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Abstract
Owing to the capability of in-context learning,
large language models (LLMs) have shown im-
pressive performance across diverse mathemat-
ical reasoning benchmarks. However, we find
that few-shot demonstrations can sometimes bring
negative performance and their effectiveness on
LLMs’ reasoning abilities remains unreliable. To
this end, in this paper, we aim to theoretically
analyze the impact of in-context demonstrations
on LLMs’ reasoning performance. We prove
that the reasoning efficacy (measured by empiri-
cal prediction loss) can be bounded by an LLM-
oriented semantic similarity and an inference sta-
bility of demonstrations, which is general for
both one-shot and few-shot scenarios. Based
on this finding, we propose a straightforward,
generalizable, and low-complexity demonstration
selection method named LMS3. It facilitates
to select the most pertinent samples for differ-
ent LLMs and includes a novel demonstration
rejection mechanism to automatically filter out
samples that are unsuitable for few-shot learn-
ing. Through experiments on three representative
benchmarks, two LLM backbones, and multiple
few-shot settings, we verify that our LMS3 has
superiority and achieves consistent improvements
on all datasets, which existing methods have been
unable to accomplish. Our code is available at
https://github.com/Ljyustc/LMS3.

1. Introduction
Mathematical reasoning serves as a milestone in assessing
the progress of natural language processing (Zhang et al.,
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Figure 1. Problem-solving Accuracy of zero-shot and one-shot
settings. The hatched areas represent that in the one-shot setting,
the model answers incorrectly ∆ proportion of problems that are
answered correctly in the zero-shot setting.

2020; Liu et al., 2023). Currently, many large language
models (LLMs) have exhibited strong performance across
various mathematical benchmarks (Hendrycks et al., 2021;
Cobbe et al., 2021). A key capability of these LLMs is
in-context learning (ICL) (Dong et al., 2022), which enables
them to learn from a few examples to implement specific log-
ical structures (Wei et al., 2022) or utilize codes (Chen et al.,
2023) to improve reasoning accuracy. Based on this ability,
they have adeptly addressed problems across different types
and difficulty, ranging from elementary word problems to
college-level algebra (Brown et al., 2020; Achiam et al.,
2023; Xue et al., 2024; Liu et al., 2025).

However, it remains an unresolved issue whether in-context
learning truly enhances LLMs’ mathematical reasoning abil-
ities. To show this phenomenon, in Figure 1, we present the
zero-shot and one-shot results of Llama3-8B (Meta, 2024),
ChatGPT, and GPT-4 (Achiam et al., 2023) on two repre-
sentative benchmarks MATH (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021). Surprisingly, we find that
1) When given an example, their problem-solving accuracy
does not consistently improve, and sometimes even declines
(e.g., ChatGPT on MATH dataset). 2) Further analysis re-
veals that in the one-shot setting, these LLMs even fail in
1.83%-34.96% of problems (marked with white hatching)
that they have correctly solved in the zero-shot scenario.
This raises an important research question: Is in-context
learning always effective for mathematical reasoning, and
under what conditions does it work?

To address this issue, existing literature primarily analyzes
the impact of demonstrations from an empirical perspective.
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For instance, researchers have revealed several important
factors, including the similarity to test samples (Liu et al.,
2022), the diversity (Gao & Das, 2024), complexity (An
et al., 2023) and perplexity (Sorensen et al., 2022) of demon-
strations, as well as the Inference LLM used (Peng et al.,
2024; Ye et al., 2023). Regarding the theoretical foundations
of ICL, existing work has tried to explain the introduction of
demonstrations as a form of meta-gradient optimization (Dai
et al., 2023), kernel regression (Han et al., 2023), and token
reinforcement (Yan et al., 2024). However, these studies 1)
have not provided precise quantification of the impact of
demonstrations on LLMs’ reasoning performance, nor 2)
have they offered theoretical conclusions on when demon-
strations are beneficial.

In this paper, we first theoretically analyze the impact of
a demonstration on the reasoning performance in one-shot
scenario. We find that a sufficient condition for one-shot
to outperform zero-shot is that 1) the demonstration and
test sample have similar semantics encoded by the inference
LLM and that 2) the inference LLM exhibits sufficient sta-
bility in reasoning the answer of the demonstration itself.
The former goes beyond traditional methods that rely solely
on the semantic similarity between demonstrations and test
samples, pointing out the critical role of the inference LLM’s
encoding parameters, while also being generalizable to these
methods. The latter introduces the concept and measure-
ment of inference stability of demonstrations for the first
time. It should be emphasized that our theory is general and
we further extend it to the k-shot scenario.

Based on our theory, we propose a simple yet effective
demonstration selection method, named LMS3, to bal-
ance the LLM-oriented Semantic Similarity and inference
Stability of demonstrations, allowing for the automatic selec-
tion of approximately optimal samples tailored to different
LLMs. Additionally, to ensure that the sufficient condi-
tion of our theories is essentially satisfied, we introduce
an innovative demonstration rejection mechanism that can
adaptively identify when few-shot learning should not be
used, which is the first attempt in the field. Our method has
strong theoretical advantages, generalization ability, and low
complexity. Experiments on three benchmarks demonstrate
its consistent improvements in both one-shot and few-shot
scenarios. The contributions of this paper are as follows:

• We theoretically quantify the effect of demonstrations
on ICL reasoning performance under one/few-shot
settings. We prove that it can be bounded by LLM-
oriented semantic similarity and inference stability of
demonstrations.

• We propose a novel demonstration selection method,
LMS3, which can generalize to various existing meth-
ods and offer better scalability and complexity.

• We validate our method on three mathematical bench-
marks using multiple LLMs as backbones, demonstrat-
ing improvements in problem-solving accuracy, gener-
alization ability, and interpretability.

• We further test our method on commonsense reason-
ing task, validating its applicability to more general
reasoning tasks.

2. Related Work
Mathematical Reasoning. Mathematical reasoning is a
critical benchmark for assessing the level of artificial intelli-
gence (Zhang et al., 2020; Liu et al., 2023). Early research
in this area mainly focused on rule-based, template-based,
and statistical machine learning methods for simple math
word problems (Feigenbaum et al., 1963; Fletcher, 1985).
With the development of large language models (LLMs), re-
cent efforts have primarily explored two directions. On one
hand, some approaches equip LLMs with chain-like (Kojima
et al., 2022), tree-like (Yao et al., 2024), or graph-like (Besta
et al., 2024) reasoning processes, or require LLMs to use
codes (Chen et al., 2023; Gao et al., 2023) and tools (Ma
et al., 2025) to address potential numerical computation
errors. On the other hand, there are efforts that provide
the model with certain examples in the prompts through
retrieval-augmented generation (Wei et al., 2022; Asai et al.,
2024), allowing the model to solve problems based on simi-
lar approaches using its contextual learning abilities.

