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Abstract—Reasoning answers to mathematical problems re-
quires machines to think and operate like a human to learn
knowledge from mathematical data, which is one of the funda-
mental tasks for exploring general artificial intelligence. Most
solutions focus on mimicking how humans understand problems,
which generate the necessary expressions for answers. However,
they are still far from enough since they ignore the core
ability of humans to acquire knowledge from experience. In
this paper, we propose a Cognitive Solver (CogSolver) that is
capable of autonomously learning knowledge from scratch to
solve mathematical problems, inspired by two cognitive science
theories. Specifically, we draw one insight from the dual process
theory to establish an intelligent BRAIN-ARM framework, and
refer to another information processing theory to summarize
the knowledge learning process into Store-Apply-Update steps. In
CogSolver, the BRAIN system stores three types of mathematical
knowledge, including semantics knowledge, relation knowledge,
and mathematic rule knowledge. Then, the ARM system applies
the knowledge in BRAIN to answer the problems. Specifically, we
design a knowledge-aware module and a commutative module in
ARM to improve its reasoning ability, where the knowledge is or-
ganically integrated into answer reasoning process. After solving
the problems, BRAIN updates the stored knowledge according
to the feedback of ARM, where we develop knowledge filters to
eliminate the redundant ones and further form a more reasonable
knowledge base. Our CogSolver carries out the above three
steps iteratively, which behaves more like a human. We conduct
extensive experiments on real-world math word problem datasets.
The experimental results demonstrate the improvement in answer
reasoning and clearly show how CogSolver gains knowledge from
the problems, leading to superior interpretability. Our codes are
available at https://github.com/bigdata-ustc/CogSolver.

Index Terms—knowledge learning, mathematical reasoning

I. INTRODUCTION

Automatically solving mathematical problems is a crucial

step towards general artificial intelligence. It requires machines

to learn knowledge from data, understand mathematical logic,

and conduct cognitive reasoning like a human [15]. Therefore,

the ability to reason mathematical answers is viewed as a

sign of the level AI achieves [39]. Among various types of

problems, we specify math word problems (MWP) in this

paper, which is an important branch and has attracted much

attention since the 1960s [39]. Figure 1 shows a toy example.

The MWP can be expressed as a short narrative that describes a

problem and poses a question about an unknown quantity. The

* Corresponding Author.

Fig. 1. Example of human learning process.

machine is required to understand the verbal description (Jack

has 3...) which involves words (e.g., Jack, has) and quantities

(i.e., 3, 2), and reason the answer for the unknown quantity

(i.e., 5). To solve this problem, one needs to understand and

translate the problem sentence into an expression (e.g., 3+2)

composed of numbers (e.g., 3, 2) and operators (e.g., +).

In the literature, existing efforts in solving MWP can be

categorized into rule-based, statistic-based, semantics parsing-

based, and deep learning-based [39]. Recently, inspired by lan-

guage translation research, Seq2Seq method [36] has emerged,

which inputs the problem sentence and outputs the expression

as a sequence directly. Furthermore, advanced work, including

Seq2Tree [38], Graph2Tree [40], and Seq2DAG [5], decodes

the problem as a tree or a direct acyclic graph to improve the

validity of expressions. Though previous work has achieved

great success, there is still a certain gap with human-like

intelligence manifested in two aspects. On one hand, humans

can naturally learn knowledge from solving mathematical

problems [14]. For example, we acquire the knowledge that

“banana” (or “apple”) is a kind of “fruit” from the problem

in Figure 1. This knowledge is highly interpretable to humans

and can be expressed explicitly. However, existing methods

mainly focus on training models to improve the comprehension

ability, including better understanding the semantic meaning

and sentence structure in problems. Their learning results

are often represented as neural networks, which lack the

interpretability for the above relation knowledge. On the other

hand, humans can apply the learned knowledge to answer

unseen problems [33]. For example, the learned knowledge

(“banana” is a kind of “fruit”) is the basis for correctly

reasoning the expression 2+4 to another problem “John has 2

bananas and Lisa has 4 pears, how many fruits do they have?”.
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Such ability is important to build a model with high general-

ization performance. In summary, we argue it is essential to

empower machines with the ability to autonomously learn and

apply knowledge as human cognitive processes do, which we

specifically explore under MWP scenario in this paper.

To this end, we turn to some cognitive science theories

for inspiration. We draw the first insight from dual process

theory [10], [16], [22], which states that human cognitive

processes require two systems: System 1 and System 2. System

1 retrieves relevant information in a fast and instructive way,

while System 2 conducts deeper reasoning in an analytic and

sequential manner. Therefore, we propose a novel Cognitive

Solver (CogSolver) that contains BRAIN-ARM systems as

the foundation of human cognition. They work in a similar

way to System 1 and 2 respectively. We specify that BRAIN
retrieves and provides knowledge related to a problem, based

on which ARM reasons the answer step by step. Overall,

BRAIN manages shared knowledge of all problems, while

ARM solves a specific problem, both of which are necessary.

One step further, inspired by information processing the-

ory [1], [6], [32], we operate the learning process of our

CogSolver as a circular procedure consisting of three steps:

Store-Apply-Update iteratively. To be more specific, in Fig-

ure 1, our CogSolver first stores the knowledge that “and”

is a conjunction and “banana” is a kind of “fruit”. Then it

applies this knowledge to answer the problem “Jack has...”.

