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Abstract
In recommender systems, the cold-start problem is
a critical issue. To alleviate this problem, an emerg-
ing direction adopts meta-learning frameworks and
achieves success. Most existing works aim to learn
globally shared prior knowledge across all users so
that it can be quickly adapted to a new user with
sparse interactions. However, globally shared prior
knowledge may be inadequate to discern users’
complicated behaviors and causes poor generaliza-
tion. Therefore, we argue that prior knowledge
should be locally shared by users with similar pref-
erences who can be recognized by social relations.
To this end, in this paper, we propose a Preference-
Adaptive Meta-Learning approach (PAML) to im-
prove existing meta-learning frameworks with bet-
ter generalization capacity. Specifically, to address
two challenges imposed by social relations, we first
identify reliable implicit friends to strengthen a
user’s social relations based on our defined palin-
drome paths. Then, a coarse-fine preference model-
ing method is proposed to leverage social relations
and capture the preference. Afterwards, a novel
preference-specific adapter is designed to adapt the
globally shared prior knowledge to the preference-
specific knowledge so that users who have similar
tastes share similar knowledge. We conduct exten-
sive experiments on two publicly available datasets.
Experimental results validate the power of social
relations and the effectiveness of PAML.

1 Introduction
Benefiting from filtering out personalized irrelevant informa-
tion for users, recommender systems can effectively remedy
the information overload problem and are widely used in vari-
ous kinds of web services [Li et al., 2018; Huang et al., 2019].
In most recommender systems, collaborative filtering (CF) is
the mainstream method which makes predictions based on
user-item interactions (e.g. ratings). However, when encoun-
tering new users, CF based approaches fail due to scarce in-
teractions, leading to a decline in the new users’ experience.
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Figure 1: Comparison between MeLU and our proposed model.

To address the cold-start problem, an emerging direction
adopts the meta-learning frameworks and some pioneering
works prove its effectiveness [Vartak et al., 2017]. Most ex-
isting works (e.g. MeLU [Lee et al., 2019]) formulate each
user as a task and aim to learn globally shared prior knowl-
edge across all users. As shown in Fig. 1 (a), for a cold-start
user, the learned prior knowledge can be quickly adapted to
the personalized knowledge (i.e. initialization of parameters)
based on her sparse interactions. However, globally shared
prior knowledge may be inadequate to discern users’ compli-
cated behaviors and causes poor generalization [Dong et al.,
2020]. In this paper, instead of global sharing knowledge, we
argue that users with similar preferences should locally share
similar prior knowledge (named preference-specific knowl-
edge) so that it can be easily generalized to these users. Thus,
the key issue is how to recognize users with similar prefer-
ences and then generate the prior knowledge for them.

In recent years, with the prevalence of social platforms,
users prefer to bond with each other and form the social net-
work. Based on the homophily effect theory [Aral et al.,
2009], which states people tend to associate and bond with
others that have similar preferences, it is natural to realize that
the connected users in the social network are highly similar.
Therefore, social relations can provide a guidance to recog-
nize a bundle of users who have similar preferences and share
similar knowledge as shown Fig. 1 (b).

Unfortunately, leveraging social relations imposes two
challenges. (1) How to explore and strengthen social relations
between users? In cold-start scenarios, social relations are al-
most as sparse as the user feedback. According to our statis-
tics, most users only have less than 6 connected friends, who
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are referred to as explicit friends. In reality, except for these
explicit friends, users also share similar tastes with other un-
known ones and we refer to such users as implicit friends.
However, it is difficult to identify credible implicit friends for
a user from a large number of noisy ones. (2) How to rec-
ognize closely correlated users from a user’s social relations?
Although two connected users have similar preferences, the
strength of the link between them varies at different rating
levels. For example, two users both dislike action movies,
leading to a strong tie at a low rating level. On the contrary,
they favor different types of movies so that the strength is
weak at a high rating level. Ignoring this may result in bad
similarity discovery between a user and her friends, which
arouses inaccurate user preferences. Therefore, how to wisely
utilize social relations is another challenge.