In-context Learning. In-context Learning (ICL) focuses
on making LLMs learn and reason based on existing exam-
ples (Dong et al., 2022). Its advantage lies in the adaptability
and flexibility for different tasks and scenarios (Meade et al.,
2023). However, the selection of examples remains a cen-
tral challenge, where current researches have developed
supervised methods and unsupervised methods. This paper
focuses on unsupervised methods, which can be grouped
into three main categories. The first and currently most
prominent method is called Similar-ICL (Liu et al., 2022;
Luo et al., 2023; Zhang et al., 2023; Fu et al., 2022), which
aims to find examples with closest semantic representations
to the test sample. The semantic representation approaches
include TF-IDF, BM25 (Robertson et al., 2009), T5 encod-
ing (Raffel et al., 2020), BGE-M3 (Chen et al., 2024b), Ope-
nAI embedding, etc. The second line of methods calculates
the impact of each demonstration on the test sample (Peng
et al., 2024). Impact calculation approaches include influ-
ence function (Van et al., 2024; Chang & Jia, 2023), mutual
information (Sorensen et al., 2022), perplexity (Gonen et al.,
2023), code-length (Wu et al., 2023), etc. The third cate-
gory uses the feedback from LLMs to dynamically select
demonstrations (Nguyen & Wong, 2023; Qin et al., 2023).

Explanation of ICL. Regarding the underlying mechanisms
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of ICL, most existing research explored the impact of em-
pirical factors such as the number of examples, gold labels,
diversity, and types of LLMs from an experimental perspec-
tive (Pan et al., 2023; Peng et al., 2024; Min et al., 2022).
Some theoretical explorations explain ICL from perspec-
tives including meta-gradient updates (Dai et al., 2023),
kernel regression (Han et al., 2023), and token reinforce-
ment (Yan et al., 2024). In comparison, to the best of our
knowledge, we are the first to theoretically quantify the
impact of demonstrations on reasoning performance and
identify when they are effective.

3. Theoretical Analysis
Notations. In in-context learning (ICL) setup, we have
a demonstration pool D and a test set Dtest, which con-
tain M and N mathematical problems respectively. The
k-shot ICL is formulated as appending k demonstrations
{(X1, y1), ..., (Xk, yk)} ⊆ D with the test data Xtest ∈
Dtest in prompt to reason the solution

ŷtest
def
= LLM((X1, y1), ..., (Xk, yk), Xtest), (1)

where Xi, Xtest represent the problem context and yi rep-
resents the labeled solution. The prediction loss on Xtest is
denoted as L(Xtest, ytest). In the following, we omit sym-
bol y and use X to express each demonstration for brevity.

To evaluate the influence of a demonstration X on inferenc-
ing the answer of Xtest, we use h, htest ∈ Rd to denote the
representation of problem X and Xtest. Then, the Trans-
former attention mechanism in ICL setting is denoted as:

FICL(htest) = Attn(V,K,Q,htest)

= WV [h,htest] · softmax

(
(WK [h,htest])

T ·WQhtest√
d

)
,

(2)
where WQ,WK ,WV are the projection matrices for com-
puting the attention queries, keys, and values, respectively.
Without loss of generality, we omit WQ in FICL(htest)
because we can redefine WK = WT

K · WQ. As a result,
we only keep WK ∈ Rd×d,WV ∈ Rd′×d in our setting,
where d′ is the output dimension of layer FICL. Following
a common approach (Dai et al., 2023), we approximate the
attention to a simplified linear attention by:

FICL(htest) ≈ WV [h,htest] ·
(
(WK [h,htest])

T · htest√
d

)
=

WV√
d
htest · (WKhtest)

T · htest +
WV√

d
h · (WKh)T · htest

(3)

Analogy to Linear Optimization. We start our analysis

of Eq. (3) by considering a linear function F(z)
def
= W ·

z,W ∈ Rd′×d, z ∈ Rd. Specifically, given F(z) with an
initialized parameters W0, assume we have a training data
z0 ∈ Rd, then the gradient of loss L(F) can be written
as ∆W = ∇FL(z0,W0) · zT0 . Applying the gradient to

parameter optimization, the prediction of a test sample htest

is F(htest) = W0 · htest +∇FL(z0,W0) · zT0 · htest.

Based on this idea, Eq. (3) can be interpreted as: 1) We have
a linear function F(z) with initialized parameters

W0 =
WV√

d
htest · (WKhtest)

T. (4)

2) We introduce a training data z0 = WKh to optimize the
parameters, with the gradient at (z0,W0) satisfying:

∇FL(z0,W0) =
WV√

d
h. (5)

3) We finally apply the optimized parameters to calculate
the result of test data htest ∈ Dtest.

Under this setting, we aim to estimate the influence of the
data z0 = WKh (corresponds to demonstration X ∈ D) on
loss L(F(htest)). Before detailed derivation, we first give
three mathematical annotations:

Ŵ
def
= argmin

W

1

|Dpre|
Σz∈DpreL(F(z))

Ŵϵ,z0

def
= argmin

W

1

|Dpre|
Σz∈DpreL(F(z)) + ϵ · L(F(z0))

1

HŴ

def
=

1

|Dpre|
Σz∈Dpre∇

2
WL(z, Ŵ ),

(6)
where Dpre is the data for pre-training an LLM, and HŴ

is the Hessian matrix which is positive definite by assump-
tion (Van et al., 2024). It is worth noting that the pre-trained
parameters Ŵ are actually the initialized parameters in our
above setting, i.e., Ŵ = W0. Taking ϵ = 1

|Dpre| , the testing

loss on htest is represented as L(htest, Ŵ 1
|Dpre| ,z0

). On this
basis, we derive the following theorem:

Theorem 1. Assume ∇FL is Lipschitz continuous w.r.t
F with constant µ. If inequality (7) holds true, then
L(htest, Ŵ 1

|Dpre| ,z0
) < L(htest, Ŵ0,z0), i.e., introducing

the training sample z0 (i.e., demonstration X) can reduce
the testing loss on htest. 1

λdd′
, 1
λ1

are the largest and small-
est eigenvalues of HŴ , respectively.

λdd′

λ1
∥∇WL(htest, Ŵ )∥ > ∥htest − z0∥ · (∥

WV√
d
h∥+ µC1)

C1 = ∥WV√
d
htest∥ · ∥WKhtest∥ · ∥htest∥

(7)

We refer the readers to Appendix A for the detailed proof,
and present the sketch here.

