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ABSTRACT
Knowledge tracing is a fundamental task in intelligent education for
tracking the knowledge states of students on necessary concepts.
In recent years, Deep Knowledge Tracing (DKT) utilizes recurrent
neural networks to model student learning sequences. This ap-
proach has achieved significant success and has been widely used
in many educational applications. However, in practical scenarios,
it tends to suffer from the following critical problems due to data
isolation: 1) Data scarcity. Educational data, which is usually dis-
tributed across different silos (e.g., schools), is difficult to gather.
2) Different data quality. Students in different silos have different
learning schedules, which results in unbalanced learning records,
meaning that it is necessary to evaluate the learning data quality in-
dependently for different silos. 3) Data incomparability. It is difficult
to compare the knowledge states of students with different learning
processes from different silos. Inspired by federated learning, in
this paper, we propose a novel Federated Deep Knowledge Tracing
(FDKT) framework to collectively train high-quality DKT models
for multiple silos. In this framework, each client takes charge of
training a distributed DKT model and evaluating data quality by
leveraging its own local data, while a center server is responsible
for aggregating models and updating the parameters for all the
clients. In particular, in the client part, we evaluate data quality
incorporating different education measurement theories, and we
construct two quality-oriented implementations based on FDKT,
i.e., FDKTCTT and FDKTIRT-where the means of data quality eval-
uation follow Classical Test Theory and Item Response Theory,
respectively. Moreover, in the server part, we adopt hierarchical
model interpolation to uptake local effects for model personaliza-
tion. Extensive experiments on real-world datasets demonstrate the
effectiveness and superiority of the FDKT framework.
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1 INTRODUCTION
Knowledge Tracing (KT) is a fundamental task in intelligent educa-
tion. It aims to trace knowledge states of students based on their
historical learning trajectories. The success of knowledge tracing
can benefit both personalized and adaptive learning so that has
attracted significant attention over the past decades [1, 6, 21].

In the literature, many efforts have been made towards knowl-
edge tracing. Among them, Bayesian Knowledge Tracing (BKT) is
one of the representative early works [6]. Recently, considering
students’ learning on interrelated multiple concepts, Deep Knowl-
edge Tracing (DKT)-based models have been proposed [35]. As the
recent DKT-based models have stronger representational ability,
they have been widely used in various educational applications,
including in-class assessment and online diagnosis [31, 41, 46].

In order to learn high-quality DKT models, it inevitably requires
a substantial amount of comprehensive data for guaranteeing the
stability of neural networks during training [32]. However, practi-
cal educational scenarios usually suffer from critical data isolation
problem [18, 19], which means that the learning data of students is
usually collected and stored separately in the case of isolated silos
(e.g., different schools). As a result, conventional DKT-based models
could become inapplicable due to the following unique character-
istics in intelligent education: 1) Data scarcity. Typically, learning
data tends to be distributed across different schools and highly pro-
prietary so that it is difficult to gather the data for training [17, 25].
To be more specific, as shown in Figure 1, each school only stores
its own local data, because students reject to make the data pub-
lic. Accordingly, it is necessary to find an appropriate solution for
training DKT independently while alleviating data scarcity. 2) Dif-
ferent data quality. As [42] suggested, the success of knowledge
tracing relies heavily on the quality of the learning data. How-
ever, different schools usually have different learning schedules,
thus, students isolated may practice inconsistent and unbalanced
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Figure 1: Example: Left part shows that two isolated schools hold their private learning data. Middle part shows the learning
processes of two students from two schools, where the processes are inconsistent on concepts. The radars on the right illustrate
their knowledge states on five concepts after completing the exercises.
learning processes [10]. For example, as shown in Figure 1, we can
see that Alice (in school 1) mainly learns the concept “Equivalent
Fractions” while Bob (in school 2) even ignores this concept. In
this case, the learning data reveals inconsistent properties and set-
tings (e.g., difficulty) among schools which results in bias of data
quality [13, 36, 39]. It may affect the performances of knowledge
tracing models [4]. Therefore, an effective way to evaluate data
quality is highly required. Meanwhile, such quality-oriented issue
also leads to a non-independent identically distributed (Non-IID)
scenario in practice. That is, the distributions of data in local silos
depend on data owners and are significantly different from the
global one [23, 37, 49]. In this case, we should enhance the model
personalization. In other words, the local model espects to aptly fit
the local data for corresponding client. 3) Data incomparability. It is
difficult to compare the knowledge states of students from different
silos [5]. In other words, we are curious about which of Alice or
Bob in Figure 1 learns better on the same concept eventually. Hence,
the solution should also consider this demand in a flexible way.