Motivated by the above problems, in this paper, we propose
a Preference-Adaptive Meta-Learning approach (PAML) for
improving existing meta-learning frameworks with better
generalization capacity. Particularly, we focus on recognizing
users who have similar preferences and share similar knowl-
edge (i.e. preference-specific knowledge in Fig. 1 (b)) by
utilizing social relations. Specifically, to address the chal-
lenges imposed by social relations, we first define palindrome
paths over the user-item-attribute graph and propose a mea-
surement to identify reliable implicit friends, who have ex-
pressed same tastes on items or item attributes. Then, we
propose a coarse-fine preference modeling method to accu-
rately capture a user’s preference which can also reflect re-
lations with others. After that, a novel preference-specific
adapter is designed to adapt the globally shared prior knowl-
edge to the preference-specific knowledge so that users who
have similar preferences can share similar knowledge. Un-
der the preference-specific knowledge, optimal personalized
knowledge can be learned and utilized to make predictions.
We conduct extensive experiments on two publicly available
datasets. Experimental results clearly demonstrate the power
of social relations and validate the effectiveness of PAML.

2 Related Work
In our study, the related work involves two categories: meta-
learning for recommendation and social recommendation.

2.1 Meta-learning for Recommendation
Meta-learning, enabling models to quickly learn a new task
with scarce labeled data by utilizing prior knowledge learned
from previous tasks, has been applied to solve the data spar-
sity problem in various fields, such as computer vision [Zhu et
al., 2020] and natural language processing [Mi et al., 2019].

Since the cold-start problem is a typical data sparsity prob-
lem, meta-learning has been adopted to deal with it and
achieved desired results [Vartak et al., 2017]. For exam-
ple, MeLU [Lee et al., 2019] aimed to learn the initial
weights of the neural networks for cold-start users based on
MAML [Finn et al., 2017]. Pan et al. [2019] proposed Meta-
Embedding which was a content-based embedding generator
for learning embeddings for new IDs. The above works learn
globally shared parameters which are the same for all tasks.
This setting may suffer from handling a sequence of tasks

originated from different distributions [Yao et al., 2019].
MAMO [Dong et al., 2020] was the first attempt to get spe-
cific parameters by user profiles. MetaHIN [Lu et al., 2020]
took the advantage of HIN and proposed semantic-specific
parameters. In contrast to existing works, we claim users with
similar preferences should share similar prior knowledge and
leverage social relations to achieve this goal. To the best of
our knowledge, this is the first attempt.

2.2 Social Recommendation
Social relations are effective in advancing recommendation
performance [Wang et al., 2019]. Based on the homophily ef-
fect recognized by social scientists which declares that users’
preferences are similar to their social neighbors [Aral et al.,
2009], previous studies for social recommendation attempt to
model social effects in various ways. Ma et al. [2011] and
Wang et al. [2013] formulated the social relations as a regu-
larization term. Zhao et al. [2014] proposed a bayesian per-
sonalized framework together with social information. With
the development of graph neural networks and graph embed-
ding methods [Pei et al., 2020], more complicated informa-
tion hidden in the social networks can be captured. Along
this line, GraphRec [Fan et al., 2019] and DiffNet [Wu et al.,
2019] were two representative works.

In contrast to most existing works extracting explicit social
relations, some researchers pay attention to identify reliable
friends from unobserved social networks. Yu et al. [2018;
2019] proposed two approaches to recognize implicit friends.
One was implemented on the HIN where users in the same
meta path might have a strong connection. The other turned
to the GAN [Goodfellow et al., 2014; Jin et al., 2020]. In
cold-start scenarios, explicit friends are limited. Therefore, it
is necessary to strengthen social relations by identifying im-
plicit friends. Different from [Yu et al., 2018] which mainly
identifies implicit friends with the help of social networks, we
adopt the user-item-attribute graph since the social network is
sparse and propose a measurement to evaluate the similarity
between users based on our defined palindrome paths.