Proof. With Ŵ , Ŵϵ,z0 , the influence of upweighting z0 on

1Please note that Ŵϵ,z0 is a conceptual and intermediate tool
for theoretical analysis, rather than actually training LLMs on both
Dpre and the demonstration z0.
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the empirical loss is (Ling, 1984; Koh & Liang, 2017):

Iloss(z) =
dL(htest, Ŵϵ,z0)

dϵ

∣∣∣∣∣
ϵ=0

= −∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(z0, Ŵ )

(8)

Then, the testing loss L(htest, Ŵ 1
|Dpre| ,z0

) can be evaluated

by Taylor approximation since 1
|Dpre| is sufficiently small,

i.e., L(htest, Ŵ 1
|Dpre| ,z0

) ≈

L(htest, Ŵ0,z0) +
1

|Dpre|
dL(htest, Ŵϵ,z0)

dϵ

∣∣∣∣∣
ϵ=0

=L(htest, Ŵ0,z0)−
1

|Dpre|
∇WL(htest, Ŵ )T

·H−1

Ŵ
∇WL(z0, Ŵ )

(9)

Therefore, now the question turns to evaluate

L1
def
= ∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(z0, Ŵ ) =

(∇WL(z0, Ŵ )−∇WL(htest, Ŵ ))T ·H−1

Ŵ
∇WL(htest, Ŵ )︸ ︷︷ ︸

L11

+∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(htest, Ŵ )︸ ︷︷ ︸

L12

(10)

Since HŴ is positive definite, we denote λ1 ≥ λ2 ≥ ... ≥
λdd′ > 0 are the eigenvalues of H−1

Ŵ
and can prove that

L11 ≥ −λ1∥∇WL(htest, Ŵ )∥ ·
(
∥∇FL(htest, Ŵ )

−∇FL(z0, Ŵ )∥ · ∥htest∥+ ∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥
)

(11)
Since ∇FL is Lipschitz continuous, we get L11 ≥

− λ1∥∇WL(htest, Ŵ )∥ · (µ∥Ŵ (htest − z0)∥ · ∥htest∥+

∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥)
(12)

Applying Eqs. (4) (5) to Eq. (12), we have:

∥Ŵ (htest − z0)∥ ≤ ∥WV√
d
htest∥ · ∥WKhtest∥ · ∥htest − z0∥

(13)

∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥ = ∥WV√
d
h∥ · ∥htest − z0∥ (14)

For L12, we similarly prove that:

L12 = Σdd′
i=1λib

2
i ≥ λdd′∥∇WL(htest, Ŵ )∥2 (15)

Combining Eqs. (12)-(15), we finally get:

L1 ≥λdd′∥∇WL(htest, Ŵ )∥2 − λ1∥∇WL(htest, Ŵ )∥ · (µ · C1

· ∥htest − z0∥ · ∥htest∥+ ∥WV√
d
h∥ · ∥htest − z0∥) .

(16)

According to Eq. (7), the right-hand side of Eq. (16) is
greater than 0, which leads to the conclusion. □

Extension to k-shot setting. In Theorem 1, we only con-
sider one demonstration X (i.e., the one-shot scenario). For
the k-shot scenario, Eq (3) can be written as

Fk
ICL(htest) ≈

WV√
d
htest · (WKhtest)

T · htest

+Σk
i=1

WV√
d
hi · (WKhi)

T · htest,

(17)

where h1, ...,hk are the representations of demonstrations
X1, ..., Xk. This formalization can be interpreted as intro-
ducing k training samples z1 = WKh1, ..., zk = WKhk
to optimize the linear function F(z) simultaneously, where
the gradient at each training sample zi satisfies

∇FL(zi,W0) =
WV√

d
hi. (18)

Similar to the proof of Theorem 1, we derive the following
Theorem 2 to illustrate the condition of these samples to
ensure a reduction in the loss of testing data Xtest, where

Ŵϵ,z̄k

def
= argmin

W

1

|Dpre|
Σz∈DpreL(F(z))

+ ϵ · Σk
i=1L(F(zi))

(19)

Theorem 2. Assume ∇FL is Lipschitz continuous
w.r.t F with constant µ. If inequality (20) holds true,
then L(htest, Ŵ 1

|Dpre| ,z̄k
) < L(htest, Ŵ0,z̄k), i.e., intro-

ducing training samples {z1, ..., zk} (i.e., demonstrations
X1, ..., Xk) can reduce the testing loss on htest.

kλdd′

λ1
∥∇WL(htest, Ŵ )∥ >Σk

i=1∥htest − zi∥·

(∥WV√
d
hi∥+ µC1)

(20)

Theorem 2 further indicates that, under our setup, the joint
effect of different demonstrations follows an additive re-
lationship. This implies that the selection of k different
demonstrations can be approximately considered indepen-
dently. We leave the exploration of more complex interac-
tions among demonstrations to future work.

4. LMS3: Method Design
Based on Section 3, an ideal demonstration X needs to max-
imize the value of L1 (i.e., minimize the empirical testing
loss L(htest, Ŵ 1

|Dpre| ,z0
) in Eq. (9)). This is equivalent to

minimize the right-hind side of Eq. (7) according to Eq. (16)
and can be further divided into: 1) minimize

Sim(X)
def
= ∥htest −WT

K ·WQh∥, (21)
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Figure 2. Illustration of our proposed LMS3 method.

(recall z0 = WKh and WK is indeed WT
K · WQ in the

aforementioned section), and 2) minimize

Stab(X)
def
= ∥WV√

d
h∥. (22)

.

Specifically, Sim(X) reflects an LLM-oriented Semantic
Similarity between the demonstration X and the test data
Xtest. It illustrates the need to find a demonstration similar
to the test sample. However, it goes beyond traditional meth-
ods by taking into account 1) the whole reasoning path of
demonstrations (recall X includes both the problem context
and the solution) and 2) the characteristics of the inference
LLM itself, which is more consistent with intuition. The
value of Stab(X) is an evaluation of the Inference Stability
of Demonstration X . Based on Eq (5), Stab(X) is indeed
the length of gradient of the loss function on X . If Stab(X)
is low, it indicates that the LLM has reached a stable predic-
tion with minimal loss on X , and the parameters will not be
excessively altered due to the introduction of this sample.
In other words, the LLM has been able to stably deduce the
correct answer for demonstration X .

Since it is hard to simultaneously achieve the minimum of
Sim(X) and Stab(X), two naive approximations are to
minimize a demonstration scoring function that calculates
their sum or product:

Score(X) = Sim(X) + α1 · Stab(X), (23)

Score(X) = Sim(X) · Stab(X), (24)

However, Eq. (23) requires considering the scale differences
between the two objectives and adjusting the hyperparame-
ter α1 based on different LLMs and datasets, which is chal-
lenging to apply in practice. Therefore, we prefer Eq. (24)
as the basic form of our scoring function. To implement
k-shot in-context learning, we can select the top k samples
with the highest Score(X) as demonstrations according to
Theorem 2, which can ensure that the most relevant and
stable samples are used to enhance the LLM’s performance.