Inspired by federated learning, in this paper, we address above
problems in a principled way. We propose a novel client-server
architecture framework named Federated Deep Knowledge Tracing
(FDKT). Specifically, the client part is designed for training DKT
models independently and evaluating the local data quality. Corre-
spondingly, the server part takes charge of aggregating and updat-
ing all local models for clients. In particular, to evaluate the data
quality, we propose two implementations of FDKT that incorporate
quality-oriented aggregation strategies following two educational
measurement theories. The first one, named FDKTCTT, incorpo-
rates Classical Test Theory (CTT) [9], which considers the statistical
confidence to evaluate learning data quality. The second one, named
FDKTIRT, follows Item Response Theory (IRT) [28], which investi-
gates the information confidence. Therefore, the server aggregates
models based on data quality so that we can pay more attention
to models with high-quality data rather than large-scale data, and
reasonably aggregate the more positive training effects. Moreover,
to enhance model personalization, we modify the update strategy
via hierarchical model interpolation with measuring the disparity
between models. Therefore, the server updates new local models
adopting local effects so that we can make local models more suit-
able for local data to avoid limitations from Non-IID scenario [15].
Furthermore, through our framework, on one hand, we can ex-
pand available data to mitigate data scarcity; on the other hand,

students naturally become comparable by synthesizing effects of
decentralized models. Extensive experiments on real-world datasets
clearly demonstrate that our framework outperforms the baselines
in terms of knowledge tracing effectiveness, communication cost
and comparability. To the best of our knowledge, FDKT is the first
framework that is specifically designed for federated deep knowl-
edge tracing while considering both quality-oriented aggregation
and personalized update strategy.

2 RELATEDWORK
In this section, we briefly review some related works.

2.1 Knowledge Tracing
Knowledge tracing (KT) is a fundamental task in intelligent edu-
cation dating back to the 1990s, which aims to trace the knowl-
edge states of students based on their historical learning perfor-
mances [6]. Regarding tasks of this kind, Bayesian Knowledge
Tracing (BKT)-based models are one kind of the representative
models [6, 34, 47]. This approach utilizes the Hidden Markov Model
(HMM) to separately represent and update student knowledge states
as a set of binary variables. Recently, researchers proposed Deep
Knowledge Tracing (DKT) by leveraging recurrent neural networks
to update students’ knowledge states [35]. Subsequently, many
extensions have been proposed with considering extra informa-
tion, such as the knowledge-exercise relationships [14, 48], the
contents of exercises [26] and graph structures [33, 40]. Exper-
imental results show that DKTs have stronger representational
abilities. However, practical educational scenarios usually suffer
from data isolation problem, which restricts the application of the
conventional DKT-based models since training a high-quality DKT
is usually data-hungry [32].

2.2 Federated Learning
Federated learning (FL) is one of the most promising techniques in
recent years, and has achieved great success in various domains
including personal devices [11, 44] and banking [45]. The main idea
of FL is to build and aggregate machine learning models based on
data that are localized on multiple mobile devices [30, 43]. Specif-
ically, in terms of model aggregation, researchers have proposed
various strategies, such as FedSGD, FedAVG [30], FedATT [16] and
LoAdaBoost [12]. However, existing FL studies tend to focus on
basic statistics of data (e.g., data scale) for aggregating and Non-IID

Poster Session I  WSDM ’21, March 8–12, 2021, Virtual Event, Israel

663



data will impair FL performances simultaneously [42]. In this pa-
per, we pay attention to the unique characteristics of data quality
in intelligent education. For educational applications, we propose
quality-oriented aggregation strategies and regard data quality as
the importances of models. Moreover, we modify a hierarchical
model interpolation-based update strategy for personalized feder-
ated learning to fit clients’ own partial data.

2.3 Educational Measurement Theory
Educational Measurement theory provides the foundation via item
quality analysis for many educational scenarios, including exami-
nation arrangement [38] and adaptive testing [20]. Generally, there
are two widely-used theories, i.e., Classical Test theory (CTT) [9]
and Item Response Theory (IRT) [28]. In more detail, CTT is a sta-
tistical theory that evaluates the learning data quality from item
perspectives, including difficulty, discrimination, and reliability [8].
Correspondingly, IRT directly assesses the item information as
learning data quality by designing an information function called
Item Characteristic Curve (ICC), which considers both the student
and the item characteristics [3]. In this paper, we make full use
of the above measurement theories in order to improve the ag-
gregation performances in our proposed framework from a data
quality perspective, where the solutions can be naturally applied
in intelligent education.

3 PRELIMINARIES
In this section, we introduce the concepts for item quality analysis
and provide the formal definition of the Federated Deep Knowledge
Tracing problem.

3.1 Educational Measurement Theory
In intelligent education, item analysis is an important field which
aims to evaluate item quality [9]. The educational measurement
theories, i.e., CTT and IRT, have been applied in it. In this paper, we
integrate some important item analysis concepts and technologies
into the learning data quality evaluation as follows.