After figuring out this problem, it might update the knowledge

by realizing that “and” may also represent “+” and “apple”

is another kind of “fruit”, which is useful for answering other

problems. The above three steps are performed in the two

systems respectively, where BRAIN controls the storage and

update steps, and ARM conducts the application step.

However, it is non-trivial to carry out these three steps due

to the following challenges. First, there are various types of

knowledge in MWP, such as the semantics of tokens (words

and operators), relationships between tokens (e.g., “apple”

with “fruit”, “add” with “+”), along with mathematical prop-

erties (e.g., commutative law). It is challenging to represent

and store this different knowledge altogether. Second, we need

to design targeted mechanisms to apply different types of

knowledge, while also combining knowledge with contextual

information when reasoning answers [13]. For example, “and”

implies “+” in the problem “Jack has...” in Figure 1, while

may represent as a conjunction in other sentences. Therefore,

knowledge about the relationship between “and” and “+”

should be applied differently under different problem contexts.

Third, the mechanism of knowledge updating in the human

brain remains underexplored at present. It is coupled with

the manner of knowledge storage, which makes it more

challenging to design suitable update methods.

To address these challenges, we implement CogSolver as

follows. We first define and store three types of neces-

sary mathematical knowledge in BRAIN, including semantics
knowledge, relation knowledge, and mathematic rule knowl-
edge. Then, when applying knowledge to solve a problem

in ARM, we propose a knowledge-aware module to combine

semantics knowledge and relation knowledge with contextual

information, where a novel Hierarchical Graph Convolutional

Network (HGCN) is designed to simulate the human reasoning

process. Meanwhile, we propose a commutative module to

apply mathematic rule knowledge to further enhance the rea-

soning ability. After solving the problem, BRAIN updates the

semantics knowledge through back-propagation and relation
knowledge with knowledge filters to reduce redundancy. The

updated knowledge is further stored, and the cycle of Store-
Apply-Update repeats in the subsequent learning process to

gradually form a mathematical knowledge base in BRAIN.

We conduct extensive experiments on two real-world

datasets. The experimental results show that our CogSolver

can autonomously and effectively learn reasonable knowledge

from MWP, and further utilize them to produce better answers

with interpretable reasoning processes. To the best of our

knowledge, this work is the first attempt that autonomously

learns knowledge to solve MWP by constructing BRAIN-ARM
systems and specifying the learning process into Store-Apply-
Update steps, whose main ideas are quite general and can be

potentially applicable to other mathematical problems.

II. RELATED WORK

In this section, we summarize the related work as follows.

Math Word Problems. In the literature, existing MWP

solvers can be classified into rule-based, statistic-based, se-

mantics parsing-based, and deep learning-based [39]. Specif-

ically, rule-based methods rely on manually crafted schemas

and pattern matching [2], while statistic-based methods lever-

age traditional machine learning models like SVM to select

and complete pre-defined templates [27]. Semantic parsing-

based methods focus on the semantic structure of the textual

sentences and derive math expressions after constructing them

into logic forms [31]. However, these methods require hand-

crafted templates, rules, representation language, and so on,

which limits their applications on large-scale datasets and

causes low generality. Due to the advantage of deep learning

in feature extraction, Wang et al. [36] first used a recurrent

neural network to translate math word problems into equation

templates. Then, approaches including Seq2Tree [23], [37],

[38], Graph2Tree [40], Seq2DAG [5], and reinforcement learn-

ing [12] have been developed. For example, Xie et al. [38]

proposed a top-down goal decomposition process to generate

expression trees, motivated by the goal-driven mechanism in

human problem solving. Zhang et al. [40] constructed graphs

to enrich quantities’ representations with the relationships

and order information. Wu et al. [37] incorporated external

knowledge and built an entity graph for each problem to obtain

better problem understanding. Besides, pre-trained language

models such as BERT [21], RoBERTa [17], BART [30] have

also been utilized to promote comprehension of problems.

Apart from arithmetic problems with only one variable, other

difficult mathematical problems like equation set problems [5],

geometric word problems [28], and new conjectures discov-

ery [7] also attract great attention.
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Fig. 2. Framework of CogSolver. The top-level BRAIN stores and updates knowledge. The bottom-level ARM applies knowledge.

Cognitive Science Theories. Cognitive science investigates

the human brain by bringing studies in psychology, linguistics,

anthropology, philosophy, and so on [3]. Here, we introduce

two theories about the human cognitive structure and the

reasoning process related to our work. First, dual process
theory [10], [16], [22] points out that two separate cognitive

systems are underlying human thinking and reasoning process.

System 1 includes instinctive behaviors that are innately

programmed and retrieves information in a fast, unconscious,

and implicit way. System 2 conducts a slow, conscious, and

explicit sequential thinking process. Based on this, previous

attempts have been made for some machine learning tasks,

such as question answering [8] and knowledge graph reasoning

[9]. In our CogSolver, BRAIN resembles System 1 due to

its role as a guider and knowledge provider, while ARM
operates similarly to System 2 since it produces the answers.