3 Preliminaries
In this section, we first give an overview of our problem and
then illustrate the HIN and palindrome paths.

3.1 Problem Overview
In this paper, we suppose U is the user set, I is the item set,
R is the rating set. For a user u ∈ U with profiles and a set
of explicit friends {fu|fu ∈ U}, given a set of ratings on the
items {ru,i|u ∈ U, i ∈ I, ru,i ∈ R} where each item has
several attributes, we aim to predict the unknown rating r̂u,i
between the user u and the item i.

In this paper, we formalize each user with historical in-
teractions as a learning task which is similar to [Lee et al.,
2019], however with one important difference: we introduce
users’ social relations. More formally, a user u can be defined
with Tu = (Fu,Su,Qu), where Fu is the friend set of u, Su
is the support set containing the interacted items, and Qu is
the query set containing the items to be predicted. All tasks
are split into meta-training tasks T tr and meta-testing tasks
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Figure 2: A toy example of the HIN and palindrome paths.

T te. Generally, T tr are used to train the model while T te

are used to validate its performance. For each task in T tr and
T te, its friend set and support set are used to adapt the prior
knowledge to preference-specific knowledge and personal-
ized knowledge. Under the personalized knowledge, each
item in the query set can be predicted. In addition, the query
set in T tr also plays a role in updating the prior knowledge.

3.2 User-Item-Attribute Graph
Since we identify implicit friends over the user-item-attribute
graph which is a kind of heterogeneous information net-
works (HINs), we give definitions of the HIN and palindrome
paths. Note that implicit friends are identified from a group of
known users so that the HIN is constructed from all support
sets in the meta-training tasks.
Definition 1 (Heterogeneous information network). A HIN is
denoted as G = (V,E, T ), where each node v ∈ V and each
link e ∈ E is associated with a mapping function φ(v) : V →
TV and φ(e) : E → TE , respectively. TV and TE denote the
sets of node and relation types where T = TV ∪ TE and
|TV |+ |TE | > 2.

Definition 2 (Palindrome path). Given the HIN G, a palin-
drome path of length l is defined as pl = v0

e0→ · · · el−1→
vl

el−1→ · · · e0→ v2l, where vi ∈ V, φ(vi) = φ(v2l−i) and
ei ∈ E.

Fig. 2 shows a toy example of the HIN. There are three
types of nodes (i.e., users, movies and attributes) as well as
three types of relations (i.e., ratings, genres, years). “u2

1→
m1

1→ u1” is a palindrome path of length 1 where u1 and u2
are both users who rate 1 score on the movie m1.

4 Preference-adaptive Meta-learning
In this section, we will introduce the technical details of
our proposed PAML, i.e., the approach to identifying im-
plicit friends, social enhanced recommender with the coarse-
fine preference modeling method and the entire meta-learning
framework.

4.1 Identifying Implicit Friends over the HIN
In cold-start scenarios, most users have few explicit friends
which restricts the power of social relations. Identifying im-
plicit friends can strengthen the social relations. To achieve
this goal, we design two palindrome paths over the heteroge-
neous information network G we defined and assume users

appeared in the same path share similar tastes since they ex-
press the same opinion on the item or the item attribute: (1)
p1 = u

ru,i→ i
ru,i→ u where u ∈ U, i ∈ I, ru,i ∈ R (e.g. the

blue path in Fig. 2 shows u1 and u2 both dislike the moviem1

and give 1 score); (2) p2 = u
ru,i→ i

ri,a→ a
ri,a→ i

ru,i→ u where
ri,a is a certain value of the attribute a (e.g. the red path in
Fig. 2 shows u2 and u3 might have similar tastes since their
favorite movies m2 and m3 both belong to action movies).
Here, we only consider palindrome paths with a maximum
length of 2 because a larger one entails more complicated se-
mantics and does not contribute to finding implicit friends.