Furthermore, we design a demonstration rejection mecha-
nism. For instance, it is possible that the examples with the

Method Theoretical Dependent Generality ComplexityGuarantee on LLM
Similar-ICL ✗ ✗ ✓ O(M + N )

Influence ✗ ✓ ✓ O(MV
S + N )

InfICL ✗ ✓ ✗ O(DM + DV + N )

TopK+MDL ✗ ✓ ✗ O(M + KN )

TopK+ConE ✗ ✓ ✗ O(M + KN )

IDS ✗ ✓ ✓ O(M + QN )

MI ✗ ✓ ✗ O(MN )

SPELL ✗ ✓ ✓ O(MR + N )

LMS3 (ours) ✓ ✓ ✓ O(M + N )

Table 1. Comparison of methods, including Similar-ICL (Liu et al.,
2022; Zhang et al., 2023; Fu et al., 2022; Chen et al., 2024b),
Influence (Nguyen & Wong, 2023) (S is the size of subset used to
estimate influences, V is the size of validation set), InfICL (Van
et al., 2024) (D is the number of parameters of external LLMs),
TopK+MDL (Wu et al., 2023), TopK+ConE (Peng et al., 2024)
(K is the number of candidate demonstrations), IDS (Qin et al.,
2023) (Q is the number of iterations), MI (Sorensen et al., 2022),
SPELL (Gonen et al., 2023) (R is the number of samples for
estimating perplexity). The generality setting to ✗ indicates that
these works are more suitable for classification tasks and hard to
implement for mathematical reasoning task.

highest Score(X) still do not satisfy Eq. (20). In such cases,
unlike existing methods that always select top k examples,
we tend to refuse to provide any demonstration and instead
use a zero-shot approach, because our theorems suggest
that providing examples in this case will have a negative
effect. We control Sim(X) to achieve this rejection mecha-
nism, because if an example’s Sim(X) is already too large,
Sim(X) · µC1 might have exceeded the left-hand side of
Eq. (7). However, setting an absolute threshold for Sim(X)
is challenging since µ,C1 is unknown, and calculating the
gradient norm ∥∇WL(htest, Ŵ )∥ is costly. Therefore, we
adopt a simplified relative threshold. We expect that the
Sim(X) of an ideal demonstration should be as small as
possible relative to all examples. Consequently, we rank
Sim(X) of all candidate examples. If a demonstration X
ranked top-k in Score(X) does not have a Sim(X) value
within the top λ smallest, we reject to select it.

Theoretically, to compute Score(X), we need to input the

5
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Llama2-13B Llama3-8B
MAWPS GSM8K MATH MAWPS GSM8K MATH

zero-shot 0.835± 0.009 0.414± 0.004 0.096± 0.005 0.951± 0.004 0.820± 0.016 0.324± 0.022

Random 0.816± 0.004 0.405± 0.007 0.090± 0.010 0.951± 0.005 0.813± 0.003 0.330± 0.009

Best-validate 0.826± 0.001 0.410± 0.005 0.096± 0.007 0.932± 0.000 0.817± 0.008 0.332± 0.008

TF-IDF 0.826± 0.021 0.424± 0.007 0.099± 0.006 0.945± 0.009 0.803± 0.007 0.344± 0.005

BM25 0.815± 0.008 0.416± 0.014 0.098± 0.007 0.932± 0.003 0.805± 0.002 0.334± 0.004

T5 0.810± 0.004 0.426± 0.013 0.093± 0.006 0.948± 0.021 0.817± 0.002 0.330± 0.009

BGEM3 0.818± 0.013 0.407± 0.004 0.100± 0.011 0.938± 0.017 0.802± 0.000 0.340± 0.005

OpenAI 0.805± 0.014 0.416± 0.005 0.101± 0.002 0.965± 0.011 0.809± 0.008 0.346± 0.002

SPELL 0.797± 0.009 0.394± 0.006 0.085± 0.003 0.945± 0.005 0.821± 0.008 0.343± 0.004

Influence 0.836± 0.010 0.405± 0.009 0.102± 0.000 0.929± 0.009 0.800± 0.015 0.333± 0.006

IDS 0.839± 0.005 0.424± 0.012 0.088± 0.001 0.920± 0.003 0.808± 0.001 0.330± 0.001

LMS3 (ours) 0.854∗± 0.008 0.447∗± 0.014 0.124∗± 0.003 0.966± 0.010 0.837∗± 0.011 0.353∗± 0.002

Table 2. One-shot Answer Accuracy, with the best/runner-up methods highlighted in bold/underlined.

concatenation of each “(demonstration, testing data)” pair
(X,Xtest) into the LLM to obtain their semantic represen-
tations h,htest. However, in practice, this process requires
O(MN ) complexity (measured by the number of LLM
API calls) for testing, which significantly limits the effi-
ciency. Therefore, we approximate by inputting each data
individually into the LLM to obtain its semantic represen-
tation, reducing the testing complexity to O(M+N ) (the
representations of all demonstrations can be pre-computed).

We illustrate the workflow of our method, named LMS3,
in Figure 2 and present the pseudo-code in Appendix B.
LMS3 has several advantages as summarized in Table 1. 1)
Theoretical Guarantee: To the best of our knowledge, we
are the first to theoretically quantify the impact of demon-
strations on ICL reasoning performance and explain why
and when they work. 2) Rational Dependency: Our analy-
sis verifies that the optimal demonstration depends on the
inference LLM (i.e., how the representations h,htest are en-
coded). This is reasonable because an LLM’s understanding
of similar problems sets the upper limit on its ability to lever-
age these problems (Peng et al., 2024). Consequently, the
optimal demonstration should be selected adaptively for dif-
ferent LLMs. However, existing methods like Similar-ICL
estimate semantic similarity independently of the inference
LLM and the demonstration is the same for all LLMs. 3)
Generalization Ability: If we set WT

K · WQ = I as an
identity matrix and omit Stab(X), our method degenerates
into finding the demonstration with the closest semantic
representation to the test data. This perspective unifies the
current approaches, summarizing their main differences in
the setting of WT

K ·WQ to obtain semantic representations.
Besides, our analysis is based on the impact of demonstra-
tions on the test loss, which is not dependent on the task type.
In addition to mathematical reasoning, it is also applicable
to generation tasks or classification tasks. 4) Low Complex-
ity: Compared to methods based on impact estimation or
LLMs’ feedback (Van et al., 2024; Nguyen & Wong, 2023;

Chang & Jia, 2023), our method does not require additional
external LLMs, repeated testing of demonstration effects on
validation set, or the computation of Hessian matrix, which
brings much lower complexity.

5. Experiments
5.1. Experimental Setup

Datasets. We use three datasets that cover a variety of types
and difficulty levels. MAWPS (Koncel-Kedziorski et al.,
2016) consists of 2,373 elementary-level math word prob-
lems. GSM8K (Cobbe et al., 2021) is composed of 8,792
more challenging elementary problems with a higher num-
ber of steps. MATH (Hendrycks et al., 2021) is collected
from high school math competition, containing 12,500 prob-
lems across seven categories, and is currently one of the
most widely used benchmarks. Dataset partition and statis-
tics are presented in Appendix C.

Baselines. We use Llama2-13B (Touvron et al., 2023) and
Llama3-8B (Meta, 2024) as the backbones and take 10
representative and SOTA baselines including:

• Random randomly samples a data from D.

• Best-validate selects the data with the highest accuracy
on a validation set,

and some typical Similar-ICL methods:

• TF-IDF represents each problem as a TF-IDF vector,
and selects the nearest sample.

• BM25 (Robertson et al., 2009) selects demonstrations
by retrieval method BM25.