Second, information processing theory [1], [6], [32] states

that the mind’s machinery includes bringing information in,

manipulating information, and holding information, which

are conducted in sensory memory, short-term memory, and

long-term memory respectively. Further, it defines cognitive

processes as mental activities that help information transfer

from one memory to another, such as attention, perception,

repetition, coding, and retrieving [6]. As we focus on how

machines gain knowledge from experience, mechanisms as-

sociated with long-term memory should be emphasized. We

summarize the related activities into three steps. First, the abil-

ity to hold information refers to knowledge storage. Second,

repetition and coding are activities that transfer information

from short-term memory to long-term memory, which means

summarizing the commonly used methods or steps in MWP

as knowledge and is thus relevant to knowledge update. Third,

retrieving information from long-term to short-term is taking

advantage of what already know, coincident with the process

of knowledge application for answer reasoning.

Our work differs from previous studies as follows. First,

existing approaches mainly focus on training models to get a

better understanding of problems, while our work investigates

how humans learn knowledge and designs corresponding rea-

soning mechanisms to apply learned knowledge for improving

answer generation results. Second, the recent method [37]

tries to utilize external knowledge bases to solve MWP,

and thus is limited when manually constructed knowledge is

unavailable. Comparatively, our work can autonomously learn

knowledge from scratch, which is more in line with the goal

of general artificial intelligence and achieves better flexibility.

Last but not least, we construct a superior framework of human

cognition by specifying three steps in the learning process

summarized from information process theory and unifying

them with intelligent systems stated in dual process theory.

III. COGNITIVE SOLVER: TWO SYSTEMS

In this section, we first give formal definition of MWP task.

Then we introduce the BRAIN-ARM systems of our CogSolver.

A. Problem Definition

The input of a math word problem P is a sequence of n
word tokens and numeric values: P = {p1, ..., pn} where pi is

either a word token (e.g., “banana”) or a numeric value (e.g.,

“3”). We define the numeric values in P as NP .

The output of P is a numeric answer sP derived from

an expression EP = {y1, ..., ym} that is a sequence of m
symbols. Each symbol yi comes from the decoding target

vocabulary VP . VP is composed of the operator set VO (e.g.,

{+,×,−,÷}), numeric constant set VC (e.g., 1, 2, π), and NP ,

i.e., VP = VO ∪ VC ∪NP . Note that different problems may

have different VP since NP varies with the input.

The goal of MWP is to train a model that reads the input

problem P and calculates the numeric answer sP based on a

generated valid mathematical expression EP .

B. BRAIN-ARM Systems

We establish the CogSolver with two systems: BRAIN-ARM
as the foundation as shown in Figure 2, referring to the idea of

dual process theory [10], [16], [22] to model human cognition.

Specifically, the top-level system is BRAIN which guides the

bottom-level ARM to solve a problem. They work similarly to

System 1 and 2 in the theory respectively.

The autonomously learning process for MWP is as follows.

Given a problem, BRAIN first retrieves stored knowledge to

ARM, and then ARM applies the knowledge and conducts
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Dependency

Fig. 3. Knowledge application. Left part shows the solving process. Right part illustrates details of knowledge-aware module.

cognitive reasoning to figure out the problem (i.e., generate the

expression). Finally, BRAIN updates the knowledge according

to the feedback of ARM for future applications.

IV. COGNITIVE SOLVER: THREE STEPS

We draw insights from information processing theory [1],

[6], [32] and carry out the knowledge learning process of

CogSolver in three steps: Store-Apply-Update iteratively. They

are operated in BRAIN-ARM systems respectively. In this

section, we describe the implementation details of these steps.

A. Knowledge Storage

In CogSolver, BRAIN stores three types of knowledge for

MWP as shown in Figure 2, including semantics knowledge,

relation knowledge, and mathematic rule knowledge. They are

all explicit and interpretable.

Semantics knowledge refers to the meanings of mathemat-

ical tokens (words and operators) and can be represented

as feature vectors in the conceptual space [22]. We denote

the semantic vectors of tokens, including words as W =
{w1, ..., wN , wi ∈ Rd}, and operators as O = {o1, ..., oC , oc ∈
Rd}, where N, C are the number of words and operators in

the field of MWP, and d is the dimension.

Relation knowledge describes the relationships between

tokens, which is further divided into two types. The first

is word-word relation or the so-called common-sense [4].

Note that in this paper, we focus more on the types of

knowledge instead of the exact meaning of such relationship

(e.g., hypernymy, antonymy) [29]. Therefore, we adopt a real

value wwi,j ∈ [0, 1] to store the overall relation strength

between words i and j instead of a binary one because one

word can have multiple meanings, not all of which have the

relationship [24]. For instance, “apple” belongs to “fruit” when

it is considered as food, while does not when it represents the

corporation. The second is word-operator relation (e.g., “add”

is highly related to “+”). Similarly, we denote the relation

strength between word i and operator c as woi,c ∈ [0, 1].
Mathematic rule knowledge indicates mathematical rule. In

this work, we consider the commutative law for simplicity.

Commutative law is a defined property of operators. We set the

rule for machines that “+” and “×” satisfy the commutative

law, while “−” and “÷” do not. This setup is similar to

a teacher introducing commutative law directly to students,

which can avoid confusion of basic mathematical concepts.

Specifically, the semantics knowledge and relation knowl-
edge together constitute a knowledge graph in BRAIN, denoted

as BG, whose node representations and edge strength are

initialized randomly and will be updated as illustrated in

section IV-C to achieve learning from scratch autonomously.

B. Knowledge Application

The process of solving a specific problem is completed by

the application step conducted in ARM as shown in Figure 3.

