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ABSTRACT
Automatically generating controllable and diverse mathematical
word problems (MWPs) which conform to equations and topics is
a crucial task in information retrieval and natural language genera-
tion. Recent deep learning models mainly focus on improving the
problem readability but overlook the mathematical logic coherence,
which tends to generate unsolvable problems. In this paper, we draw
inspiration from the human problem-designing process and pro-
pose a Mathematical structure Planning and Knowledge enhanced
Generation model (MaPKG), following the “plan-then-generate”
steps. Specifically, we propose a novel dynamic planning module
to make sentence-level equation plans and a dual-attention mecha-
nism for word-level generation, incorporating equation structure
representation and external commonsense knowledge. Extensive
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experiments on two MWP datasets show our model can guaran-
tee more solvable, high-quality, and diverse problems. Our code is
available at https://github.com/KenelmQLH/MaPKG.git
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1 INTRODUCTION
Automatic problem generation has attracted much attention in in-
formation retrieval and natural language generation fields, which
could provide important educational resources for several applica-
tions [9, 15, 16]. In this paper, we study the task of automatically
generating mathematical word problems (MWPs), which not only
asks for semantic understanding [6, 14, 25] of the specific equations
and topics, but requires mathematical logic to generate controllable
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Subject Relation Object
flower IsA gift
buy HasSubevent shop
shop HasA flower
rose IsA flower
lily IsA flower
… … …
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Problem1: Jack bought some flowers for his teachers as gifts. He bought 𝐧𝐧𝟎𝟎 flowers at the shop, 
which cost $ 𝐧𝐧𝟑𝟑 in total. Each rose cost  $ 𝐧𝐧𝟏𝟏 and each lily cost $ 𝐧𝐧𝟐𝟐 . How many roses and lilies 
did Jack buy?

Problem2: A little squirrel picks nuts in the forest every day. On sunny days, it can pick 𝐧𝐧𝟏𝟏
nuts. On rainy days, it can only pick 𝐧𝐧𝟐𝟐 nuts. In the latest 𝐧𝐧𝟎𝟎 days, the squirrel has picked a 
total of 𝐧𝐧𝟑𝟑 nuts. How many sunny days and rainy days were there during this time?

Equation Template: 

Topic1 Keywords: teacher buy flower rose lily

Topic2 Keywords: squirrel pick nuts sunny rainy

Equation Expression Plan Commonsense Knowledge
n0 n3n1 n2

x0 + x1 = n0 ; n1x0 + n2x1 = n3

n2n1

n0 n3
𝑥𝑥0 𝑥𝑥1

x1x0

+ +

* *

= =

Subject Relation Object
squirrel AtLocation forest
squirrel Desires nuts
rainy  IsA weather
rainy  RelatedTo day
sunny  RelatedTo day
… … …

Equation Expression Plan Commonsense Knowledge

n0 n3n1 n2

n2n1

n0 n3
𝑥𝑥0 𝑥𝑥1

x1x0

+ +

* *

= =

n0 n3 n1 n2

Figure 1: Examples of diverse MWP generation.

and diverse problems. As shown in Figure 1, given the same equa-
tion templates but different topic keywords, we can create problems
that describe mathematical information in diverse scenarios.

Toward this goal, there are several efforts in the task including
rule-based methods and neural network-based ones. Specifically,
the earlier rule-based methods [8, 18, 23] always generate a problem
with predefined math rules or text templates, and however, they
generally suffer frommanual construction cost and limited template
diversity. Recently, researchers change the attention to neural net-
work approaches, which follow the sequence-to-sequence architec-
ture to generate diverse MWPs [17, 28]. Moreover, some works ex-
plore the possibilities including the pre-trained languagemodel [24],
retrieval-based generation [2], and commonsense enhancement[3]
etc. Although they have achieved great success, they generally fo-
cuses on improving the problem readability. Their generation pro-
cess may overlook the mathematical logic coherent among MWPs,
and tend to generate problems that may be unsolvable in practice.

In this paper, we draw inspiration from the problem-designing
process of human educators. On one hand, human experts always
follow the “plan-then-generate” principle [11, 19] in real-world
situations. Specifically, before writing down a problem, they usually
make an explicit plan to express equations in a logical order. For
Problem1 in Figure 1, the equation “𝑥0 + 𝑥1 = 𝑛0” (marked red)
is selected first and then described as the sentence “He bought
𝑛0 flowers ...”, followed by the green part to be generated. On the
other hand, when generating a specific sentence, it is essential to
associate commonsense knowledge, which not only helps select
proper keywords but also enrich the description. In Figure 1, if
we know that both “rose” and “lily” are similar concepts related to
“flower”, they could be more likely to describe the variables “𝑥0” and
“𝑥1” respectively after describing “𝑛0” as the number of flowers.