• T5 (Raffel et al., 2020) encodes problems with T5-
large and selects the most similar one.
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• BGEM3 (Chen et al., 2024b) integrate multiple infor-
mation retrieval functionalities in a unified embedding.

• OpenAI (Neelakantan et al., 2022) represents prob-
lems with OpenAI Text-Embedding-3-Small model,

and methods that do not rely on problem similarity:

• SPELL (Gonen et al., 2023) selects demonstrations by
calculating their perplexity.

• Influence (Nguyen & Wong, 2023) divides D into
multiple subsets. The preference of a demonstration
is calculated by the difference in validation accuracy
between subsets that include and exclude it.

• IDS (Qin et al., 2023) iteratively selects demonstrations
based on reasoning path similarity.

Implementation Details. When implementing our LMS3,
we set λ to 10% for Llama2-13B and 1% for Llama3-8B.
The temperature for both LLMs is set to 0.8. For the baseline
Influence, the size S of the subset is set to 20. For the
baseline IDS, the number Q of iterations is set to 3. All
experiments are conducted on a server with six NVIDIA
RTX 3090 GPUs.

5.2. Performance on One-shot Reasoning

In Table 2, we present the performance of all methods in
the one-shot setting. Firstly, it can be seen that our LMS3
outperforms all baselines across all datasets, and this effect
is statistically significant with p ≤ 0.05 (marked ∗). This
directly indicates that the demonstrations chosen by our
method better stimulate the LLM’s contextual learning abil-
ity. We also present some cases in Appendix D for clearer
comparison. Secondly, our LMS3 is the only one that con-
sistently provides improvements over the zero-shot setting,
while other methods exhibit certain fluctuations across dif-
ferent datasets. This can be attributed to our method being
designed based on a theoretical analysis of when one-shot
learning is effective (i.e., Theorem 1). These experimental
results validate the rationality, effectiveness, and strong ro-
bustness of our theoretical findings. Thirdly, we observe
that one-shot learning generally improves the backbone’s
performance on the more challenging MATH dataset, but
sometimes shows a decrease on other datasets. We believe
this is because the problems in MAWPS and GSM8K are
relatively simple, and the LLM itself already has the capa-
bility to solve them. Introducing additional examples in this
case might instead mislead the model’s reasoning thought.

5.3. Performance on Few-shot Reasoning

Now we validate our LMS3 in the k-shot scenario, with
Llama3-8B’s performances at k = {2, 3, 4} visualized in
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Figure 3. Few-shot Answer Accuracy of Llama3-8B.
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Figure 4. Distribution of Score(X) in Eq. (24).

Figure 3. Firstly, our method remains superior across differ-
ent settings, which is consistent with our Theorem 2, demon-
strating its high applicability to various scenarios. Secondly,
as k increases, the trend of reasoning performance varies
across different datasets. On MAWPS and MATH, the per-
formances of most methods consistently improve with a
higher k. However, on GSM8K, the accuracy for almost
all methods declines after k = 3. This suggests that an ex-
cessive number of demonstrations does not necessarily lead
to increased accuracy and we need to balance the number
and length of demonstrations. A dataset with longer prob-
lem lengths (i.e., GSM8K as indicated in Appendix C) may
require fewer examples to achieve optimal performance.

5.4. Analysis of Scoring Function

Figure 4 presents the distribution of Score(X) in Eq. (24)
normalized by z-score, which verifies that our Score(X)
has good discriminative power for different samples. More
importantly, we observe that the variances of the distribu-
tions for Llama2 on GSM8K and MATH, Llama3 on MATH,
are relatively small. This indicates that the differences be-
tween samples in these cases are not significant, which can
explain why most other one-shot baselines also perform bet-
ter than the zero-shot setting in Table 2. In contrast, in other
cases (e.g., on MAWPS), the performance gap between dif-
ferent samples is larger, and only our LMS3 can consistently
achieve better results than zero-shot setting.
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Figure 5. Performance with varying λ. The dashed line corre-
sponds to the result of the zero-shot setting.

Method MAWPS GSM8K MATH
Random 0.951 0.813 0.330

+ours 0.952 0.818 0.349
Best-validate 0.932 0.817 0.332

+ours 0.941 0.829 0.344
TF-IDF 0.945 0.803 0.344
+ours 0.946 0.818 0.351
BM25 0.932 0.805 0.334
+ours 0.934 0.812 0.335

T5 0.948 0.817 0.330
+ours 0.953 0.828 0.333

BGEM3 0.938 0.802 0.340
+ours 0.941 0.822 0.350

OpenAI 0.965 0.809 0.346
+ours 0.973 0.818 0.347

SPELL 0.945 0.821 0.343
+ours 0.946 0.826 0.345

Influence 0.929 0.800 0.333
+ours 0.935 0.810 0.340
IDS 0.920 0.808 0.330

+ours 0.932 0.823 0.346

Table 3. Performance of combining our rejection mechanism with
other demonstration selection methods.

5.5. Necessity of Demonstration Rejection

To validate the necessity of our proposed demonstra-
tion rejection mechanism, we test the effects of λ =
{1%, 5%, 10%, 20%, 40%, 60%, 80%, 100%}. It is note-
worthy that λ = 100% is equivalent to removing our re-
jection mechanism. From Figure 5, we can first observe that
when λ = 100%, the accuracy of LMS3 falls below that
of the zero-shot results, which highlights the necessity of
our rejection mechanism. Secondly, when λ increases, the
performance of Llama2 initially rises and then falls, while
the performance of Llama3 consistently declines. On one
hand, this indicates that the strength of λ needs to be bal-
anced differently for various LLMs, but this process is not
complicated since the optimal λ is basically within 10%.
On the other hand, this demonstrates that our Sim(X) can
effectively approximate the conditions in Theorems 1 and
2, as using it to implement the rejection mechanism can
improve the model’s performance. Thirdly, in Table 3, we
apply our rejection mechanism to all baselines (denoted as
“+ours”) with Llama3-8B as the backbone. The consistent
performance gains reflect the general applicability of our
mechanism and underscores the importance of considering

ChatGPT GPT-4
MAWPS GSM8K MATH MAWPS GSM8K MATH

zero-shot 0.906 0.800 0.482 0.941 0.954 0.758
Random 0.858 0.839 0.503 0.976 0.946 0.702

Best-validate 0.831 0.832 0.519 0.979 0.951 0.715
TF-IDF 0.895 0.820 0.514 0.975 0.947 0.724
BM25 0.901 0.828 0.510 0.987 0.953 0.691

T5 0.893 0.840 0.508 0.973 0.950 0.718
BGEM3 0.896 0.838 0.504 0.986 0.955 0.705
OpenAI 0.898 0.829 0.513 0.979 0.945 0.699

Influence 0.878 0.848 0.515 0.974 0.955 0.702
IDS 0.908 0.848 0.505 0.979 0.959 0.742

LMS3 (ours) 0.909 0.862 0.517 0.990 0.961 0.752

Table 4. Generalization performance on ChatGPT/GPT4.

when to include a demonstration in ICL.