Then, we propose a measurement to evaluate the similar-
ity between users based on palindrome paths. Suppose u1 is
connected to u2 through pl = v0(u1)

e0→ · · · e2l−1→ v2l(u2),
their similarity over pl is formulated as follows:

Sim(u1, u2, pl) =
2l−1∏
i=0

P (vi+1|vi, ei), (1)

P (vi+1|vi, ei) =
1

N(vi, ei, vi+1)
, (2)

where N(vi, ei, vi+1) denotes the number of neighborhoods
of the node vi with the same relation value ei and node type
of vi+1. Given a user u and her support set Su, we col-
lect all paths denoted as P starting from u

ru,i−→ i, i ∈ Su
over G and calculate how similar she is to the others as
Sim(u, u′) =

∑
p∈P I(u′, p)Sim(u, u′, p), where I(u′, p) is

an indicator function which equals 1 when u′ locates at the
end of p and equals 0 otherwise. Finally, we choose the top
similar users as u’s implicit friends to strengthen the social
relations which can help to recognize the relations between
users. Now, the friend set Fu of the user u consists of im-
plicit and explicit friends which are denoted as F i

u and Fe
u,

respectively.

4.2 Social Enhanced Recommender
Here, we will illustrate the social enhanced recommender in-
cluding the coarse-fine preference modeling method.

Coarse-fine Preference Modeling
We aim to integrate a user’s interactions and her friends to
capture her preference which can also reflect the relations
with others. Considering the strength of links between users
varies at different rating levels, we propose the coarse-fine
preference modeling method. Specifically, for the fine level,
we distinguish the strength of social relations and combine
them together at each rating score. For the coarse level,
we learn an overall preference by integrating preferences ob-
tained by the fine level.

First, we initialize user and item embeddings based on their
features. Suppose there are N kinds of features for a user u,
we define her embedding as follows:

uini = [e1 ⊕ e2 ⊕ · · · ⊕ eN ]>, (3)

where ⊕ is the concatenation operation, and en is the n-th
feature embedding extracted from the embedding matrix. For
an item i, its embedding iini can be defined in the same way.
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Figure 3: Graphical structure of coarse-fine preference modeling.

Then, we introduce the fine level preference modeling as
shown in the left part of Fig. 3. Given a user u with her friend
set F i

u ∪ Fe
u and support set Su, we split items of Su into

several groups by rating scores and learn an item based user
preference for u as follows:
ur = τ(W [mean{i|i∈Su∧ru,i=r}(i

ini)⊕ uini] + b), (4)

where r ∈ R denotes a specific rating, mean(·) is mean pool-
ing, W and b are the weight matrix and bias vector, and τ(·)
is the activation function which is stated as ReLU [Nair and
Hinton, 2010]. Similarly, we can also get the item based pref-
erence for each friend in F i

u and Fe
u. We stack them by col-

umn and get the corresponding matrices denoted as F i
r and

F e
r , respectively. Note that although implicit and explicit

friends are modeled independently, they share the same pa-
rameters in (4). For a specific rating r, different friends con-
tribute differently to capturing u’s preference. Therefore, we
adopt the attention mechanism as follows:

f i
r = F i

rsoftmax(F
i>
r ur), (5)

fe
r = F e

r softmax(F
e>
r ur). (6)

Now, for a user, we obtain the item based preference ur, the
implicit friends based preference f i

r, and the explicit friends
based preference fe

r for each rating r at a fine level.
Afterwards, we describe the coarse level preference mod-

eling as shown in the right part of Fig. 3. Formally, we stack
all ur obtained from the fine level by column and get the ma-
trix denoted as U . An attention mechanism is applied to get
the coarse level preference u which is learned from u’s inter-
actions as follows:

u = Usoftmax(W2τ (W1U + b1))
>, (7)

where W1 is the weight matrix, b1 is the bias vector, and
W2 is the weight vector. Similarly, we can acquire the coarse
level preferences f i and fe learned from implicit and explicit
friends, respectively. Finally, we implement the following
formula and obtain the overall preference uo:

uo = u⊕ (λ1f
i + λ2f

e), (8)
where λ1 and λ2 are learnable parameters that control the
contributions of the implicit and explicit friends to modeling
the user’s preference.