It follows the encoder-decoder manner, where we propose

a novel knowledge-aware module and a novel commutative

module in decoder to enhance ARM’s ability to reason answers

based on knowledge retrieved from BRAIN. Generally, given a

problem P = {p1, ..., pn}, we first retrieve relevant semantics
knowledge into ARM’s encoder. Then we combine its output

with relation knowledge to construct a problem-specific graph

PGt in ARM’s decoder. After that, we conduct cognitive rea-

soning on PGt (t = 1, ...,m) in the knowledge-aware module

to predict the expression EP = {y1, ..., ym} (represented as

tree) symbol by symbol, during which the mathematic rule
knowledge is applied in the commutative module to improve

the reasoning ability implicitly.
1) Encoder: ARM’s encoder reads problem P and produces

hidden representations of words H = (h0
1, ..., h

0
n) and the

initial goal q1 of the decoder for reasoning. Specifically, we

initialize word pi in P with semantics knowledge wi from

BRAIN and feed {w1, ..., wn} into a neural network fθ as

(1). Note that fθ can be implemented ranging from LSTM,

BERT, to specific MWP encoders (e.g., HMS [23]). We do not

emphasize their differences and adopt the hierarchical encoder

in HMS [23] as it simulates human reading habits.

H ∈ R
n×d1 , q1 ∈ R

d1 = fθ(w1, ..., wn). (1)

2) Decoder: ARM’s decoder takes the general goal-driven

mechanism [38] to reason the expression EP , which generates

one token yt at time t based on problem P and all the previous

outputs {y1, ..., yt−1}. Generally, given problem P and target

expression EP in the training set, the prediction loss is:

LossP =
∑m

t=1
− logP(yt | y1, ..., yt−1, P ). (2)

As shown in Figure 3, our decoder consists of four main parts:

Problem Graph, Knowledge-aware Module, Symbol Pre-
diction, and Commutative Module. Generating each yt re-

quires a process conducted in these four parts. Specifically, the
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problem graph PGt first gets existing semantics knowledge,

relation knowledge, and goal qt. Then the knowledge-aware

module computes context-related semantics and relation in

PGt, and derives an interim goal q′. Based on the semantics, a

pointer-generator network [12] is used to predict yt. Then, the

next goal qt+1 is generated with q′ by the commutative module

which applies mathematic rule knowledge. Consequently, the

problem graph PGt evolves into PGt+1, which is used to

conduct the next reasoning step for generating yt+1.

In particular, we introduce commutative loss LossC in the

commutative module to implicitly ensure that the reasoning

results conform to the mathematic rule knowledge (i.e., com-

mutative law). Overall, the loss to be minimized is:

Loss = LossP + λLossC . (3)

where λ is a hyper-parameter that keeps a balance between

symbol prediction loss and commutative loss.
3) Implementation of decoder: In the following, we de-

scribe the details of the four parts in our ARM’s decoder.

Problem Graph. Given problem P , we maintain a problem

graph PGt = (V,E) to organize relevant semantics knowledge
and relation knowledge, which will evolve into PGt+1 after

completing current reasoning step at time t that generates yt. V
is a node set containing words {ht−1

i , i = 1, ..., n} from P , all

operators {ot−1
c , c = 1, ..., C} and current goal qt. E is a set of

undirected weighted edges between words, operators and goal.

We denote the edges in E between words and words, words

and operators as wwt−1
i,j , wot−1

i,c , respectively. We also build

dependency edges in E between words in a clause to capture

the semantic structure of problem P by stanford corenlp toolkit
[25]. Besides, the edge wgti ∈ E between goal qt and word

i that describes how focused qt is on i is calculated by the

hierarchical attention mechanism [23].

In summary, PGt is composed of three types of nodes

and four types of edges. The superscript t − 1 indicates that

ht−1
i , ot−1

c , wwt−1
i,j , wot−1

i,c are knowledge prior to time step

t. To be notice, at the first step t = 1, o0c , ww
0
i,j , wo

0
i,c in

PG1 are initialized with semantics knowledge oc and relation
knowledge wwi,j , woi,c retrieved from BRAIN respectively.

Thus, PGt can be seen as a subgraph of the overall BG stored

in BRAIN that is fine-tuned for current reasoning step.

Knowledge-aware Module. Directly applying knowledge in-

cluding semantics ht−1
i , ot−1

c and relation wwt−1
i,j , wot−1

i,c in

PGt may be unsuitable to current reasoning step (recall the

example of “and” in different contexts). Thus, this module

aims at integrating this knowledge with contextual information

implied in current goal qt for subsequent symbol prediction.

It processes semantics, relation and derives the interim goal

successively, illustrated in (K1.), (K2.) and (K3.) respectively.

(K1.) For semantics in PGt, we propose a hierarchical

graph convolutional network (HGCN) to propagate the infor-

mation from current goal qt to the upper levels of PGt to

simulate the human reasoning habits. For example, to solve the

goal qt representing “How many fruits do they have”, humans

first notice the word “and” in the problem (Figure 3), and then

get the correct symbol by associating it with “+”. Therefore,

information in qt should be first propagated to words, and then

to operators, following a hierarchical manner.