However, it is non-trivial for machines to carry out this human-
style process for MWP generation. First, the token-level equation
sequences fail to accurately reflect their mathematical logic. In
Figure 1, the reasonable plan for Problem1 follows the subtree-level
order marked as “red-green-purple-yellow” steps, rather than the
token-level order. Second, introducing more topic keywords may
lead to a harder knowledge application process, since we should
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Figure 2: Framework of MaPKG.

not only comprehend the concepts [26] based on commonsense
knowledge but also combine math information for description.

To this end, we propose a novelMathematical structure Planning
and Knowledge enhanced Generation model (MaPKG) for MWP
generation following the “plan-then-generate” process with the
encoder-decoder architecture. Specifically, in the encoder, we in-
troduce the subtree structure and external knowledge to represent
the equations and keywords respectively. In the decoder, we first
propose a novel dynamic planning module to make sentence-level
expression plans based on equation subtrees. Then, we design a
dual-attention mechanism to fuse equation information and topic
knowledge to generate problem word by word. Extensive experi-
ments on two MWP datasets verify that our MaPKG improves the
generation results in terms of solvability, quality and diversity.

2 METHOD
2.1 Task Definition
Given mathematical equation templates 𝑬 = {𝑒1, ..., 𝑒𝑛} and topic
keywords 𝑻 = {𝑤1, ...,𝑤𝑚}, the MWP generator aims to generate a
descriptive problem 𝒚 = {𝑦1, ..., 𝑦𝑙 } by:

𝒚 = argmax�̂� 𝑃 (�̂� | 𝑬 ,𝑻 ) . (1)
Two requirements should be met in this process. First, 𝒚 can be

solved by the input equations 𝑬 . Second, 𝒚 is described as coherent
narrative text related to the input topic 𝑻 .

2.2 Model Architecture
Figure 2 shows the framework of MaPKG, which mainly consists of
two multi-grained equation encoders, a keyword subgraph encoder,
a dynamic planning module, and a dual-attention decoder.
2.2.1 Equation Representation. We consider that equations con-
tain two kinds of information. First, an equation can be directly
viewed as a sequence of numbers, variables, and operators. Second,
the operators determine the relationship between numbers and
variables, which form structural subtrees [7] that imply specific
sentence-level descriptions (e.g., the subtree “𝑥0 ∗ 𝑛1” are ground-
ing for sentence “Each rose cost 𝑛1”). To this end, we represent
each equation 𝑒 ∈ 𝑬 from two aspects, namely sequential token
representations and hierarchical subtree representations.
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Table 1: The statistics of the datasets.

Statistics Lmwp-G Hmwp-G
Num. problems 5447 5491
Avg Num. words 39.6 60.1
Num. templates 48 2144

Avg Num. equations 2.0 1.3
Avg Num. keywords 8.84 8.80
Avg Num. Concepts 64.6 49.66
Avg Num. Triples 98.24 71.13

For sequential token representations, we use a Bi-GRU based en-
coder to represent token sequence embeddings as𝑯𝑒 = {ℎ𝑒1, ..., ℎ

𝑒
|𝑒 | }.

For subtree representations, we first convert equation 𝑒 into
a binary expression tree and denote each subtree 𝑖 as a triplet
𝑇𝑖 = (𝑜, 𝑙, 𝑟 ). Then we propose a subtree encoder to learn the sub-
tree embeddings in a bottom-up way as shown in Figure 2 (b).
Specifically, the subtree embedding 𝑠𝑖 of 𝑖 is obtained by:

𝑠𝑖 =𝑊𝑠 [ℎ𝑒𝑜 ; 𝑠𝑙 ; 𝑠𝑟 ] + 𝑏𝑠 , (2)
where ℎ𝑒𝑜 ∈ 𝑯𝑒 is the representation of operator 𝑜 , 𝑠𝑙 , 𝑠𝑟 are embed-
dings of the left child 𝑙 and right child 𝑟 respectively. For every leaf
node, we set 𝑠∗ = ℎ𝑒∗ ∈ 𝑯𝑒 . The hierarchical subtree embeddings
are donated as 𝑺𝑒 = {𝑠1, ..., 𝑠𝑏 }, where 𝑏 is the number of subtrees.