5.6. Generalization Ability

One advantage of our method is that it reasonably considers
the inference LLM when selecting demonstrations. How-
ever, it may raise concerns about its extensibility, as it re-
quires access to the LLM’s internal parameters. To address
this issue, we offer the demonstrations selected by LMS3
(Llama3-8B) directly to the most advanced LLMs ChatGPT
and GPT-4, compared with other methods that do not rely
on the LLM’s parameters. From Table 4, we can see that our
LMS3 still achieves nearly optimal results, demonstrating
the excellent generalization and representativeness of our
selected demonstrations. Besides, we observe that all meth-
ods negatively impact the reasoning performance on MATH
dataset when applied to GPT-4. We attribute this to that
chain-of-thought examples may no longer be significantly
beneficial for GPT-4, and future examples for GPT-4 might
need to focus more on code (Chen et al., 2023; Gao et al.,
2023) or other formats.

5.7. Applicability to More Tasks

To expand the applicability of our work and demonstrate the
versatility of LMS3, we include an additional experiment
on CommonsenseQA, a large-scale benchmark designed to
evaluate commonsense reasoning task and has been widely
used in ICL research (Ye et al., 2023; Qin et al., 2023;
Min et al., 2022). This extension allows us to showcase
LMS3’s effectiveness not only in mathematical reasoning
tasks but also in broader reasoning domains that involve
more nuanced and diverse knowledge.

The results in Table 5 show that LMS3 outperforms all
baseline methods on both Llama2-13B and Llama3-8B,
with an accuracy of 0.444 and 0.650, respectively. The im-
provement is particularly significant on Llama2-13B, where
LMS3 surpasses the next best method by a larger margin.
These results highlight the effectiveness of LMS3 in enhanc-
ing model performance across different tasks, demonstrating
its potential for real-world applications.
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Llama2-13B Llama3-8B
zero-shot 0.428 0.628
Random 0.415 0.625

Best-validate 0.375 0.605
TF-IDF 0.368 0.617
BM25 0.383 0.627

T5 0.419 0.617
BGEM3 0.377 0.589
OpenAI 0.393 0.607
SPELL 0.409 0.637

Influence 0.374 0.605
IDS 0.408 0.640

LMS3 (ours) 0.444 0.650

Table 5. Performance of CommonsenseQA benchmark.

6. Conclusion
In this paper, we theoretically analyzed how demonstra-
tions affected LLMs’ mathematical reasoning performance.
On this basis, we proposed a LMS3 method that balanced
LLM-oriented semantic similarity and inference stability of
demonstrations, and introduced a demonstration rejection
mechanism to filter out negative situations. Experiments
showed that our method was the only one to consistently
improve the reasoning accuracy of LLMs, and our demon-
strations exhibited strong generalization ability and inter-
pretability. In the future, we will extend our method to more
NLP tasks and apply our theory to broader scenarios. Please
refer to Appendix E for more discussions and details.

Impact Statement
This work provides valuable insights into the underlying
mechanisms of LLMs. By theoretically analyzing how in-
context demonstrations affect LLM performance, we offer
a deeper understanding of LLM behavior, which paves the
way for more effective optimizations in the future. This
could lead to reduced costs and improved efficiency in de-
ploying LLMs for reasoning tasks. Additionally, our LMS3
method has practical implications for improving the relia-
bility and relevance of LLM outputs in various applications,
especially in decision-making fields that rely on complex
reasoning and data-driven insights.
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A. Proof of Theorem 1
We interpret the attention mechanism in ICL setting as: 1)
We have a linear function F(z) with initialized parameters

W0 =
WV√

d
htest · (WKhtest)

T. (25)

2) We introduce a training data z0 = WKh to optimize the
parameters, with the gradient at (z0,W0) satisfies

∇FL(z0,W0) =
WV√

d
h. (26)

3) We finally apply the optimized parameters to calculate
the result of test data htest.

Theorem 1. Assume ∇FL is Lipschitz continuous w.r.t
F with constant µ. If inequality (7) holds true, then
L(htest, Ŵ 1

|Dpre| ,z0
) < L(htest, Ŵ0,z0), i.e., introducing

the training sample z0 (i.e., demonstration X) can reduce
the testing loss on htest. 1

λdd′
, 1
λ1

are the largest and small-
est eigenvalues of HŴ , respectively.

λdd′

λ1
∥∇WL(htest, Ŵ )∥ > ∥htest − z0∥ · (∥

WV√
d
h∥+ µC1)

C1 = ∥WV√
d
htest∥ · ∥WKhtest∥ · ∥htest∥

(27)

Proof. With Ŵ , Ŵϵ,z0 , the influence of upweighting z0 on
the parameters Ŵ is (Ling, 1984; Koh & Liang, 2017):

Iparameter(z0) =
dŴϵ,z0

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

Ŵ
∇WL(z0, Ŵ ),

(28)

and the influence on the loss function is:

Iloss(z0) =
dL(htest, Ŵϵ,z0)

dϵ

∣∣∣∣∣
ϵ=0

= ∇WL(htest, Ŵ )T · dŴϵ,z0

dϵ

∣∣∣∣∣
ϵ=0

= −∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(z0, Ŵ )

(29)

Then, the testing loss L(htest, Ŵ 1
|Dpre| ,z0

) can be evaluated

by Taylor approximation since 1
|Dpre| is sufficiently small,

i.e., L(htest, Ŵ 1
|Dpre| ,z0

) ≈

L(htest, Ŵ0,z0) +
1

|Dpre|
dL(htest, Ŵϵ,z0)

dϵ

∣∣∣∣∣
ϵ=0

=L(htest, Ŵ0,z0)−
1

|Dpre|
∇WL(htest, Ŵ )T

·H−1

Ŵ
∇WL(z0, Ŵ ).

(30)

Therefore, now the question turns to evaluate

L1
def
= ∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(z0, Ŵ ). (31)

Specifically, L1 can be represented as L1 =

(∇WL(z0, Ŵ )−∇WL(htest, Ŵ ))T ·H−1

Ŵ
∇WL(htest, Ŵ )︸ ︷︷ ︸

L11

+∇WL(htest, Ŵ )T ·H−1

Ŵ
∇WL(htest, Ŵ )︸ ︷︷ ︸

L12

(32)

Since HŴ is positive definite, there exists an orthogonal
matrix O and a diagonal matrix Σ = diag(λ1, ..., λdd′)
satisfying H−1

Ŵ
= OT · Σ · O, where λ1 ≥ λ2 ≥ ... ≥

λdd′ > 0 are the eigenvalues of H−1

Ŵ
. For L11, it equals

(O(∇WL(z0, Ŵ )−∇WL(htest, Ŵ )))T︸ ︷︷ ︸
aT

diag(λ1, ..., λdd′)·

O∇WL(htest, Ŵ )︸ ︷︷ ︸
b

= Σdd′
i=1λiaibi ≥ −

√
Σdd′

i=1a
2
i

√
Σdd′

i=1(λibi)2

≥ −λ1∥∇WL(htest, Ŵ )∥ · ∥∇WL(htest, Ŵ )−∇WL(z0, Ŵ ))∥

≥ −λ1∥∇WL(htest, Ŵ )∥ · ∥Flat
(
∇FL(htest, Ŵ ) · hT

test

− ∇FL(z0, Ŵ ) · zT0
)
∥

≥ −λ1∥∇WL(htest, Ŵ )∥ ·
(
∥Flat((∇FL(htest, Ŵ )−

∇FL(z0, Ŵ )) · hT
test)∥+ ∥Flat(∇FL(z0, Ŵ ) · (htest − z0)