Specifically, HGCN first updates the word semantics ht
i by:

AGGi = [wgti · qt,
∑n

j=1
wwt−1

i,j · ht−1
j ,

∑
j∈Nd(i)

ht−1
j ],

h′i = ReLU(Wu ·AGGi + bu),

fi = σ(Wfw · [ht−1
i , AGGi] + bfw),

ht
i = fi · ht−1

i + (1− fi) · h′i,
(4)

where σ is the sigmoid function, Wu,Wfw, bu, bfw are learn-

able parameters. AGGi aggregates word i’s neighbors in

different relationships with concatenation [·] (Nd(i) are neigh-

bors in dependency edges), except its upper-level neighbors

(operators). The forget gate fi controls the extent to which

existing knowledge is forgotten. Then the context-related op-

erator semantics otc is calculated similarly by:

o′c = ReLU(Wo ·
∑n

i=1
wot−1

i,c · ht
i + bo),

fc = σ(Wfo · [ot−1
c ,

∑n

i=1
wot−1

i,c · ht
i] + bfo),

otc = fc · ot−1
c + (1− fc) · o′c.

(5)

(K2.)1 For relation in PGt, we consider common-sense

remains unchanged when solving a problem (e.g., “banana”

always belongs to “fruit” in a problem), i.e., wwt
i,j = wwt−1

i,j ,

and only adjust the word-operator relation woti,c by:

wo′i,c = softmax(ReLU(We · [ht
i, o

t
c, wo

t−1
i,c ] + be)),

fi,c = σ(Wfe · [ht
i, o

t
c] + bfe),

woti,c = fi,c · wot−1
i,c + (1− fi,c) · wo′i,c.

(6)

(K3.) To derive an interim goal q′ with the knowledge of

words and operators that helps the generation of the next goal

qt+1 in the below commutative module, we propagate down

from the top of PGt to compute q′ by another HGCN:

AGGi = [
∑C

c=1
woti,c · otc,

∑n

j=1
wwt

i,j · ht
j ,
∑

j∈Nd(i)
ht
j ],

h′i = ReLU(W′
u ·AGGi + b′u),

qa =
∑n

i=1
wgti · h′i,

f = σ(Wfg · [qa, qt] + bfg),

q′ = f · qt + (1− f) ·ReLU(Wg · qa + bg),
(7)

Symbol Prediction. The obtained {ht
i, i = 1, ..., n}, {otc, c =

1, ..., C} have integrated existing knowledge with contextual

information, and thus can better achieve current goal qt and

reason yt. Therefore, we input them into a pointer-generator

network [12] to generate yt at time t since yt needs to be

inferred from the external vocabulary (i.e., VO∪VC) or derived

from the problem itself (i.e., NP ). In brief, we first predict the

probability of yt belonging to the external vocabulary:

Pgen = σ(Wgen · [qt, ct] + bgen), (8)

1Dependency edges represent the semantic structure of P , and thus remain
unchanged at different reasoning steps. Edges wgti are recomputed by the
hierarchical attention mechanism [23] at the beginning of each step t.
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where ct is a context vector fusing word-clause levels se-

mantics [23]. Then we calculate the distribution of yt on

the external vocabulary (denoted as Pg(yt)) and NP (denoted

as Pp(yt)) by feeding {otc} and {ht
i} into different networks

respectively. In sum, the probability P(yt | y1, ..., yt−1, P ) is:

P(yt) =

{
(1− Pgen) · Pp(yt) if yt ∈ NP ,

Pgen · Pg(yt) if yt ∈ VO ∪ VC .
(9)

Commutative Module. After reasoning symbol yt, our Cog-

Solver needs to generate the next goal qt+1 to support the next

reasoning step at time t+ 1. Specifically, if yt is an operator,

the commutative module will first decompose the interim goal

q′ from (7) into a left sub-goal ql (i.e., qt+1) and infer the left

child tree tl. Then, the right sub-goal qr of q′ will be generated

using q′ and tl. The left and right sub-goal ql, qr are calculated

by networks proposed in [38] and we summarize them briefly

as ql = Decompose1(q′) and qr = Decompose2(q′, tl).
To further improve the goal decomposition results, we notice

that when the commutative law is satisfied, it is equivalent

to generate the left sub-goal first (e.g., 3 in Figure 3) and

the right sub-goal first (e.g., 2). Thus, we apply mathematic
rule knowledge by inversely generating an extra left sub-goal

qlinv using the right child tree tr. If y is + or ×, qlinv should

represent the same meaning as ql. In this case, we define the

commutative loss LossC as their distance in (10). In other

cases (e.g., y is − or ÷), we do not compute LossC .

LossC = ||Decompose2(q′, tr)︸ ︷︷ ︸
qlinv

−Decompose1(q′)︸ ︷︷ ︸
ql

||. (10)

C. Knowledge Update

Note that the knowledge in BRAIN may contain a lot of

redundancy. For example, after initialization (IV-A), the edge

strength woi,c between word “the” and operator “+” in BG
may be very strong, which is unreasonable. Thus, we need to

simulate in CogSolver how humans update knowledge after

answering problems while ensuring knowledge rationality.

Specifically, note that Semantics knowledge (i.e., {wi, oc} in

BG) is naturally updated by back-propagation when minimiz-

ing (3), and Mathematic rule knowledge (commutative law) is

fixed. Thus, here we focus on updating relation knowledge,

i.e., relation strength wwi,j , woi,c in BG.