Preference-specific adapter 𝚽𝑢 = 𝚽 ∘ 𝒈𝑢 Local update via ∇𝚽𝑢
ℒ(𝝎 ∪𝚽𝑢, 𝒮𝑢)

Global update via ∇𝜽ℒ(𝝎 ∪𝚽𝑢
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Figure 4: The flowchart overview of our meta-learning framework.

Prediction & Objective Function
Given the user’s overall preference uo and an unobserved
item i, we can predict the rating as follows:

r̂u,i = MLP (uo ⊕ i) , (9)
where MLP is a two-layer multilayer perceptron with ReLU
activation functions. We minimize the following loss for the
user u to optimize the parameters:

L(θ,Du) =
1

|Du|
∑
i∈Du

(ru,i − r̂u,i)2 , (10)

where θ includes all parameters, Du is a set of items to be
predicted, and ru,i is the actual rating of user u on item i.

4.3 Meta-learning Framework
Here, we describe the training procedure of our framework as
well as our designed preference-specific adapter.

Preference-specific Adapter
Existing methods such as MeLU learn globally shared prior
knowledge across all users, which may cause poor generaliza-
tion. In contrast, we argue that closely correlated users may
have similar preferences so they should locally share similar
prior knowledge. Depend on that, we design a preference-
specific adapter to customize the globally shared prior knowl-
edge to preference-specific knowledge. Since the overall
preference uo can reflect the relations between users, it can
help achieve this goal.

As shown in Fig. 4, we denote the parameters of feature
embeddings as ω and the rest as Φ, so that θ = ω∪Φ. Note
that Φ is the prior knowledge. To generate similar knowl-
edge for users with similar preferences, we design a series of
preference-specific gates:

gu = σ (Wguo + bg) , (11)
where {Wg, bg} ∈ Φ are the weight matrix and bias vector,
σ(·) is the sigmoid function, and gu has the same shape with
Φ. Then, the prior knowledge Φ is adapted to the preference-
specific knowledge Φu of task Tu via the following equation:

Φu = Φ ◦ gu, (12)
where ◦ is the element-wise product operation.

Therefore, correlated users who share similar preferences
will trigger similar parameter gates, resulting in similar model
parameters and allowing more knowledge to be shared, while
unrelated users are controlled to share less knowledge.
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Algorithm 1: Training Procedure of PAML
Input: T tr: meta-training tasks; α, β: learning rate
Output: Parameters θ

1 Randomly initialize θ = ω ∪Φ
2 while not converge do
3 Sample a batch of tasks B = {Tu|Tu ∈ T tr}
4 foreach task Tu = (Fe

u,Su,Qu) ∈ B do
5 Identify implicit friends F i

u

6 Tu = (Fe
u ∪ F i

u,Su,Qu)
7 Compute the overall preference uo in (8)
8 Compute preference-specific knowledge Φu in (12)
9 Local update: Φ∗u = Φu − α∇ΦuL (ω ∪Φu,Su)

10 Global update: θ = θ − β∇θ

∑
Tu∈B L (ω ∪Φ∗u, Qu)

11 return θ

Meta Optimization
Under the preference-specific knowledge, we aim to gener-
ate the personalized knowledge Φ∗u (i.e. initialization of pa-
rameters for u). Given the preference-specific knowledge Φu

and support set Su, Φ∗u is obtained by locally updating Φu

through several gradient descent steps:

Φ∗u = Φu − α∇ΦuL (ω ∪Φu,Su) , (13)

where α is the learning rate.
During the inference stage, Φ∗u is adopted to make predic-

tions for items in the query setQu ∈ T te. During the training
stage, we sample a batch of tasks B from meta-training tasks
T tr. For each task, the learned personalized knowledge is uti-
lized to calculate the loss on the query set Qu and optimize
all parameters. Overall, all parameters are globally updated
as follows:

θ = θ − β∇θ

∑
Tu∈B

L (ω ∪Φ∗u, Qu) , (14)

where β is another learning rate. The training procedure is
shown in Algorithm 1.