3.1.1 Classical Test Theory (CTT). CTT is one of the educational
measurement theories which focuses on separating errors between
response results and real values. It has been widely applied to item
analysis. CTT regards the statistical confidence as the data quality,
and researchers have established several indicators to measure qual-
ity from different aspects, including difficulty, discrimination, and
reliability [8, 9]. Specifically, difficulty reflects how difficult an item
is for students; discrimination is the ability of an item to distinguish
the mastery of knowledge concepts of students; reliability reflects
the consistency of all the items. However, CTT is also affected by
some limitations. For example, it simply relies on a weak linear
hypothesis, and indicators in CTT are overly dependent on the
samples of data which exhibits some biases for measurements [8].
Therefore, a new theory that can fix these disadvantages, Item
Response Theory, has attracted more attentions [2].

3.1.2 Item Response Theory (IRT). IRT aims to the latent char-
acteristics of students in the learning processes to overcome the
above-mentioned critical limitations of CTT. It focuses on infor-
mation confidence of learning data and researchers design Item

Characteristic Curve [3] to measure the item information. It is a
logistic function to fit the connection between the student and the
item characteristics. The model of IRT is denoted as follows:

P(θ ) = c +
1

1 + e−D×a(θ−b)
, (1)

where θ represents the latent trait, that is, knowledge states of a
students [27]. Moreover, a denotes the discrimination of an item;
while b denotes the difficulty; and parameter c is generally referred
to the "guess parameter", as it indicates the accuracy of the response
when a student totally guesses the item.

3.2 Problem Definition
In this section, we formally introduce the issue of Federated Deep
Knowledge Tracing. In our focused educational scenarios, there
are |S | schools isolated. In a specific school s , there are |Ns | stu-
dents who process not exactly the same |Qs | exercises as other
schools. Specifically, we define the learning records of a student
as r = {(q0,д0), (q1,д1), · · · , (ql ,дl )}, where ql ∈ Qs represents
the exercise practiced by the student at time l , and дl denotes the
corresponding score. Generally, if the student correctly answers
exercise ql , дl = 1; otherwise, дl = 0. All exercises are derived from
K concepts (e.g., “Mode”), which are confessed and consistent for
all schools in practical educational scenarios. In our problem, we
aim to train |S | local DKT models, i.e., {Θ1,Θ2, · · · ,Θs } for each
school, where the s-th DKT model Θs can trace the students in
school s of knowledge states (represent the students’ mastery of
concepts). Please note that in practical scenarios, most learning
data in schools is distributed and proprietary so that it is difficult
for schools to gather or share data with others in this case, which
results in data isolation.

4 FEDERATED DEEP KNOWLEDGE TRACING
FRAMEWORK

In this section, we first illustrate the pipeline of the proposed Fed-
erated Deep Knowledge (FDKT) framework. Then we further intro-
duce each part of our proposed models in following sections.

4.1 Model Overview
To solve the problemmentioned, we propose a novel FederatedDeep
Knowledge Tracing (FDKT) framework, which is a client-server
architecture as illustrated in Figure 2. It is an iteration process.
Specifically, at each round, each client is responsible for two tasks:
(1) training an independent DKT with the private data; (2) evaluat-
ing the data quality with confidence measurements; and the center
server also has two steps: (1) receiving and aggregating local DKTs
delivered; (2) composing and updating the models for local clients.
We will introduce the technical details of the client part and server
part in FDKT, respectively.

4.2 Client Design
Each client completes two processes, i.e., local DKT training and
data quality evaluation with local data.

4.2.1 Local DKT modeling. Deep Knowledge Tracing (DKT) is one
of the state-of-the-art models used to trace student’s knowledge
states with recurrent neural networks (RNN) [35]. In our client
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Figure 2: Federated Deep Knowledge Tracing Framework
part, we totally need to train |S | DKT models for |S | schools in-
dependently. Specifically, given the learning records of a certain
student, DKT uses a RNN to model her knowledge presentations
{h1,h2, · · · ,hl } and output her knowledge states (mastery levels)
{y1,y2, · · · ,yl } on multiple concepts, which can be denoted as:

hl = tanh(Whxxl +Whhhl−1 + bh),

yl = sigmoid(Wyhhl + by), (2)

where the input of DKT, xl ∈ {0, 1}2K is the one-hot encoding of
tuple (ql ,дl ), which represents the combination of which concept
of item is answered and whether the item is answered correctly.
Moreover, we define the model parameters as Θ = {Whx,Whh, bh,
Wyh, by}. For training DKT models, we typically treat student per-
formance prediction as the objective [26].

4.2.2 Data quality evaluation. In practice, training a high-quality
DKT usually requires abundant data [32]. However, our scenario
suffers from the data isolation problem, such that the DKT model
of a certain client only expects to use the local learning data of the
corresponding silo (e.g., school). Therefore, the centralized training
strategy of traditional DKT is infeasible for our problem.