2.2.2 Knowledge-aware Keyword Representation. Keywords pro-
vide essential semantic information to generate a problem. However,
it is still not enough to only perceive them isolatedly, which might
lead to improper expression of math information (e.g., generate
that the number of “roses” is the sum of “flowers” and “lilies”).

Therefore, when representing the keywords, we retrieve external
commonsense knowledge to promote the understanding of them.
Specifically, given keywords 𝑻 , we first regard them as central con-
cepts and extract their 𝐾-hop neighbor concepts 𝑽 from the public
knowledge bases ConceptNet 1 and HowNet2, which form a key-
word subgraph G = {V, E}whereV = 𝑻∪𝑽 and E are edges taken
from the knowledge bases. Then, we learn the node representations
{𝑔𝑣 | 𝑣 ∈ V} with a keyword subgraph encoder, which is imple-
mented with GGNN [12]. After 𝑁 iterations of information passing
on G, we concat the initial and 𝑁 -th iteration node presentations
𝑔𝑣0, 𝑔

𝑣
𝑁

for each node 𝑣 , i.e. ℎ𝑘𝑣 = 𝑊𝑘 [𝑔𝑣0 ;𝑔
𝑣
𝑁
] + 𝑏𝑘 , and obtain the

knowledge-aware keyword representations as 𝑯𝑘 = {ℎ𝑘𝑣 | 𝑣 ∈ 𝑻 }.
2.2.3 Dynamic Planning Module. To accurately express the logic
of equations in problems, we generate subtree plans as a skeleton
to guide the sentence expression order. Specifically, inspired by
[4, 5, 13], we treat the plans as additional tokens denoted as [𝑆𝑃]
and generate them with words in problem 𝑦 dynamically by a dual-
attention mechanism described in Section 2.2.4, which derives a
hidden state ℎ𝑝 for each [𝑆𝑃] as its latent representation.

In this module, we aim to ensure that (1) ℎ𝑝 indeed conveys the
plan information about one or more subtrees in equations 𝑬 and (2)
ℎ𝑝 guides the generation of the current sentence (e.g., “Jack bought
... 𝑛0 flowers ...” is grounded on the current plan “𝑥0 + 𝑥1 = 𝑛0”).

For the first goal, we introduce a prediction task to determine
which subtree(s) the plan ℎ𝑝 indicates. Specifically, we calculate the
probability that ℎ𝑝 relates to the subtree 𝑇𝑖 by a pointer-network:

𝑃 (𝑇𝑖 ) = 𝜎 (𝑊𝑇
1 tanh

(
𝑊2

[
𝑠𝑖 ;ℎ𝑝

]
+ 𝑏1 ) + 𝑏2

)
, (3)

1https://conceptnet.io
2https://openhownet.thunlp.org

which induces a subtree planning loss as (𝑔 is the golden plans):
L𝑝𝑙𝑎𝑛 = −∑

𝑇𝑖 ∈𝑔 log𝑃 (𝑇𝑖 ) −
∑
𝑇𝑖∉𝑔

log (1 − 𝑃 (𝑇𝑖 ) ) . (4)

For the second goal, we design a guidance loss to enhance the
dependence of the sentence on the current plan. Specifically, we use
the mean squared error to minimize the latent plan representation
ℎ𝑝 and the sentence representation ℎ𝑠 . ℎ𝑠 is obtained by average
pooling the hidden states of tokens in the generated sentence.

L𝑠𝑒𝑛𝑡 = 𝑀𝑆𝐸 (ℎ𝑝 , ℎ𝑠 ) . (5)
With the above proper planning and forced guiding, the decoder

below can guarantee the equation logic in word generation, to
ensure the problem quality and solvability.
2.2.4 Dual-Attention Decoder. Our decoder adopts the basic Trans-
former manner to conduct word-level generation. Specifically, we
propose a novel dual-attention mechanism in it to combine the
equation information with the knowledge-aware keyword infor-
mation. As shown in Figure 2(c), we design an equation attention
layer and a topic attention layer as follows:

𝐻 ′
𝑙
= 𝐻𝑙 +𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐸 (𝐻𝑙 ,𝑯

𝑒 ,𝑯𝑒 ), (6)