As for words i, j, we imply their word-word relation wwi,j

by the distance between semantic vectors as follows:

wwi,j = σ(−||wi − wj ||+Meandis), (11)

where Meandis is the average distance between all pairs of

words and is used to widen the distribution of wwi,j . To reduce

redundancy, we further introduce a knowledge filter with

threshold δ1 to eliminate relationships with weak strength:

wwi,j =

{
wwi,j if wwi,j > δ1,
0 else.

(12)

For woi,c, we calculate the word-operator relation between

each word and all operators using softmax function:

woi,c = softmax(−||wi − oc||). (13)

TABLE I
THE STATISTICS OF DATASETS.

Dataset Math23K MAWPS
Num. Problems 23,162 2,373
Num. Operators 5 4

Avg. problem length 28.02 30.08

Moreover, if a word does not associate with any operator

(e.g., “apple” is not related to {+,×,−,÷}), its weights

with different operators could be thought almost equal (e.g.,

woi,c ≈ 0.25). Thus, we also include another knowledge filter

with threshold δ2 to filter out woi,c by:

woi,c =

{
woi,c if woi,c > δ2,
0 else.

(14)

It should be noticed that the sum of the relationships

between a word and all operators is not 1. For example, the

updated relationship between “apple” and each operator may

equal 0, meaning that “apple” is unrelated to any operator, and

thus will not directly contribute to predicting the probability

of an operator by woi,c, which is reasonable in reality.

In summary, before learning, the knowledge in BRAIN is

initialized randomly without rational meanings. However, with

the Store-Apply-Update steps (autonomously learning) being

iteratively carried out when solving problems, it is constantly

improved and can finally form a long-term mathematical

knowledge base. We will demonstrate it in section V-E.

Meanwhile, as the knowledge becomes more accurate, the

effect of ARM in answering problems will also improve.

V. EXPERIMENTS

A. Dataset Description

• Math23K: Math23K [36] is a well-known benchmark

dataset that contains 23,162 Chinese math word prob-

lems. Wu et al. [37] have also published an external

common-sense knowledge graph for Math23K.

• MAWPS: MAWPS [19] is a dataset that contains prob-

lems with one or more unknown variables. We select

2,373 problems with only one unknown variable.

Table I summarizes the basic statistics of two datasets, and

Figure 4 shows the distribution of operators occurring in

target expressions. We can find that except for ∧ (power),

{+,×,−,÷} are distributed more evenly in the Math23K,

while + accounts for nearly 40% in MAWPS. It will bring the

challenge of learning knowledge related to these operators.

B. Experimental Setup

Implementation Details. For knowledge storage in sec-

tion IV-A, the dimension d of semantic vectors in BRAIN is

128. Words’ vectors are initialized with pre-trained word2vec

[26] learned from the training set, while operators’ vectors are

initialized randomly. Relation knowledge is initialized by (11)-

(14). For knowledge application in section IV-B, the dimension

d1 of hidden vectors is 512, and other parameters in ARM
are initialized with Kaiming initialization [11]. λ in (3) is

set to 0.001. For knowledge update in section IV-C, the filter

thresholds δ1, δ2 in (12), (14) are set as 0.7, 0.3 respectively,
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Fig. 4. The distribution of operators.

which are important in BRAIN as further discussed in section

V-E. The number of iterations for Store-Apply-Update steps

(which we call learning iteration) is set to 120. During each

iteration, parameters are also trained in the knowledge update

step for one epoch with mini-batch 64 and dropout probability

0.5. The learning rate of Adam optimizer [18] is initialized

with 0.001 and will be halved every 20 learning iterations.

For dataset preprocessing, words with less than 5 occur-

rences are converted to a special token “UNK”. For Math23K,

we follow its original published partition. For MAWPS, the

models are evaluated with 5-fold cross-validation. All experi-

ments are run on a Linux server with four 2.30GHz Intel Xeon

Gold 5218 CPUs and a Tesla V100 GPU.

Evaluation metric. We use answer accuracy as the evaluation

metric because there may be multiple correct and equivalent

expressions to the same problem. If the calculated value equals

the answer, the predicted expression is thought of correct.

C. Baseline Approaches

We select the following representative and state-of-the-art

methods as baselines. For a fair comparison, we do not include

methods that are based on pre-trained language models.

• DNS [36]: uses a vanilla seq2seq model to translate MWP

to equation templates directly.

• Math-EN [34]: utilizes an equation normalization

method to address the problem of duplicated equations.

• T-RNN [35]: applies recursive neural networks to infer

unknown operator nodes in the predicted template.

• GROUP-ATT [20]: extracts multiple features in MWP

by a group attention mechanism.

• GTS [38]: generates expression trees by a tree-structured

neural network in a goal-driven manner.

• Graph2Tree [40]: captures the relationships and order

information among quantities by a graph-based encoder.

• KA-S2T [37]: incorporates the manually constructed ex-

ternal knowledge to obtain better problem representation.

• HMS [23]: makes use of the hierarchical word-clause-

problem relation to better exploit the problem semantics.

D. Experimental Results

1) Answer Performance: Table II reports the answer accu-

racy of all models2, and we find several key observations. First,

our CogSolver outperforms all the baselines, and by applying

paired t-test, its improvements over the SOTA Graph2Tree are

statistically significant with p ≤ 0.01 on both datasets (marked

2Due to different Pytorch versions, for a fair comparison, we rerun the
Graph2Tree and HMS with Pytorch version 1.8.1.

TABLE II
ANSWER ACCURACY (∗ : p ≤ 0.01).

