefore is NP-hard.

Then we verify the submodular property of IWKC:

Theorem. IWKC is a nonnegative monotone submodular
function.

Proof: The nonnegativity and monotonicity of IWKC are

obvious since it grows from 0 to 1, so we focus on prov-

ing the submodularity. First, we claim that IncCov(k,QT )
(Eq. (6)) is submodular. Let ΔqjIncCov(k,QT ) =
IncCov(k,QT ∪{qj})−IncCov(k,QT ) be the marginal gain

of IncCov(k,QT ) when qj is added, which is calculated

as ΔqjIncCov(k,QT ) =
cnt(k,QT∪{qj})−cnt(k,QT )

(cnt(k,QT∪{qj})+1)(cnt(k,QT )+1) .

Consider the tested question sets at two consecutive steps,

Q′T ⊂ Q′′T ⊂ Q. As Q′T ⊂ Q′′T , we have cnt(k,Q′T ∪
{qj}) − cnt(k,Q′T ) ≥ cnt(k,Q′′T ∪ {qj}) − cnt(k,Q′′T ) and

(cnt(k,Q′T ∪ {qj}) + 1)(cnt(k,Q′T ) + 1) ≤ (cnt(k,Q′′T ∪
{qj}) + 1)(cnt(k,Q′′T ) + 1). Thus ΔqjIncCov(k,Q′T ) ≥
ΔqjIncCov(k,Q′′T ), which is the definition of submodularity.

Since IWKC is nonnegative linear combinations of IncCov,

the submodularity of IWKC can be easily derived from the

submodularity of IncCov.

Finally, we review the performance guarantee of the

marginal gain based greedy algorithm [37]:

Theorem. For any nonnegative monotone submodular func-
tion F , let S∗ be the N element set with the best performance
and S the same size set obtained by greedy algorithm, which
selects an element with maximum marginal gain each time,
and then F (S) ≥ (1− 1

e )F (S∗).

In our case, IWKC corresponds to the F above, and the

selected question set QT corresponds to the S.

F. Summary

In summary, the flowchart of MAAT framework is as

Algorithm 1, which adpots a two-stage solution for the multi-

objective optimization [34], [35]. MAAT has the following ad-

vantages: (1) it is model-agnostic and suitable for a wide range

of CDMs, including those which traditional CAT methods can-

not fit in; (2) it optimizes both quality and diversity with novel

score functions and has an efficient performance-guaranteed

optimization algorithm. It is worth noting that MAAT keeps a

balance of the two goals with the hyperparameter KC , the size

of the candidate set connecting Quality Module and Diversity

Module, which will be explored further in Section V.
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Algorithm 1 MAAT Flowchart

Data: Q,K,G,H
Input: M; ei ∈ E
Output: A N -length test sequence QT = {q∗1 , q∗2 , ..., q∗N}
Initialization:

create M with H and randomly initialize θ
train Test-Effect embedding for q ∈ Q (Eq. (11) (12))

compute importance weight for k ∈ K (Eq. (15))

QU = Q,QT = ∅
for t = 1 to N do
∀qj ∈ QU , calculate EMC(qj) (Eq. (1))

QC = {top KC questions with maximum EMC}
q∗t = argmaxqj∈QC

Δqj IWKC(QT ) (Eq. (9) (5))

QU = QU − {q∗t }
QT = QT ∪ {q∗t }
observe r∗it =< ei, q

∗
t , a

∗
it >

update M(θ)
end for

V. EXPERIMENT

In this section, we evaluate our MAAT framework on two

real-world datasets. In addition, we conduct an ablation study

on how MAAT keeps a balance of quality and diversity. Our

codes are available in https://github.com/bigdata-ustc/MAAT.

A. Dataset Description

We use two real-world educational datasets, namely EXAM

and ASSIST. The EXAM dataset was supplied by iFLYTEK

Co., Ltd., collected from an online educational system where

students took exams for testing. On this system, we collected

the data records of junior high school students on math tests

as well as the associated knowledge concepts of those ques-

tions, such as “Algebra”. ASSIST is an open dataset, namely

Assistments 2009-2010 skill builder*, that recorded students’

practice on math. Each question contained in ASSIST is

associated with one or more knowledge concepts such as

“Absolute Value”.