5 Experiments
In this section, we first introduce the experimental setup in
details and then report the experimental results from three
perspectives.

5.1 Experimental Setup
Datasets Description
We conduct experiments on two real-world datasets: Bouban
Book1 and Yelp2, which are from publicly accessible reposi-
tories. Both datasets provide a large quantity of ratings, social
relations and information of users and items. The rating scale
is from 1 to 5, where higher score means stronger preference.

Considering cold-start scenarios, we first separate the users
and items into two groups (existing/new) with a ratio of 8:2
for each dataset according to user joining time (or first user
action time) and item releasing time. Then, for each dataset,

1https://book.douban.com
2https://www.yelp.com/dataset

Dataset Douban Book Yelp
# Users 6,576 25,783
# Items 20,547 33,105

# Ratings 326,419 727,259
Rating Sparsity 99.76% 99.91%

Avg. friends of each user 6.0 3.8
# Users without friends 1,314 10,867

Table 1: The statistics of two datasets.

we divide it into meta-training tasks and meta-testing tasks.
The former only contain existing users and existing items.
The latter include three kinds of cold-start scenarios, i.e., UC
denotes the scenario where only the users are new, IC denotes
the scenario where only the items are new, and UIC denotes
the scenario where both users and items are new. Moreover,
we randomly extract 10% of meta-training tasks as the tradi-
tional recommendation scenario which is denoted as NC.

To construct the support and query sets, we first keep
users whose interaction history length is between 13 and 100
for Bouban Book, and keep users whose interaction history
length is between 20 and 50 for Yelp. Then, for each user,
10 interacted items in history are randomly chosen to be the
query set (i.e. Qu), the rest make up the support set (i.e. Su)
, and social connected friends who belong to meta-training
tasks are used as explicit friends (i.e. Fe

u). We use the in-
formation of all support sets in the meta-training tasks to
construct the HIN and identify implicit friends (i.e. F i

u).
Especially, we use the attribute set {Publisher} of items to
construct the HIN for Douban Book and the attribute set
{Stars,PostalCode} of items to construct the HIN for Yelp.
Table 1 lists the detailed statistics of two datasets.

Baselines
To validate the effectiveness of PAML, we choose three kinds
of baselines. (1) Traditional methods, including FM [Rendle,
2010], NeuMF [He et al., 2017] and Wide & Deep [Cheng et
al., 2016]. They are classic and widely used for recommenda-
tion. (2) Social based methods, including SoReg [Ma et al.,
2011] which used social regularization with the assumption
that connected users would share similar latent embeddings
and DiffNet [Wu et al., 2019] which used the GCN method
to propogate social relations. (3) Meta-learning based meth-
ods, including MetaEmb [Pan et al., 2019], MeLU [Lee et al.,
2019] and MAMO [Dong et al., 2020]. They are designed for
solving the cold-start problem by meta-learning algorithms.

Evaluation Metrics
We adopt two popular metrics. One is the root mean square
error (RMSE) which is used to evaluate the predictive accu-
racy [Liu et al., 2019]. Smaller value of RMSE indicates
better predictive accuracy. The other is the normalized dis-
counted cumulative gain at rank K (nDCG@K) which is used
to evaluate top-K ranking performance. In this paper, we set
K = 5 and the larger the value, the better the performance.