We address the problem with federated learning to collectively
improve performances of all local DKTs. Traditionally, existing fed-
erated learning methods such as FedSGD and FedAvg [30] focus
primarily on aggregating local models together while referring to
data scales. However, as illustrated in Figure 1, the inconsistency
of learning schedule among schools leads to a bias of data qual-
ity, which causes problems when aggregating bad models from
low-quality data. Then, we propose two data quality evaluation
methods with confidence estimation. They follow educational mea-
surement theories that are commonly used in item quality analysis,
i.e., Classical Test Theory and Item Response Theory, respectively.

(1) CTT confidence. We implement an aggregation strategy with
Classical Test Theory (CTT), which evaluates the data quality from
item statistics perspective as CTT confidence. Generally, we define
the CTT confidence αCTT for local data on school s as:

αCTT = F (P(Qs ),D(Qs ),CR(Qs )), (3)
where F (·) can be any workable function. Moreover, P(Qs ), D(Qs ),
CR(Qs ) are the difficulty, discrimination and reliability of all the
Qs items, respectively. The estimations of them are as following:
• Difficulty: Difficulty reflects how difficult an item is [8].
Specifically, extreme group is a more effective method to esti-
mate difficulty. With extreme group method, the difficulty
Pi of item i is denoted as: Pi = (PHi + P

L
i )/2, where P

H
i (PLi )

is the average score on item i of students with higher (lower)
scores. Therefore, the difficulty of data P(Qs ) in school s with
the Qs items can be calculated as:

P(Qs ) = − log
∑ |Qs |

i=1 βi × |Pi − P0 |, (4)

where βi indicates the ratio of item i occurring in the data
of school s , and P0 is a reference value. Under most circum-
stances, researchers usually ensure that item difficulty is
close to a specific value in order to control the test effect.
• Discrimination: Discrimination is an indicator of how much
an item can distinguish the mastery on concepts of stu-
dents [8]. Specifically, the discrimination of data, D(Qs ), in
school s with theQs items can be calculated in a similar way
to the difficulty factor with extreme group method as:

D(Qs ) =
∑ |Qs |

i=1 βi × Di , (5)

where the discrimination Di of item i can be calculated as:
Di = PHi − P

L
i .

• Reliability: Reliability reflects the consistency of items and
the Cronbach α reliability coefficient is currently one of the
most commonly used reliability coefficients [7]. Here, we
calculate the reliability of data CR(Qs ) in school s following
the commonly used Cronbach coefficient as:

CR(Qs ) =
|Qs |

|Qs | − 1 × (1 −
∑ |Qs |
i=1 βi × S

2
i

S2
T

), (6)

where S2
i and S2

T are the variance of the average scores of
item i and the variance of the average total scores.

Following the estimation of difficulty, discrimination and reliability,
we simply implement a general workable function F (·) by multi-
plying all three statistical factors as (please note that comparing
different F (·) is not the main focus of this work):

αCTT = P(Qs ) × D(Qs ) ×CR(Qs ). (7)

CTT confidence presents a straightforward way of estimating
data quality from the statistical perspective. However, there are
some limitations mentioned. In the following, we propose another
sophisticated data quality evaluation using IRT confidence.

(2) IRT confidence. We also implement an aggregation strategy
with Item response theory (IRT), which evaluates data quality based
on the item information as IRT confidence. Specifically, we define
the IRT confidence αI RT for local data on school s as:

αI RT = max(
∑ |Qs |

i=1 βi × Ii (θ )), (8)
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Algorithm 1 FDKT. The |S | schools are indexed by s . B is the
local mini-batch size, E is the number of local rounds, and η is the
learning rate.
1: Server executes:
2: initialize Θ0.
3: for each round t = 1, 2,... do
4: for each client index s ∈ S in parallel do
5: Θt+1

s ,α
t+1
s ← ClientUpdate(s , Θt )

6: α̂ t+1
s =

α t+1
s∑S

i=1 α
t+1
i

7: Θt+1 ←
∑S
s=1 α̂

t+1
s × Θt+1

s by Eq. (11)
8: for each client index s ∈ S in parallel do
9: for each layer l = 1, 2, ... do
10: λl =

Θt+1,l
s ·Θt+1,l

∥Θt+1,l
s ∥×∥Θt+1,l ∥

by Eq. (13)

11: Θt+1
s = λ · Θt+1

s + (1 − λ) · Θt+1 by Eq. (12)
1: ClientUpdate(s ,Θ):
2: estimate αCTT by Eq. (7) or αI RT by Eq. (8)
3: B← (split dataset into batches of size B)
4: for each local round i from 1 to E do
5: for batch b ∈ B do
6: Θ← Θ − η∇l(Θ;b)
7: return parameters Θ and confidence α to server

where βi indicates the ratio of occurrence as mentioned and Ii (θ )
is the information function of item i , which can be calculated as:

Ii (θ ) =
(P ′i (θ ))

2

Pi (θ )(1 − Pi (θ ))
. (9)

Here, to obtain Ii (θ ), we learn an IRT model with an Item Char-
acteristic Curve, Pi (θ ), that combines both the student’s parameter
θ and item i’s parameters ai , bi and ci . Specifically, Pi (θ ) following
Eq. (1) is denoted as:

Pi (θ ) = ci +
1

1 + e−D×ai (θ−bi )
, (10)

where θ refers to the latent trait of a certain student, while ai ,bi , ci
are factors in the estimated model based on the so-called discrimi-
nation, difficulty and guess factors mentioned above.