B. Experimental Setup

1) Data Preprocessing and Partition: For the sake of the

reliability the experimental results, we apply the following data

preprocessing. First, in both EXAM and ASSIST, we filter the

knowledge concepts that have less than 10 related questions;

Second, in ASSIST, we filter the questions that are answered

by less than 50 students and the students that answer less than

10 questions. Detailed statistics are presented in Table II.

In our experiment, we partition the data into historical data
and testing data for different purposes. The historical data,

denoted as H = (EH , RH) before, are assumed known before

the tests begin. H is used for the CDMs to initially learn some

parameters fixed during testing, such as the difficulty of the

questions. In addition, MAAT utilizes H as input for question

embedding to compute the knowledge importance weights

*https://sites.google.com/site/assistmentsdata/

TABLE II
STATISTICS OF THE DATASETS

Dataset EXAM ASSIST
Num. students 4,307 1,505
Num. questions 527 932
Num. concepts 31 22
Num. records 105,586 59,500
Avg. records per student 24.5 39.5
Avg. records per question 200.4 63.8
Avg. questions per concept 17.0 44.38

(Section IV-D). The testing data are used to simulate an

adaptive testing environment. The students in testing data are

treated as examinees that are new to the CAT system, and their

records are assumed unknown until we select the questions

for them during testing. On the other hand, for evaluation, we

limit our selection to those questions whose response has been

recorded in the testing data during our experiment. Therefore,

to ensure that the candidate question set is large enough, we

partition those students with more records into the testing data.

Specifically, for EXAM, we divide the students who answered

at least 100 questions into the testing data; for ASSIST, we

divide the students who answered at least 150 questions into

the testing data. The remaining parts are left as historical data.

2) Parameter Setting: We set the test length N = 50,

which is quite enough for typical tests in practical. In Quality

Module, we set the size of the output candidate set, KC=10.

In Importance Module, we set Nneg =10 (Eq. (12)), γ=0.1
(Eq. (13)), KN =10 (Eq. (14)).

C. Baseline Approaches

To evaluate our model-agnostic framework, we compare

it with classic model-specific methods designated to two

different CDMs. Additionally, we conduct experiments with

a deep learning CDM that classic approaches do not fit in.

First, the random selection strategy, RAND, is a benchmark

to quantify the improvement of other methods.

IRT [10] is the most popular CDM in CAT, and the

corresponding CAT baselines are:

• MFI: Maximum Fisher Information [12], [9] is the most

popular selection strategy which measures the informa-

tion of questions with the Fisher information function.

• KLI: Kullback-Leibler Information [21] is a global infor-

mation heuristic that measures the informativeness with

Kullback-Leibler divergence.

MIRT [11], as a multidimensional extension of IRT, shows

its potential in multitrait ability estimation. In order to adapt

to MIRT, the IRT-based methods were also extended. So we

compare MAAT to the following baselines on MIRT:

• D-Opt: D-Optimality [23], termed in the optimization

termilogy, is a multivariate extension of MFI.

• MKLI: Multivariate Kullback-Leibler Information [24] is

a direct generlization of its unidimensional version, KLI.

NCDM (Neural Cognitive Diagnosis Model) [20] is one

of the most recent deep learning CDMs. Though NCDM has

shown great power, to the best of our knowledge, there is no

existing methods able to work with it because of its extremely
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TABLE III
QUALITY COMPARISON WITH INFORMATIVENESS METRIC

(a) EXAM
Methods

IRT MIRT NCDM
@25 @50 @25 @50 @25 @50

RAND 0.6435 0.7076 0.7426 0.7767 0.7081 0.7566
MFI 0.7092 0.7207 - - - -
KLI 0.7081 0.7257 - - - -

D-Opt - - 0.7515 0.7710 - -
MKLI - - 0.7502 0.7747 - -
MAAT 0.7192 0.7319 0.7600 0.7861 0.7614 0.7868

(b) ASSIST
Methods

IRT MIRT NCDM
@25 @50 @25 @50 @25 @50

RAND 0.6619 0.6664 0.6734 0.6902 0.6832 0.7217
MFI 0.6659 0.6691 - - - -
KLI 0.6658 0.6692 - - - -

D-Opt - - 0.6832 0.7004 - -
MKLI - - 0.6781 0.6877 - -
MAAT 0.6674 0.6703 0.6903 0.7063 0.7084 0.7334

complex mechanism. So we compare MAAT with only RAND

to show our improvement. The point is that with a comparison

between the results of MAAT on different CDMs, we can

validate the advantage of being model-agnostic.