𝐻 ′′
𝑙

= 𝐻 ′
𝑙
+𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑇 (𝐻 ′

𝑙
,𝑯𝑘 ,𝑯𝑘 ), (7)

where𝐻𝑙 represents the hidden states from the mask self-attention
layer. With 𝐿 decoder blocks, the dual-attention mechanism can
fuse the equation information and topic information iteratively.
Finally, the hidden states in the last decoder layer ℎ𝑜 are passed
to another feed-forward layer with softmax to estimate output
distribution and generate the problem words. Especially, if [𝑆𝑃] is
generated,ℎ𝑜 is taken as the latent plan representationℎ𝑝 described
in Section 2.2.3. The generation loss is defined as follows:

L𝐿𝑀 = −∑𝑙
𝑡=1 log𝑃 (𝑦𝑡 | 𝑦<𝑡 , 𝑬 ,𝑻 ) , (8)

Finally, we jointly minimize the following loss with hyperparam-
eters 𝛼 , 𝛽 to balance sentence planning and word generation:

L = L𝐿𝑀 + 𝛼L𝑝𝑙𝑎𝑛 + 𝛽L𝑠𝑒𝑛𝑡 . (9)

3 EXPERIMENTS
3.1 Experimental Dataset and Setup
3.1.1 Datasets. We conduct our experiments based on two MWP
datasets. (1) Lmwp [17] is a dataset with two linear equations and
two unknown variables for each problem. (2) Hmwp [20] consists of
hybrid MWPs including both one-known and two-unknown, which
contains more various equation templates and longer problems.
Based on them, we extract topic keywords from each problem
with jionlp3 and annotate the subtree positions in equations as
the golden plans. Table 1 summarizes the basic statistics of the
annotated datasets Lmwp-G and Hmwp-G.
3.1.2 Experimental Setup. We set the embedding dim as 512 and
the number of transformer layers as 6. The keyword sub-graphs are
constructed by 1-hop neighbors (i.e., 𝐾 = 1) , and 𝑁 = 2 in GGNN.
Hyperparameter 𝛼 and 𝛽 are both set to 0.5.
3.1.3 Baseline and Evaluation. We compare our model against sev-
eral strong baselines: (1) CVAE [27] is a GRU-based sequence-
to-sequence model with Conditional VAE. (2) S2S-GRU [1] is a
GRU-based sequence-to-sequence model with Attention. (3) MAG-
NET [28] is a MWP generator with entity-enforced loss. (4) S2S-TF
[22] is a standard Transformer-based sequence-to-sequence model.

3http://www.jionlp.com/
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Table 2: Automatic evaluation on MWP generation.
Dataset Lmwp-G Hmwp-G

Metric Solvability Quality Diversity Solvability Quality Diversity
Equ-Acc↑ Ans-Acc↑ BLEU↑ METEOR↑ Self-BLEU↓ Equ-Acc↑ Ans-Acc↑ BLEU↑ METEOR↑ Self-BLEU↓

CVAE 0.5350 0.6341 25.40 0.4908 0.7203 0.1750 0.2250 29.61 0.4843 0.6705
S2S-GRU 0.6310 0.7169 27.40 0.5015 0.7278 0.2370 0.2910 31.77 0.5004 0.6493
MAGNET 0.6305 0.7004 25.06 0.4839 0.6832 0.3404 0.3891 25.37 0.4314 0.6534
S2S-TF 0.7000 0.7800 29.04 0.5397 0.7133 0.3030 0.3720 39.13 0.5796 0.6630
BART 0.6213 0.7426 31.64 0.5595 0.6791 0.3050 0.3830 41.93 0.6050 0.6033
MaPKG 0.7440 0.8490 30.79 0.5410 0.6780 0.3320 0.4082 42.34 0.6149 0.6378
w/o SP 0.7366 0.8379 30.54 0.5395 0.6850 0.3184 0.3965 42.05 0.6072 0.6442
w/o KG 0.7403 0.8434 29.94 0.5273 0.6869 0.3320 0.3984 40.61 0.5975 0.6474
w/o DA 0.7016 0.8158 29.60 0.5266 0.7002 0.2891 0.3652 38.85 0.5800 0.6561

10%

15%

20%

25%

Lmwp‐G Hmwp‐G

Number Missing Rate 

CVAE S2S-GRU MAGNET
S2S-TF BART MaPKG

0.1

0.2

0.3

0.4

0.5

Lmwp‐G Hmwp‐G

Number Order Consistency

CVAE S2S-GRU MAGNET
S2S-TF BART MaPKG

↓↑

Figure 3: Analysis for numbers in generated MWPs.