4.3 Server Design
In FDKT, we design the server to be responsible for two stage
tasks, i.e., appropriately aggregating the local DKTs and adaptively
updating models.

4.3.1 Model Aggregation. In round t , the center server first receives
two parts of information from all the clients: (1) all the local con-
fidences: {α t1 ,α

t
2 , ...,α

t
s } (α ts can be either CTT confidence αCTT

by Eq. (7) or IRT confidence αI RT by Eq. (8) in school s); (2) all the
local DKT models: {Θt

1,Θ
t
2, · · · ,Θ

t
s }.

Then the server integrates all local DKT models to a global one
Θt . We follow the general setting of naive parameter averaging [30]
but innovatively adopt data quality instead of data scales for aggre-
gation. Then we perform the average of model parameters on the
current communication round t as follows:

Θt =
∑S

s=1 α̂
t
s × Θ

t
s , (11)

Table 1: The statistics of two datasets: MATH and ASSIST.
Statistics MATH ASSIST
# of schools 7 38
# of records 204,293 801,645
# of students 3,830 7,395
# of exercises 4,145 27,288
# of knowledge concepts 112 200
Avg. records per student 53.34 108.40
Avg. exercises per concept 37.01 136.44

where α̂ ts is the normalized confidence of school s at round t : α̂ ts =
α ts /

∑S
i=1 α

t
i . Moreover, through the model aggregation process, we

will integrate models and perform comparable results among all
clients, which will make the global model meaningful.

4.3.2 Model Update. The second process of the center server is
to update the models for clients before next round. The traditional
global model in federated learning is a general model that is ex-
pected to fit the overall data distribution from all schools. However,
as mentioned above, in educational scenarios, inconsistent proper-
ties and settings cause Non-IID characteristics so that it is difficult
to fit all items with a uniform global model [22]. In FDKT, to better
suit Non-IID local data for each client, at round t , after aggregating
the global model Θt , we adopt hierarchical model interpolation to
fine-tune the global model. In particular, at round t , we obtain the
personalized model from the global model Θt and the local model
Θt
s from school s as:

Θt
s = λ · Θt

s + (1 − λ) · Θt , (12)

where λ is the interpolated weight. In our work, we calculate the in-
terpolated weight to a vector instead of a simple scalar quantity [29].
Following this approach, we measure the differences between the
global model and the local model by layers with cosine similarity.
We here primarily focus on the global model, since it has more
comprehensive information from clients. If the global model is
more similar to the local model, we adopt some effects of local
model by integrating local model parameters. The computation of
interpolated weight λ with the neural layers l , can be denoted as:

λl =
Θt,l
s · Θ

t,l

∥Θt,l
s ∥ × ∥Θ

t,l ∥
. (13)

With the hierarchical model interpolation, we design a personal-
ized model update strategy. In this way, we effectively retain the
personalized information of the models and make the local model
fit better with the private data.

As mentioned above, the workflow of FDKT is presented in Al-
gorithm 1. In summary, our proposed FDKT framework does not
gather or share the data across schools. Instead, it simply delivers
the model parameters of local DKTs. Therefore, it effectively allevi-
ates data scarcity while protecting the data privacy in training. To
our best knowledge, FDKT is the first attempt to leverage federated
learning framework for knowledge tracing in intelligent education.

5 EXPERIMENTS
In this section, we first introduce our experimental datasets and
setups. Then, we report our experimental results from the following
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Table 2: Results of student performance prediction under four metrics.
(a) Results of student performance prediction on MATH

method
dataset MATH

epoch RMSE AUC ACC
BKT - 0.463 0.692 0.701
DKT - 0.453 0.705 0.712
FedSGD - 0.455 0.696 0.694
FedAvg 13 0.449 0.721 0.713
FedAtt 14 0.453 0.718 0.708
LoAdaboost 8 0.450 0.726 0.708
FedInter 8 0.449 0.733 0.719
FDKTCTT 4 0.448 0.735 0.717
FDKTIRT 4 0.446 0.739 0.721

(b) Results of student performance prediction on ASSIST

method
dataset ASSIST

epoch RMSE AUC ACC
BKT - 0.452 0.743 0.681
DKT - 0.413 0.814 0.75
FedSGD - 0.425 0.798 0.746
FedAvg 20 0.387 0.861 0.791
FedAtt 22 0.386 0.862 0.792
LoAdaboost 28 0.384 0.863 0.792
FedInter 11 0.376 0.875 0.796
FDKTCTT 17 0.379 0.872 0.795
FDKTIRT 11 0.375 0.877 0.802

Figure 3: Distributions of confidence values and data scales
of two datasets: MATH (left), ASSIST (right).
three aspects: (1) the overall performances of knowledge tracing
models; (2) the effectiveness of data quality on deep knowledge
tracing; (3) the performances on comparability among schools.