Math23K MAWPS
DNS 0.581 0.595

Math-EN 0.667 0.692
T-RNN 0.669 0.668

GROUP-ATT 0.695 0.761
GTS 0.743 0.786

KA-S2T 0.763 /3

HMS 0.755 0.804
Graph2Tree 0.764 0.820
CogSolver 0.773∗ 0.829∗

TABLE III
ABLATION STUDY ON REDUCING Store-Apply-Update STEPS.

Model Math23K MAWPS
CogSolver 0.773 0.829

Store
w/o Relation 0.754 0.809

w/o Mathematic Rule 0.766 0.820

Apply
w/o Knowledge- Semantics 0.758 0.820
aware Module Relation 0.761 0.818

Update w/o update Relation 0.741 0.796

with “∗”). It demonstrates that CogSolver benefits from apply-

ing learned knowledge to reason more accurate answers and

verifies the effectiveness of the knowledge learning process

that we construct by BRAIN-ARM systems and Store-Apply-
Update steps. Second, the improvements of CogSolver over

HMS highlight the advantage of the knowledge-aware module

and commutative module in enhancing the reasoning ability

of ARM’s decoder (recall CogSolver uses the same encoder as

HMS). Third, CogSolver performs better than KA-S2T which

incorporates external common-sense. It reflects the ability of

our CogSolver to learn knowledge from scratch and form a

reliable knowledge base autonomously, which has better flex-

ibility. Moreover, it shows the potential of BRAIN to achieve

the effect of manually constructed knowledge bases, which

is important for building a general AI. Last, the accuracy

of CogSolver on MAWPS is higher than Math23K. That is

probably because “+” takes a larger proportion on MAWPS

(Figure 4). Thus, it is easier for CogSolver to learn and apply

the relation knowledge between “+” with words for reasoning,

suggesting that training data affects knowledge learning results

greatly, which can be further witnessed in section V-E2.

2) Ablation Study: To verify the effectiveness of the three

steps in CogSolver, we conduct the ablation study. Table III re-

ports the results of each case. Specifically, for knowledge stor-

age, “w/o Relation” omits the relation knowledge in BRAIN,

thus without problem graph and knowledge-aware module,

while “w/o Mathematic Rule” ignores LossC in the commuta-

tive module during training. For knowledge application, “w/o

Knowledge-aware Semantics” and “w/o Knowledge-aware Re-

lation” do not calculate context-related semantics by (4)(5)

and relationships by (6) in the knowledge-aware module,

respectively. For knowledge update, “w/o update Relation”

fixes the relation knowledge after initialization.

We conclude the results as follows. First, the accuracy of

CogSolver degrades when any component is missing, showing

the necessity of our designed components for answer reason-

3KA-S2T [37] does not provide knowledge base and conduct experiment
on MAWPS.
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Fig. 5. Part of BG in BRAIN of CogSolver after autonomously learning on Math23K (Result on MAWPS is similar and we omit it due to space limit). The
green and yellow nodes represent words and operators respectively. The black and red line represent word-word relation wwi,j and word-operator relation
woi,c respectively. The width of line reflects the relation strength, i.e., the thicker the line, the greater the strength of the relation.

Fig. 6. Word-word relation wwi,j (distribution). The red dash line represents
the threshold δ1 = 0.7 in (12).

ing. Second, the performance suffers the greatest damage when

the knowledge is not updated (i.e., “w/o update Relation”). It

indicates that knowledge update plays the most crucial role in

CogSolver, which can eliminate wrong knowledge that harms

the reasoning process. Third, compared with “w/o Mathematic

Rule”, “w/o Relation” diminishes the result more greatly, sug-

gesting relation knowledge is more effective than commutative

law for correctly conducting reasoning. Last, context-related

semantics and relation are almost equally important as there

is no significant difference between “w/o Knowledge-aware

Semantics” and “w/o Knowledge-aware Relation”.

E. Analysis of BRAIN

Part of BG in BRAIN after autonomously learning from

scratch is shown in Figure 5. We observe that CogSolver

has formed reasonable mathematical knowledge bases that

contain word-word relation and word-operator relation on both

datasets. For example, on Math23K, it learns that “+” is

related to word “add” and “add” is related to “exceed”, while

‘+” is not related to “multiply”. The line width reflects the

relation strength (e.g., the relationship between “add” and

“total” is stronger than “add” and “earn”). In this section, we

deeply analyze these two types of knowledge to demonstrate

the effectiveness and interpretability of CogSolver.

1) Word-word relation: We compute the relation strength

wwi,j for any two words after learning by (11) and visualize

the distribution for all word pairs in Figure 6. As we can see,

the strength of most relationships is distributed around 0.6-

0.7 on both datasets. With threshold δ1 = 0.7 in (12), only

banana-fruit food-fruit egg-fruit milk-fruit

Fig. 7. Word-word relation wwi,j (examples). The red dash line represents
the threshold δ1 = 0.7 in (12).

15% and 20% of word pairs (right of the red dash line) are

remained (have common-sense knowledge) on Math23K and

MAWPS respectively. Furthermore, for Math23K, compared

with the external knowledge source published by KA-S2T

[37] (not provided for MAWPS), approximately 77.2% of true

common-sense knowledge has been automatically acquired

by CogSolver, which further proves its ability to learn this

knowledge correctly while maintaining superior flexibility.