Parameters Setting
For parameters in PAML, they are randomly initialized fol-
lowing the xavier normal distribution [Glorot and Bengio,
2010]. We set the dimension of the feature embeddings to
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Scenario Model Douban Book Yelp Scenario Model Bouban Book Yelp
RMSE nDCG@5 RMSE nDCG@5 RMSE nDCG@5 RMSE nDCG@5

UC

FM 0.8884 0.8287 1.1856 0.7581

IC

FM 0.8853 0.8314 1.0936 0.7573
NeuMF 0.8311 0.8364 1.1761 0.7644 NeuMF 0.8003 0.8288 1.0471 0.7751

Wide & Deep 0.7988 0.8483 1.1635 0.7765 Wide & Deep 0.7923 0.8497 1.0449 0.7802
SoReg 0.8741 0.8114 1.1654 0.7614 SoReg 0.8705 0.8344 1.0593 0.7655
DiffNet 0.7758 0.8653 1.1094 0.8032 DiffNet 0.7810 0.8536 1.0528 0.7910

MetaEmb 0.7662 0.8833 1.1087 0.8262 MetaEmb 0.7624 0.8836 1.0178 0.8266
MeLU 0.7650 0.8920 1.0972 0.8320 MeLU 0.7666 0.8890 1.0107 0.8356

MAMO 0.7849 0.8583 1.1431 0.8213 MAMO 0.7592 0.8766 1.0243 0.8330
PAML 0.7246 0.9117 1.0506 0.8412 PAML 0.7355 0.9108 0.9404 0.8505

UIC

FM 0.9094 0.8296 1.0774 0.7649

NC

FM 0.8888 0.8470 1.0328 0.7953
NeuMF 0.8735 0.8304 1.0660 0.7718 NeuMF 0.8380 0.8521 1.0059 0.8016

Wide & Deep 0.8027 0.8510 1.0391 0.7838 Wide & Deep 0.8097 0.8677 0.9993 0.8133
SoReg 0.8930 0.8084 1.0469 0.7713 SoReg 0.8757 0.8495 1.0009 0.7986
DiffNet 0.7888 0.8541 1.0037 0.8033 DiffNet 0.7750 0.8812 0.9471 0.8455

MetaEmb 0.7651 0.8805 1.0008 0.8270 MetaEmb 0.7819 0.8880 0.9582 0.8475
MeLU 0.7795 0.8903 0.9942 0.8323 MeLU 0.7793 0.9144 0.9621 0.8559

MAMO 0.7679 0.8702 0.9945 0.8421 MAMO 0.8072 0.8893 0.9929 0.8479
PAML 0.7496 0.9146 0.9536 0.8489 PAML 0.7604 0.9284 0.8997 0.8662

Table 2: Performance comparisons in four scenarios on two datasets.

Model Bouban Book Yelp
RMSE nDCG@5 RMSE nDCG@5

PAML 0.7496 0.9146 0.9536 0.8489
PAML-I-E-A∗ 0.7795 0.8903 0.9942 0.8323
PAML-I 0.7732 0.9056 0.9743 0.8406
PAML-E 0.7512 0.9097 0.9866 0.8392
PAML-I-E 0.7743 0.9045 0.9858 0.8343
PAML-A 0.7538 0.9036 0.9659 0.8364

* PAML-I-E-A is equivalent to MeLU.

Table 3: Ablation study in UIC.

32 and batch size to 64. Two layers used for the prediction
are with 64 nodes each. We set the local and global learning
rate (i.e., α, β) to 0.001 and 0.001 for Bouban Book, 0.001
and 0.0005 for Yelp, respectively. For two datasets, the num-
ber of implicit friends is empirically fixed to 5 by default , and
the number of local updates is fixed to 1 by default. The sen-
sitivity of some important hyper-parameters is discussed in
Section 5.2. In addition, the hyper-parameters for baselines
are set as stated in the corresponding papers and tuned care-
fully to achieve the best performance for fair comparisons.

In this paper, our proposed PAML is implemented by Py-
torch and trained on a Linux system (2.10GHz Intel Xeon
Gold 6230 CPUs and a Tesla V100 GPU).