D. Evaluation Metrics

We measure quality and diversity with the informativeness

and coverage of the strategy (i.e., Inf(S) and Cov(S))
respectively (Section III). In addition, we introduce a metric

that has been commonly used in traditional CAT studies.

1) Informativeness Metric: Following the discussion in

Section III, we measure the quality through the informative-

ness of the selection strategy. Specifically, for each examinee

ei in the testing data, we predict her performance on every

question qj whose ground truth has been recorded. Then we

adopt the common AUC (Area Under ROC) metric:

Inf(S) = AUC({M(ei, qj |θ)|ei ∈ E, qj ∈ Q}). (17)

2) Coverage Metric: We measure the diversity through

the coverage of the selection strategy. Since there is no

universal standard, we adopt a simple form for Cov(S), i.e.,

the proportion of knowledge concepts covered in the questions

selected by the strategy:

Cov(S) = 1

|K|
∑

k∈K �[k ∈ QT ]. (18)

3) Simulated Estimate Error Metric: Traditional CAT stud-

ies have a different evaluation process called simulation study,

which generates imaginary data instead of using real-world

data. For example, with IRT model, a group of simulated
parameters is generated representing the ability of examinees,

the difficulty of questions, etc. These parameters are used

to generate imaginary records with Item Response Theory

[10]. Then experimentally estimate the simulated parameters

in turn with the records. To evaluate the effectiveness of the

strategy, at each step in the test, we calculate the mean squared

error between the estimated parameters and the simulated

parameters, namely Simulated Estimate Error (SEE):

SEE(S) = 1

|E|
∑

ei∈E
(θi − θ∗i )

2, (19)

where θi and θ∗i are the estimated and simulated parameters

related to the examinee ei ∈ E, respectively. In traditional case

studies, θ∗i is randomly generated as ground truth. To show

that our measurement is consistent with the traditional one,

we also evaluate the proposed framework with SEE metric.

Because we conduct experiment on real-world data, we use

the estimated parameters trained on the whole data records as

θ∗i , instead of generating them.

E. Experimental Results

1) Quality Comparison: Table III reports the compari-

son of quality with the informativeness metric, i.e., AUC@t

(Eq. (17)). We show the results in the middle (step t = 25)

and the end (step t = 50) of tests. First, MAAT is proven

to be model-agnostic since it can adapt to all the CDMs.

Second, we can easily see that, on both datasets, MAAT shows

outperforming results with all CDMs during the test, which

indicates that MAAT is fairly effective in achieving the quality

goal. It is worth noting that MAAT makes no use of the

details of the CDMs compared with the baseline approaches.

Third, the overall results become better as the CDM becomes

more complex, which is reasonable because complex CDMs

do better in capturing the ability of the examinees. This

observation confirms the advantage of being model-agnostic:

MAAT can improve the CAT system by making it flexible to

replace the CDM without redesigning the strategy.

2) Diversity Comparison: Fig. 3 illustrates the comparison

of diversity with coverage metric (Eq. (18)). MAAT frame-

work outperforms much on both datasets with all CDMs,

because it has an intrinsic knowledge-level coverage goal and

a performance-guaranteed optimization algorithm while other

methods do not. As shown in the curve charts, the coverage

of MAAT grows fairly rapidly in the early steps of tests

and quickly approaches the limit of 1. This feature is very

important for CAT because adaptive tests are typically short.

In addition, we observe that traditional selection strategies,

such as MFI and KLI, also help with the coverage goal,

though they only intrinsically aim at informativeness. This

observation reveals that quality and diversity are correlated

instead of contradictory. Both of them can benefit the target

of offering better diagnosis results for examinees.

3) Consistency Validation: Though we have evaluated the

quality and diversity of MAAT, it remains important to validate

the consistency of our evaluation measurement. Therefore, we

conduct experiment with the Simulated Squared Error metric

(Eq. (19)) additionally. The results are reported in Fig. 4.

Since simulation study is only suitable for those CDMs with

extremely simple and explainable parameters, we only conduct

the simulation with IRT. We can see that MAAT also performs

well in SEE metric.