Moreover, we take several pairs of words as examples and

show their relation strength during learning in Figure 7. As we

know, there are real relationships between “banana” and“fruit”,

“food” and “fruit”, while there are false between “egg” and

“fruit”, “milk” and “fruit”. For real relationships, we observe

they gradually strengthen and finally exceed the threshold

0.7. For false relationships, although initialized differently on

Math23K (≈ 0.20) and MAWPS (≈ 0.74), their strength is

indeed lower than “banana”-“fruit”, “food”-“fruit” and the

threshold after learning, thus not be retained in BRAIN. These

results show that CogSolver is able to distinguish between dif-

ferent relationships and filter out invalid knowledge carefully.

2) Word-operator relation: We count the number of words

related to each operator after learning and select the top 2 with

the greatest relation strength woi,c by (14) in Table IV. For

instance, 121 words are related to “−” on Math23K, with the

top 2 being “minus” and “remainder”. We can see that these

words do imply the meanings of related operators, showing the

relationships acquired by CogSolver are reasonable. Besides,

there are only 5, 60 and 8 words that remain related to −,×,÷
respectively on MAWPS, compared to 569 for +. Combining
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TABLE IV
NUMBER OF WORDS AND TOP 2 WITH GREATEST RELATION STRENGTH

FOR EACH OPERATOR.

Math23k MAWPS
number top 2 number top 2

+ 3 total,add 569 total,more
− 121 minus,remainder 5 lost,sell
× 16 per,each 60 group,percent
÷ 7 divide,average 8 half,split

Fig. 8. Word-operator relation woi,c (examples) on Math23K. The red dash
line represents the threshold δ2 = 0.3 in (14).

it with the result in section V-D1, we can conclude that the

amount of data has an important impact on the learning effect.

To better understand CogSolver’s competence in captur-

ing the knowledge, we select examples for {+,×,−,÷} on

Math23K, since its distribution of operators (except ∧) is

relatively uniform (Figure 4). From Figure 8, relationships

between “total” and “+”, “per” and “×”, “minus” and “−”,

“divided” and “÷” strengthen and are stored in BRAIN after

learning since they exceed the threshold δ2. Comparatively,

relationships between “per” and “+”, ‘minus” and “×”, and

so on weaken gradually. It indicates that CogSolver can learn

the knowledge between words and operators correctly.

F. Case Study

To illustrate how our CogSolver benefits from learned

knowledge to reason answers, we select two problems for

case study in Figure 9. We first report the descriptions of these

problems and the predicted prefix expressions generated by our

CogSolver and Graph2Tree. Notice that “and” appears in each

problem, we then visualize the relationships between “and”

and “+”, “and” and goal at each reasoning step of CogSolver.

From the black line, the relation strength between “and”

and “+” is quite high (woti,c ≈ 1) at the first reasoning step

(i.e., t = 1) for both problems. That is probably because “and”

appears at a position that implies the meaning of summation

(sum of “kittens”, “Ruby’s”). Moreover, the strength is still

high at t = 2, ..., 5 for problem 1, which needs to do

summation by “and” (n1+n2), while decreasing for problem 2

whose goal is irrelevant to summation. These results indicate

that CogSolver can adaptively apply the knowledge (“and”-

“+”) based on contextual information, which further prove the

importance and effectiveness of the knowledge-aware module.

The blue bar represents the relationship wgti between “and”

and goal qt, reflecting how focused the model is on “and” at

step t. For problem 1, it increases significantly when predicting

“+” at t = 2 that starts to complete n1 + n2. Comparatively,

the weight is kept at a low level (<1e − 6) in problem 2,

showing that the model considers “and” to be irrelevant to the

target and ignores it at each reasoning step.

Combining the above analysis, by paying more attention to

“and” and relating it with “+”, CogSolver correctly predicts

“+” in problem 1. However, Graph2Tree can not use such

information and thus makes a mistake at step 2, further

resulting in a wrong answer. Meanwhile, CogSolver takes

less into account “and” in problem 2, and therefore does not

overestimate the probability of “+”. From these observations,

we can conclude that our CogSolver has the advantage of

applying learned knowledge to different problems. Meanwhile,

by incorporating such knowledge into the goal-driven decoder,

it achieves interpretable reasoning processes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Cognitive Solver

(CogSolver) that autonomously learned knowledge to reason

mathematical answers by constructing two systems (BRAIN-
ARM) and three steps (Store-Apply-Update iteratively) inspired

by cognitive science theories. In CogSolver, BRAIN stored

three types of knowledge, and ARM applied such knowledge

to reason the answers. To improve ARM’s reasoning ability,

we proposed a knowledge-aware module and a commutative

module to apply knowledge effectively. When updating knowl-

edge in BRAIN, we developed knowledge filters to reduce

redundancy. From the experimental results, we first showed the

effectiveness of CogSolver to solve MWP. Then, we verified

the reasonability of learning results of CogSolver. Finally, we

showed how CogSolver benefited from learned knowledge to

achieve interpretable reasoning processes.

There are still some important issues that can be explored in

the future. First, as our CogSolver is a general framework, we

will test its performance on other kinds of mathematical prob-

lems. Second, we will include pre-trained language models

into CogSolver to further promote its comprehension ability.

Third, we will consider various knowledge in other fields (e.g.,

physics) and explore the specific meaning of knowledge (e.g.,

hypernymy) to improve the precision of learning results.
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