T)∥
)

= −λ1∥∇WL(htest, Ŵ )∥ ·
(
∥∇FL(htest, Ŵ )−∇FL(z0, Ŵ )∥

· ∥htest∥+ ∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥
)
,

(33)
where Flat(W ) is the operation that flatten a matrix W ∈
Rd′×d into a vector of length Rd′d. Since ∇FL is Lipschitz
continuous, we get L11 ≥

− λ1∥∇WL(htest, Ŵ )∥ · (µ∥Ŵ (htest − z0)∥ · ∥htest∥+

∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥)
(34)

Applying Eqs. (25)(26) to Eq. (34), we have:

∥Ŵ (htest−z0)∥ =

√
(htest − z0)TŴTŴ (htest − z0)

=∥WV√
d
htest∥ · |(WKhtest)

T(htest − z0)|

≤∥WV√
d
htest∥ · ∥WKhtest∥ · ∥htest − z0∥

(35)

∥∇FL(z0, Ŵ )∥ · ∥htest − z0∥ = ∥WV√
d
h∥ · ∥htest − z0∥ (36)

For L12, we similarly have:

L12 = Σdd′

i=1λib
2
i ≥ λdd′∥∇WL(htest, Ŵ )∥2 (37)
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Algorithm 1 Our LMS3
Input: k-shot, Xtest, D, λ
Output: Selected demonstration set Dk ⊆ D

1: Calculate Sim(X), Stab(X), Score(X) for X ∈ D
based on Eqs.(21)(22)(24).

2: Define Scorek ⊆ D as the set of k samples with the
smallest Score(X) values.

3: Define Simλ ⊆ D as the set of λ samples with the
smallest Sim(X) values.

4: Dk = {}.
5: for X ∈ Scorek do
6: If X ∈ Simλ do
7: Dk = Dk ∪ {X};

MAWPS GSM8K MATH
Num. Problems 2,373 8,792 12,500

|D| 1,898 7,473 7,500
|Dtest| 475 1,319 5,000

Avg. Problem Length 30.08 45.88 30.79
Avg. Solution Length 5.90 48.31 84.50

Difficulty Level Elementary Elementary High School

Table 6. Statistics of datasets.

Combining Eqs. (34)-(37), we finally get:

L1 ≥λdd′∥∇WL(htest, Ŵ )∥2 − λ1∥∇WL(htest, Ŵ )∥ · (µ

∥WV√
d
htest∥ · ∥WKhtest∥ · ∥htest − z0∥ · ∥htest∥+

∥WV√
d
h∥ · ∥htest − z0∥) .

(38)

According to Eq. (27), the right-hand side of Eq. (38) is
greater than 0, which leads to the conclusion. □

B. Pseudo-Code of LMS3
The pseudo-code of our LMS3 is presented in Algorithm 1.

C. Dataset Partition and Statistics
For GSM8K and MATH, we follow their publicly available
train/test splits as D and Dtest. For MAWPS, we randomly
split the dataset into an 8:2 ratio for D/Dtest. We summarize
the dataset statistics in Table 6. For each dataset, we also
randomly select 200 problems from D as the validation set
to support the implementation of some baselines.

D. Case Study
Figure 6 shows three cases to validate LMS3’s interpretabil-
ity. For brevity, we omit the solutions for demonstrations.

For cases 1 and 2, the baselines OpenAI and Best-validate
both made errors. This indicates that considering only the
semantic similarity of demonstrations or the effectiveness of

demonstrations on the validation set alone, is insufficient. It
is essential to balance similarity and the inference stability
of demonstrations, as LMS3 does, to consistently achieve
better results compared to zero-shot setting. In case 3, we
again observe that the two baselines incorrectly answer
a problem that zero-shot got right. In contrast, LMS3’s
rejection mechanism determines that the best demonstration
still has a relatively large similarity distance Sim(X) from
the test sample (ranked in the top 1.19% exceeding λ =
1%). By automatically rejecting this demonstration and
adopting the zero-shot setting, LMS3 maintains the original
performance, which verifies the necessity and effectiveness
of our proposed demonstration rejection mechanism.

E. Discussion and Future Work
Here, we discuss several future directions of LMS3.

First, in this paper, motivated by LLMs’ unreliable perfor-
mance on mathematical reasoning benchmarks, we derive
our Theorems 1 and 2 to illustrate when in-context learning
is effective for mathematical reasoning and design a corre-
sponding demonstration selection method LMS3. However,
our theories and method can be easily extended to other nat-
ural language processing tasks, such as commonsense rea-
soning (Talmor et al., 2019) and sentiment analysis (Socher
et al., 2013; He et al., 2017). Besides, it is also worthwhile
to explore how our analysis can be further adapted to multi-
modal tasks, such as geometric reasoning (Xiao et al., 2024)
and graph learning (Pei et al., 2020). Therefore, in the fu-
ture, we are willing to refine our theories by incorporating
the characteristics of different tasks and to test our LMS3
more broadly.

Second, from our theories, we further find that the cor-
rectness of the reasoning paths in the demonstrations may
have less impact on the test performance compared with
its semantics, which aligns with observations reported in
previous studies (Wei et al., 2023; Min et al., 2022). This
phenomenon does not meet the goal of enabling LLMs to
learn and imitate the reasoning paths of demonstrations.
Therefore, we will explore ways to amplify the influence of
the demonstration reasoning paths based on our theory for
improving the interpretability and controllability of ICL.

Moreover, similar to ICL, retrieval-augmented generation
(RAG) (Ding et al., 2024; Chen et al., 2024a) also enables
LLMs to perform reasoning based on given information
(e.g., retrieved knowledge). However, this information is
often semantically unrelated to the test problem (e.g., pro-
viding external knowledge) or may not involve reasoning
problems in itself (e.g., the knowledge is a declarative state-
ment that does not require LLMs to reason). Therefore, we
believe that how to extend our theory to analyze when RAG
is effective presents a promising research direction.
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Case 1: Find the sum of the slope and y-intercept of the line through the points (7,8) and (9,0).

LMS3 (Ours)

Demonstration: Find the slope of the line that is perpendicular to the line 2x + 3y = 6.

Answer: Let's break it down step by step! First, we need to find the slope of the line ... We can 

use the formula … So, the slope of the line is -4. Next, we need to find the y-intercept of the line. 

We can use the formula … So, the y-intercept is 36. Finally, we need to find the sum of the slope 

and y-intercept. … Therefore, the sum of the slope and y-intercept is 32.