5.1 Experimental Datasets
In our experiments, we use two real-world datasets, namely MATH
and ASSIST. MATH is a private dataset collected from daily exercise
records of senior high school students on mathematics problems
from 2016 to 2017. ASSIST (short for Assistments) is a public dataset,
i.e., 2009-2010 “Non-skill builder”1, which records the mathematics
learning logs from an online tutoring program.

MATH consists of about 200,000 records of 3,830 students in 7
schools. All items in it belong to 112 concepts, such as “Set” and
“Vector”. For ASSIST, we divide the data by school id and filter out
the schools whose records are fewer than 1000. After preprocessing,
we obtain about 800,000 learning records of 7,395 students in 38
schools. The items in it belong to 200 concepts, such as “ Range”
and “Proportion”. More statistics of our dataset are presented in
Table 1. In our scenario, each school only holds the data subset
belong to it, which causes data isolation. If we can train DKTmodels
independently with distributed datasets and aggregate the effects
of all the DKT models, it will benefit all the clients equally by
avoiding the data isolation problem. It is equivalent to expanding
the available training sets.

Furthermore, we deeply analyze both datasets in Figure 3. Here,
we present the distributions of data scales and data quality (reflected
by CTT confidence and IRT confidence) in different schools. From
the figure, we can see that there is an inconsistency between data
scales and data quality, which means that larger datasets do not
necessarily have higher data quality. Therefore, it is necessary to
consider data quality for learning DKT in educational scenarios.

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-
data/non_skill-builder-data-2009-2010

5.2 Experimental Settings
5.2.1 Data partition. In both MATH and ASSIST, we randomly
partition 90% of students learning records in every school for train-
ing, while the remainders are for testing. It is worth noting that we
do not put the data in schools together, but leave them isolated.

5.2.2 FDKT Setting. We specify the framework setups in FDKT,
including the DKT settings, data quality evaluation settings and
federated learning settings. For DKT part of FDKT, it is designed
to a general structure with one hidden layer of 50 dimensions. The
dimension of output is equal to the total number of concepts, and the
dimension of input is double. For data quality evaluation settings,
we select 30% higher (lower) grade students as the high (low) group
and set P0 as 0.5 in CTT confidence estimation. Moreover, we set
parameter D to 1.7 in IRT confidence estimation. For federated
learning settings, the models are all trained under the same settings,
with batch size of 64, local rounds of 5 (except FedSGD) and initial
learning rate of 0.001. To facilitate further research in FDKT, we
have published our code2.

5.2.3 Baseline Approaches. To demonstrate the effectiveness of the
FDKT framework, we first compare two typical KT methods with-
out federated settings, i.e., BKT, DKT, both of which are trained
independently only with private data of each school.
• BKT [6] is a kind of Hidden Markov Model (HMM) that
models students’ knowledge states as a set of binary values.
• DKT [35] is a deep-learning knowledge tracing model that
integrates recurrent neural networks to model knowledge
states with sequential learning data.

Then, we compare some state-of-the-art federated learning meth-
ods, which mainly focus on statistics, to verify the effectiveness of
our strategies. All local models in federated methods are DKT.
• FedSGD [30] is a method based on iterative optimization.
Each client model takes one step of gradient descent on the
current local model, after which the server takes a scale
weighted average of all models.
• FedAvg [30] also aggregates models by data scales. However,
FedAvg assigns more computation to clients by iterating the
local update with E rounds and B batch size.
• FedAtt [16] is a method incorporating soft-attention. The
main idea is to consider the importance of models through

2https://github.com/bigdata-ustc/federated-deep-knowledge-tracing
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aggregating by layers with the weights of distances between
the global model and local models.
• LoAdaboost [12] is an adaptive boosting training method
designed to produce additional training for clients that still
have losses higher than those with median loss, until their
loss is lower than the median loss.

Besides, we also introduce amethod onlywith hierarchical model
interpolation for personalization without data quality evaluation
to highlight the effectiveness of data quality, which can be viewed
as a variant of our FDKT model, denoted as FedInter.