4) Ablation Study: We conduct an ablation study on how

the MAAT framework keeps a balance when quality meets
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(a) IRT on EXAM (b) IRT on ASSIST

(c) MIRT on EXAM (d) MIRT on ASSIST

(e) NCDM on EXAM (f) NCDM on ASSIST

Fig. 3. Diversity Comparison with Coverage Metric

diversity. The key point is the size of the candidate set,

KC , which connects Quality Module and Diversity Module.

Specifically, when KC = 1, only Quality Module works;

when KC ≡ |QU |, only Diversity Module works. Therefore,

we observe how quality and diversity change with KC in

these boundary conditions. Due to limited pages, we show the

results with NCDM on EXAM as an example in Fig. 5. The

change in diversity is straightforward: the larger KC , the faster

the coverage metric increases. Specially, when only Diversity

Module works (KC ≡ |QU |), we achieve the performance

guarantee discussed in Section IV-C. Moreover, we observe

that the diversity quite approaches the theoretical limit when

KC is a small value (i.e., KC = 10). Note again that when

only Quality Module works (i.e., KC = 1), there is still

improvement on diversity compared with RAND benchmark,

because the two goals are correlated. The change in quality is

slightly more interesting. The case KC = 1 does not always

perform the best because Diversity Module and Importance

Module can also help with quality by taking coverage and

importance into consideration. To sum up, a relatively small

KC keeps the best balance of quality and diversity.

5) Case Study: We present the first 10 steps of a typical

examinee in EXAM for case study (Table IV). For better

illustration, we only compare MAAT with the best baselines in

the previous experiment, i.e., D-Opt and MKLI on MIRT. For

each methods, we show the associated knowledge concepts in

the first column and the informativeness metric, i.e. AUC@t

(Eq. (17)), at the corresponding step in the second column. We

abbreviate the knowledge concepts, such as “Linear Equation

(a) EXAM (b) ASSIST

Fig. 4. Simulated Estimate Error comparison

(a) Quality (b) Diversity

Fig. 5. Change in quality and diversity with different KC for ablation study

in One Variable” to “Equation”. We can clearly see that, our

MAAT framework can select diverse questions while keeping

high quality as well. Specifically, with a slightly outperforming

AUC, MAAT covered 9 knowledge concepts with the first

10 selected questions, while D-Opt and MKLI covered only

5 and 6 respectively. Moreover, the two baselines tended to

select more questions about “Function”, while MAAT did not.

Therefore, our MAAT framework makes better selections with

a good balance of quality and diversity.

VI. CONCLUSIONS

In this paper, we studied a novel model-agnostic CAT prob-

lem. We proposed a novel Model-Agnostic Adaptive Testing

framework (MAAT) for the solution with addressing the

problem of selecting both high-quality and diverse questions

in the testing procedure. In MAAT, we designed three sophis-

ticated modules that worked cooperatively and iteratively. At

each selection step, Quality Module firstly selected a small

candidate set of the most informative questions with EMC

score function. Diversity Module then selected one question

from the candidates maximizing the knowledge coverage via

IWKC, where the importance weights were pre-computed in

Importance Module. Moreover, we proved that our problem

was NP-hard, and provided an efficient and effective solution

by the submodular property. Extensive experiments demon-

strated that MAAT was flexible for any CDMs and could

generate both high-quality and diverse questions in CAT. We

hope this work can lead to more studies in the future.
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TABLE IV
RESULTS ON A TYPICAL EXAMINEE FOR CASE STUDY

MAAT D-Opt MKLI
Concept Inf Concept Inf Concept Inf
Function 0.6666 Function 0.6652 Triangle 0.6645

Set 0.6710 Equation 0.6686 Algebra 0.6689
Equation 0.6763 Equation 0.6717 Equation 0.6732
Triangle 0.6841 Triangle 0.6756 Function 0.6774
Algebra 0.6905 Geometry 0.6801 Algebra 0.6810
Triangle 0.6961 Function 0.6857 Function 0.6843

Coordinates 0.7022 Geometry 0.6914 Function 0.6887
Geometry 0.7087 Triangle 0.6956 Triangle 0.6929

Real Number 0.7136 Algebra 0.6963 Inequality 0.7001
Equation 0.7188 Function 0.6998 Geometry 0.7057
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