Zero-shot:  The slope of the line through (7,8) and (9,0) is m=\\frac{0-8}{9-7}=-8. The y-

intercept of the line is 8.  Therefore, the sum of the slope and y-intercept is -8+8=\\boxed{0}.

OpenAI

Demonstration: What is the sum of the coordinates of the midpoint of the line segment 

connecting points (5,4) and (-9,8)?

Answer: Let's solve the problem step by step. First, we need to find the slope (m) … = -4. Now, 

we need to find the y-intercept (b) … So, the y-intercept is 28.Finally, we need to find the sum 

of the slope and y-intercept:-4 + 28= 24. Therefore, the sum of the slope and y-intercept is 24.

Best-validate

Demonstration: Let \[f(x) = \left\{\begin{array}{cl} ax+3, &\text{ if }x>2, \\x-5 &\text{ if } 

-2 \le x \le 2, \\2x-b &\text{ if } x <-2.\end{array}\right.\]Find a+b if the piecewise function 

is continuous (which means that its graph can be drawn without lifting your pencil from 

the paper).

Answer: Let's take a deep breath and think step by step. The slope of the line … -4. The slope-

intercept form of a line is y = mx + b, … So, the y-intercept is 36. The sum of the slope and y-

intercept is: m + b = -4 + 36 = 32. Therefore, the sum of the slope and y-intercept is 32.

Case 2: Which type of conic section is described by the equation \[(x-y)(x+y) = -2y^2 + 1?\]Enter 

"C" for circle, "P" for parabola, "E" for ellipse, "H" for hyperbola, and "N" for none of the above. 

LMS3 (Ours)

Demonstration: Find the focus of the parabola $y = x^2.

Answer: To determine the type of conic section described by the given equation, we can start by 

simplifying the equation:\\[(x-y)(x+y) = -2y^2 + 1\\] Expanding the left-hand side, we get: \\[x^2 

- y^2 = -2y^2 + 1\\] Rearranging the equation, we get:\\[x^2 + y^2 = 1\\]. This is the equation of 

a circle, so the correct answer is:C

Zero-shot:  The given equation can be simplified as follows:\\begin{align*}\n(x-y)(x+y) &= -

2y^2 + 1\\\\\nx^2-y^2 &= -2y^2 + 1\\\\\nx^2+2y^2-1 &= 0\\\\\n(x^2+2y^2) &= 1\n\\end{align*}. 

This is the equation of a hyperbola.

OpenAI

Demonstration: Which type of conic section is described by the equation \[x^2 = 2x + 2y -

3?\] Enter "C" for circle, "P" for parabola, "E" for ellipse, "H" for hyperbola, and "N" 

for none of the above.

Answer: Let's break it down step by step! First, we can expand the left-hand side of the equation: 

(x-y)(x+y)=x^2-y^2.So, the equation becomes:x^2 - y^2 = -2y^2 + 1.Now, let's move all the terms 

to one side: x^2 + y^2 = 1. This is the equation of a circle! Therefore, the correct answer is: C 

Best-validate

Demonstration: Shown below are rows 1, 2, and 3 of Pascal's triangle. \[\begin{array} 

{ccccccc}& & 1 & & 1 & & \\& 1 & & 2 & & 1 & \\1 & & 3 & & 3 & & 1\end{array}\]Let 

$(a_i),$ $(b_i),$ $(c_i)$ be the sequence, from left to right, of elements in the 2005th, 2006th, 

and 2007th rows, respectively, with the leftmost element occurring at $i = 0.$  

Compute\[\sum_{i = 0}^{2006} \frac{b_i}{c_i} - \sum_{i = 0}^{2005} \frac{a_i}{b_i}.\]

Answer: I'm ready to take on the challenge! Let's start by factoring the equation: \\[(x-y)(x+y) = 

-2y^2 + 1\\] \\[(x^2-y^2) = -2y^2 + 1\\] \\[(x^2+y^2-1) = -2y^2\\] \\[(x^2+y^2-1+2y^2) = 0\\] 

\\[(x^2+3y^2-1) = 0\\]. This is a quadratic equation in x^2 and y^2, and it's in the form: 

\\[ax^2+by^2+c=0\\] where a, b, and c are constants. The equation represents a conic section. 

Since the coefficient of x^2 (a) is positive, and the coefficient of y^2 (b) is positive, the equation 

represents an ellipse. So, the correct answer is: E

Case 3: There are four birds at the Caboose. Sally Two is three years older than Granny Red. 

Granny Red is two times as old as Sally Four. If Sally Four is the same age as Sally Thirtytwo, 

and Sally Thirtytwo is 8 years old, what's the total age of the four birds?

LMS3 (Ours)

Demonstration: Sebastian plays drums for percussion in an orchestra. He sits next to the 

brass section where four people play trombone, two play trumpet, and one plays a French 

horn. In front of them are the strings section with three violinists, a cellist, and a 

contrabassist. Next to the strings are a trio of clarinets and a quartet of flute players in the 

woodwinds section. The maestro conducts them all. How many people are in the orchestra?

(Rejected, ranked 1.19% by  !"(#))

Answer: Let's break it down step by step! 1… so Sally Four is also 8 years old. 2… so Granny 

Red is 2 8 = 16 years old. 3… so Sally Two is 16 + 3 = 19 years old. Now, let's add up the 

ages of the four birds…The total age of the four birds is: 8 + 19 + 16 + 8 = 51 years old.

Zero-shot:  Let's break it down step by step! 1… so Sally Four is also 8 years old. 2… so Granny 

Red is 2 8 = 16 years old. 3… so Sally Two is 16 + 3 = 19 years old. Now, let's add up the ages 

of the four birds…The total age of the four birds is: 8 + 19 + 16 + 8 = 51 years old.

OpenAI

Demonstration: Jerry counts six birds nesting in the bushes, 2/3rd of that number of birds 

flying overhead, and 3 groups of eight birds each feeding. How many birds does he count in 

total?

Answer: Let's break it down step by step!1… so Sally Four is also 8 years old.2… so Granny 

Red is 2 x 8 = 16 years old.3… so Sally Two is 16 + 3 = 19 years old.4. Finally, we add up the 

ages of the four birds: 8 (Sally Four)+16 (Granny Red)+19 (Sally Two)+4 (Caboose) = 

47\n\n#### 47

Best-validate

Demonstration: Natalia sold clips to 48 of her friends in April, and then she sold half as 

many clips in May. How many clips did Natalia sell altogether in April and May?

Answer: Let's break it down step by step!1. … so Sally Four is also 8 years old.2. … so Granny 

Red is 2 8 = 16 years old.3. … so Sally Two is 16 + 3 = 19 years old.4. Now, let's add up the 

ages of the four birds: Sally Four (8), Sally Two (19), Granny Red (16), and... wait, there's one 

more bird, but we're not given its age! Let's assume it's 0 years old (a baby bird?). Then, the 

total age of the four birds is: 8 + 19 + 16 + 0 = 43 years. So, the total age of the four birds is 

43 years.

Figure 6. Case Study. 14