5.2 Experimental Results
Overall Performance
In this experiment, we compare the overall performance of
all methods on two datasets. Specifically, Table 2 shows the
comparison results on both datasets in three cold-start scenar-
ios and the non-cold-start scenario.

From the results, we observe our PAML consistently yields
the best performance among all methods on two datasets. For
instance, PAML relatively improves over the best baseline
w.r.t. RMSE by 1.9-5.3% on Bouban Book and 4.1-6.9% on

Yelp. By comparing the results in different scenarios, we can
also find it is more difficult to make predictions in cold-start
scenarios than that in the non-cold-start one. Among base-
lines, meta-learning based methods (i.e., MAMO, MeLU and
MetaEmb) perform better than the other two kinds of meth-
ods, especially in cold-start scenarios, which validates the ad-
vantage of the meta-learning frameworks in alleviating the
cold-start issue. In addition, DiffNet is a competitive model
since it adopts GCN to diffuse the social influence, enrich-
ing social relations to a certain extent, and achieves the best
performance among the social based methods and traditional
methods, especially in the non-cold-start scenario. The rest
of baselines are least competitive because they suffer from
limited capacity to express user preferences by features and
scarce labeled data.

Ablation Study
We conduct an ablation study to investigate the impact of dif-
ferent components in PAML. Here, we only report the per-
formance in the typical scenario UIC. As for the others, the
trends are similar. As shown in Table 3, “I” denotes the com-
ponent of implicit friends while “E” denotes that of explicit
friends. “A” denotes the preference-specific adapter. “-” de-
notes removing the following component. Note that MeLU is
a special case of PAML which is equivalent to PAML-I-E-A.

We first study the effect of social relations. Since we use
both implicit friends and explicit friends, we consider three
variants of PAML including PAML-I, PAML-E and PAML-
I-E. The results clearly demonstrate that the social relations
could contribute to modeling the user’s preference so that fa-
cilitating the performance. In addition, we realize the implicit
friends contribute more than explicit ones on Bouban Book,
but it becomes opposite on Yelp.

We then explore the effect of preference-specific adapter.
As the preference-specific adapter plays a pivotal role in our
model, we give the results of the variant PAML-A which di-
rectly adapts the prior knowledge to personalized knowledge.
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Figure 5: Parameter sensitivity in different settings.

The results not only prove our claim that users with similar
preferences should locally share prior knowledge is reason-
able but also demonstrate our proposed preference-specific
adapter is effective.

Parameter Sensitivity
Finally, we conduct parameter sensitivity experiments on two
datasets. As mentioned in Section 4.1, the top similar users
are chosen as implicit friends of the user u. Therefore, we
explore how the number of implicit friends would impact on
the performance. As shown in the top half of Fig. 5, for the
Bouban Book dataset, nDCG@5 increases quickly from 0 to
5 and then reaches to a stable level. For the Yelp dataset, in-
creasing the number of implicit friends does not lead to con-
tinuous improvements but a slight drop. We guess the reason
is that more implicit friends may introduce noise.

In addition, we analyze the effect of the number of local up-
dates in the meta-learning process. The bottom half of Fig. 5
shows nDCG@5 of PAML for varying the number of local
updates from 0 to 5. The results reach the optimal perfor-
mance at one local update, and then as the number of local
updates increases, nDCG@5 gradually decreases, which may
be due to overfitting on the support set.

6 Conclusion
In this paper, we proposed a Preference-Adaptive Meta-
Learning approach (PAML) for improving existing meta-
learning frameworks with better generalization capacity.
By leveraging users’ social relations and our proposed
preference-specific adapter, correlated users who share sim-
ilar preferences could trigger similar knowledge. Benefits
from that, the meta-learning algorithm could have better gen-
eralization capacity, so the prior knowledge could be quickly
adapted to new users with sparse interactions. The proposed
method was evaluated on two real-world datasets, showing
that PAML outperforms the competing baselines. The abla-
tion study demonstrated the power of social relations and the
effectiveness of the preference-specific adapter.
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