(5) BART [10] is one of the most popular generative pre-trained
language models, and we choose BART-base for comparison.

We conduct the automatic evaluation in three aspects: solvability,
language diversity, and quality. For solvability, we use equation
accuracy (Equ-Acc) and answer accuracy (Ans-Acc) to measure
whether the generated MWPs can be solved by the input equa-
tions. The equation accuracy is checked using a SOTA MWP solver
[21], where the predicted equations are compared with the original
equations. The answer accuracy is computed by the answers of
unknowns in equations. For language diversity, we use Self-BLEU
[29] to measure the diversity of generated problems. For language
quality, we select BLEU(average of BLEU-1,2,3,4) and METEOR.

3.2 Results and Analysis
3.2.1 Main Results. Table 2 reports the evaluation results and
we observe that MaPKG outperforms the baselines on most occa-
sions. Specifically, for problem solvability, MaPKG achieves the best
performance overall, which verifies the effectiveness of the “plan-
then-generate” principle for generating logically reasonable MWPs.
For language quality and diversity, MaPKG and BART achieve the
best results, proving that our MaPKG is competitive with the pre-
training language models in language by knowledge enhancement.

We also conduct ablation studies in Table 2. Specifically, we in-
troduce “w/o SP” which omits the subtree-based dynamic planning
module, “w/o KG” which replaces the keyword subgraph encoder
with the initial keyword embeddings , and “w/o DA” which replaces
the dual-attention decoder with a standard Transformer decoder.

We conclude the results as follows. First, all components con-
tribute to MWP generation since removing any module leads to
performance degradation. Second, "w/o DA" diminishes all metrics
significantly, implying that the fusion of equation and keyword is
the basis for correctly describing math information. Third, “w/o SP”
diminishes the results greatly in equation consistency. It indicates
that our proposed planning module is necessary and crucial for
generating solvable problems. Fourth, the performance of “w/o KG”
shows that knowledge enhancement benefits language diversity.

Table 3: Examples of generated MWPs.
Equation: 𝑥0 + 𝑥1 = 𝑛0;𝑛1 ∗ 𝑥0−𝑛2 ∗ 𝑥1= 𝑛3
Keywords: Grandma green red cake food cost
S2S-TF: In the past, cakes are rare treats. Each green bean cake cost 𝑛1 yuan and each
red bean cake cost 𝑛2 yuan. A family bought 𝑛0 cakes at the cost of 𝑛3 yuan. How many
green bean cakes and red bean cakes did they buy? (%)
BART: Grandma Wang spent 𝑛0 yuan to buy some cakes. Each green bean cake cost
𝑛1 yuan and each red bean cake cost 𝑛2 yuan. There were 𝑛3 more green bean cakes
than red bean cakes. How many red bean cakes and red bean cakes did Wang buy? (%)
MaPKG: Grandma Li went to the street to buy 𝑛0 pieces of cake. Each green bean cake
cost 𝑛1 yuan, each red bean cake cost 𝑛2 yuan. The green bean cakes cost more 𝑛3 yuan
than the red bean cakes. How many red bean cakes? (")

3.2.2 Analysis of Planning. MaPKG’s planning effectiveness is
demonstrated by analyzing the numbers in generated MWPs. We
assess the logical order of equations of generated MWPs by mea-
suring number order consistency with labeled MWPs. The number
missing rate is also computed to determine the omission of numbers
in generated MWPs. Our results in Figure 3 indicate that MaPKG
outperforms other models in both metrics, indicating that it not
only produces logical plans but also encourages number expression.

3.2.3 Case Study. A representative example in Table 3 shows that
S2S-TF and BART generate problems with good language expres-
sion but unsatisfying equation consistency. S2S-TF misrepresents
the operator “−” as “the sum of cost”, and BART misinterprets “𝑛0”
as the “total price of cakes”. Conversely, MaPKG precisely perceives
equation subtrees with the planning module and incorporates com-
monsense knowledge to avoid these situations.

4 CONCLUSION
In this paper, we proposed a novel MWP generation model (MaPKG)
following the “plan-then-generate” steps. Specifically, we intro-
duced the subtree structure and external knowledge into represen-
tation modeling. Then, we proposed a dynamic planning module to
make sentence-level expression plans based on equation subtrees.
Next, we designed a dual attention mechanism to fuse equations
and topic knowledge in word-level generation. Extensive experi-
ments on two MWP datasets verified that our MaPKG improved
the solvability, quality and diversity of generated problems.
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