Generally, all baselines only focus on data scales for model ag-
gregation. We define two methods based on FDKT with CTT confi-
dence and IRT confidence for aggregation, respectively, and both
methods consider local model personalization, which are named
FDKTCTT and FDKTIRT. For fairness, all methods are imple-
mented by Python, and all experiments are run on a Linux server
with two NVIDIA Tesla K80 GPUs and 256G memory to achieve
the best performance in the following experiments.

5.2.4 Evaluation metrics. To observe the effectiveness of the FDKT
framework, we use the widely-used ROC Curve (AUC), Prediction
Accuracy (ACC), and Root Mean Square Error (RMSE) metrics on
both regression and classification perspectives to measure how ap-
proximative the DKT prediction is to the ground truth [26]. Among
them, AUC and ACC are commonly used for classification tasks
with the range of [0, 1], the larger the values are, the better the
results. Moreover, RMSE is commonly used for regression tasks
whose range is [0, 1], the lower the value is, the better the result.

Following existing federated learning works [30], we evaluate
convergence efficiency with efficiency metric “epoch”. That is, we
hope to evaluate how many epochs are required when the model
reaches the high-level targeted AUC performance. The less the
number is, the faster the model reaches the target performance,
which means the better efficiency the model has. Note that in our
experiments, we set the target AUC value as 0.70 (0.85) AUC in
MATH (ASSIST).

5.3 Experimental Results
5.3.1 Overall performance. To evaluate the performances of all the
above methods in isolated schools, we conduct the typical student
performance prediction task [26], which asks us to train knowledge
tracing models and predict the future performance of each student
in different schools. We repeat the experiments 5 times and sum-
marize the average of results. Table 2 reports the overall results on
both datasets with all evaluation metrics mentioned.

Some key observations as follows: (1) Methods with federated
learning settings perform better than those training with clients’
private data independently. It shows federated learning settings that
can harness more data usually result in better DKT models. Notably,
FDKTIRT has the best performances on both datasets while FDK-
TCTT shows comparable results. This means that our methods can
more effectively alleviate the data isolation problem for DKT with
federated learning settings. (2) Compared with data scales-based
methods, FedInter achieves relatively good performances, which
demonstrates the effectiveness of model personalization. While FD-
KTIRT has the best performances, it shows quality-oriented aggre-
gation with personalization update is beneficial for training DKTs

and necessary in educational scenarios. (3) FDKTCTT performs no
most outstanding result, which demonstrates the limitations of CTT
confidence. It cannot achieve comprehensive quality evaluation,
making it less suitable for our purposes than IRT confidence.

As mentioned before, communication cost is important in feder-
ated learning. Indeed, our method has the most significant perfor-
mances on the communication costs among all federated learning
methods with the metric, epoch. As shown in Table 2, FDKTIRT
reaches target AUCs faster in both datasets, while FedInter may
reach slower. It demonstrates FDKTIRT can produce a dramatic de-
crease in communication costs, while ignoring data quality causes
palliation in convergence of FedInter.

5.3.2 Effectiveness of data quality. We analyze the effectiveness of
data quality in depth by CTT confidence and IRT confidence. We
report the performances of different methods on isolated schools
on ASSIST with the AUC metric in Table 3. For better illustration,
we choose 6 representative schools by stratification with different
scales of data in this experiment, as two larger-scaled ones (i.e.,
school 1 and 2), two medium-sized ones (i.e., school 3 and 4) and
two smaller ones (i.e., school 5 and 6). Then we list the statistics of
data scales, and two data quality values, i.e., CTT confidence and
IRT confidence values. We choose DKT, LoAdaboost and FedInter
as baselines. Here, DKT is an independently trained method on
each school and LoAdaboost is the most solid baseline.

From the table, we can derive the following observations among
samples: (1) When comparing DKT with federated learning meth-
ods, DKT performs significantly poorly in schools with extremely
small amounts of data (i.e., school 5 and school 6), which means
federated learning settings can expand the available data and im-
prove DKTs performances. (2) FedInter achieves competitive results,
which further proves the effectiveness of model personalization.
(3) In particular, FDKTIRT and FDKTCTT perform better than the
most solid baseline, LoAdaboost. It proves that compared with the
amount of data, data quality is a more important factor on behalf of
the importance of model effect for DKTs aggregation. Specially, FD-
KTIRT performs better than FDKTCTT meaning IRT confidence is
the more accurate and consistent evaluation to data quality. We can
also find that federated learning settings may result in a reduction
on large-scale data (i.e., school 1), while our methods can better al-
leviate it. In summary, we can conclude that FDKT is both effective
and efficient in training DKTs while considering quality-oriented
aggregation with personalization update strategies. Meanwhile, ac-
cording to our analysis, data scales and data quality in the data are
inconsistent. Our phenomenon shows that data quality is more in
line with educational scenario.

5.3.3 Performance on comparability. As we argued earlier, the com-
parability of students in different schools is important in educational
scenarios. We convert this measurement into a ranking problem
following [24]. Intuitively, if one KT model diagnoses that student
a in school s1 masters better than student b in school s2 on knowl-
edge concept k, she may have a higher probability of responding
correctly to exercises related to concept k than student b. We adopt
the Degree of Agreement (DOA) [5] metric to evaluate the ranking
performance of each knowledge tracing model. Specifically, a DOA
result on a specific knowledge k is defined as:
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Table 3: Statistics of confidence, scale and results of student performance prediction with AUC of partial datasets.
category name school 1 school 2 school 3 school 4 school 5 school 6

statistic
scales 114,627 42,899 10554 9,743 3103 1,163
CTT confidence 0.043 0.048 0.041 0.049 0.034 0.012
IRT confidence 0.157 0.041 0.022 0.016 0.011 0.010

method

DKT 0.871 0.830 0.838 0.809 0.798 0.535
LoAdaboost 0.858(-1.3%) 0.816(-1.4%) 0.811(-2.7%) 0.796(-1.3%) 0.865(+6.7%) 0.737(+20.2%)
FedInter 0.876(+0.5%) 0.843(+1.3%) 0.846(+0.8%) 0.867(+5.8%) 0.927(+12.9%) 0.801(+26.6%)
FDKTCTT 0.871(+0.0%) 0.844(+1.4%) 0.842(+0.4%) 0.871(+6.2%) 0.934(+13.6%) 0.801(+26.6%)
FDKTIRT 0.879(+0.8%) 0.848(+1.8%) 0.846(+0.8%) 0.875(+6.6%) 0.937(+13.9%) 0.805(+27.0%)

(a) Overall performances on comparability with metric DOA. (b) Example: performances on states. (c) Example: performances on scores.

Figure 4: Left bar chart is DOA results of methods. Right radars are comparable examples of two students’ knowledge states
and true scores from isolated schools. (K1: Scatter Plot; K2: Proportion; K3: Point Plotting; K4: Graph shape; K5: Congruence;)

DOA(k) =
∑ |Ns1 |

a=1

∑ |Ns2 |

b=1 Iabk
δ (yak ,ybk ) ∩ δ (д̄ak , д̄bk )

δ (yak ,ybk )
(14)

Here, |Ns1 | and |Ns2 | denote the numbers of students in school
s1 and s2, while yak indicates the knowledge state of student a on
knowledge concept k obtained by the output of DKT models (Eq. 2),
and д̄ak is the average score of student a on concept k. δ (x ,y) is an
indicator function, where δ (x ,y)=1, if x > y; otherwise, δ (x ,y)=0.
Iabk is another indicator function, where Iabk=1 if both students
have learned the concept k before. Furthermore, we average the
DOA(k) of all concepts as DOA tomeasure the overall results, which
is denoted as DOA =

∑K
k=1 DOA(k)/K ,DOA ∈ [0.0, 1.0], the larger

the DOA, the better the performance.
Figure 4(a) illustrates the overall performances on DOA. We can

conclude the following from the results: (1) BKT and DKT perform
worst on both datasets, meaning that independent training on iso-
lated schools is incomparable with students in different schools. (2)
All federated learning methods perform better than BKT and DKT,
demonstrates that it is effective with federated learning strategies
for knowledge tracing. (3) FDKTIRT performs best, followed by
FDKTCTT, which demonstrates that the proposed different quality-
oriented aggregation strategies with personalization update strat-
egy are more effective at achieving comparable results among all
clients, which can be adapted to practical educational scenarios.
Moreover, FedInter does not perform very well on both datasets,
which demonstrates that ignoring quality-oriented aggregation will
damage comparability among DKT models.

Moreover, we take an example in Figure 4. For better illustration,
we visualize the state outputs of the local DKT model of two exam-
ple students on 5 concepts in Figure 4(b) (two examples of scores
are shown in Figure 4(c)). We can observe that student a masters

better in K1, K3 and K4. Correspondingly, she performs better on
scores of these concepts. This shows the comparability of students
from different schools.

6 CONCLUSION
In this paper, we designed a novel client-server architecture frame-
work, called Federated Deep Knowledge Tracing (FDKT), to solve
the critical problem faced by current DKT tasks: data isolation
problem. Specifically, we combined federated learning to train DKT
models while alleviating data scarcity. Subsequently, in the client
part, two implementations of quality-oriented aggregation strate-
gies under the framework were provided; in the server part, hier-
archical model interpolation was explored for personalized model
update. Finally, our quantitative experiments showed that FDKT
has achieved significant improvements, which demonstrated that
high-quality DKT models can be trained in federated settings and
obtain great comparable results on real-world data.

In the future, we will explore more applications of federated
learning in the educational field, extend FDKT to many other KT
methods and develop a general platform. Moreover, we hope to
explore ways to model item and user characteristics appropriately
under federated settings.
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