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ABSTRACT
In online education systems, finding similar exercises is a funda-

mental task of many applications, such as exercise retrieval and

student modeling. Several approaches have been proposed for this

task by simply using the specific textual content (e.g. the same

knowledge concepts or the similar words) in exercises. However,

the problem of how to systematically exploit the rich semantic

information embedded in multiple heterogenous data (e.g. texts and

images) to precisely retrieve similar exercises remains pretty much

open. To this end, in this paper, we develop a novel Multimodal

Attention-based Neural Network (MANN) framework for finding

similar exercises in large-scale online education systems by learning

a unified semantic representation from the heterogenous data. In

MANN, given exercises with texts, images and knowledge concepts,

we first apply a convolutional neural network to extract image

representations and use an embedding layer for representing con-

cepts. Then, we design an attention-based long short-term memory

network to learn a unified semantic representation of each exercise
in a multimodal way. Here, two attention strategies are proposed to

capture the associations of texts and images, texts and knowledge

concepts, respectively. Moreover, with a Similarity Attention, the

similar parts in each exercise pair are also measured. Finally, we

develop a pairwise training strategy for returning similar exercises.

Extensive experimental results on real-world data clearly validate

the effectiveness and the interpretation power of MANN.
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1 INTRODUCTION
Recent years have witnessed the booming of online education sys-

tems, such as KhanAcademy.org, Knewton.com, ASSISTments.org

and Zhixue.com. In these systems, millions of exercises (or ques-

tions) have been collected for numerous applications [2, 4, 19, 20,

32, 40, 41]. For instance, we can retrieve/recommend the similar

exercises to students for practicing [2] or conduct the cognitive

analysis of students with the help of these exercises [32, 48].

Among exercise-based applications, Finding Similar Exercises

(FSE) is a fundamental task [29, 44]. Generally, similar exercises

are those having the same purpose [7, 32] that is embedded in the

semantics learned from exercise contents (i.e., texts, images and

concepts
1
) [16, 35]. For instance, Figure 1 shows three examples

of math exercises, where exercise E1 and its similar exercise E2
share the same purpose of assessing the mastery of information

acquisition on conceptC1 (“Solid geometry”) and mathematical cal-

culation on C2 (“Volume”). Indeed, several efforts have been made

on FSE task for finding the similar ones of each given exercise.

Specifically, on a small quantity of exercises, manual labeling is

usually conducted [18]. However, manual labeling requires strong

expertise and takes much time, which is not suitable for FSE task

in large-scale online education systems containing millions of ex-

ercises that are continuously collected from various sources (e.g.

the Internet or schools). Therefore, it is an urgent issue to automat-

ically understand the semantics of exercises from their contents.

Along this line, methods based on text similarity (e.g. vector space

model) have been applied [9, 36, 37, 44], where the same concepts

or the similar words are used to calculate exercise similarity. Un-

fortunately, to the best of our knowledge, few of existing solutions

can synthetically exploit the heterogeneous data (i.e. both texts

and images) to precisely understand the semantics of each exercise.

Consequently, the dissimilar exercises (e.g. E1 and E3 in Figure 1),

which share the same concepts or many common words but have

different purposes, may be misclassified as similar ones.

In summary, there are still many unique challenges inherent in

designing an effective FSE solution. First, exercises contain multiple

heterogeneous data, i.e., texts, concepts and images (actually, about

75% of math exercises have at least one image, e.g. geometric figures

and equations, as shown experimentally). How to integrate these

materials to understand and represent exercises in a multimodal

way is a nontrivial problem. Second, in a single exercise, different
parts/words of the text are usually associated with different con-

cepts (text-concept) or images (text-image). For instance, in E1 of

1
Concepts (short for knowledge concepts [35, 46] or knowledge points [4]) are previ-

ously labeled (e.g. in ASSISTments [4, 46]) or can be easily obtained by algorithms [26].
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The front, top and side 
views of a geometric 
object are shown in 
figure (a), (b) and (c). 
Please calculate the 
volume of the object.

𝐸1: 

1 1 1
2

(a) (b) (c)

Concepts
    :Solid geometry
    :Volume
𝐶1  

𝐶2  

1

(b) (c) (d)

The stereogram of a object is shown in figure (a) and AB2-AB-2=0. The front, top and side views of 
it are shown in figure (b), (c) and (d). The volume of the object is ( )
A. 3            B. 4            C.5           D. 6

1
2

(a)
A B

C
D

E F

G
H

1

Concepts
    :Solid geometry
    :Volume
    :Quadratic equation 

𝐸2: 

𝐶1  

𝐶2  

𝐶3  

A geometric object is shown in figure (a) and its volume is V.  AOB = 90°, and  OB = 2. What is the 
relationship of AB and V ?

(a)

Concepts
    :Solid geometry
    :Volume
𝐶1  

𝐶2  

𝐸3: 

Similar

Dissimilar A

BO

Figure 1: Three examples of math exercises: E1, E2 and E3.

Figure 1, words on the “red” underline focus more on the concept

C1 while the words on the “green” underline concentrate more on

C2. Similarly, in E2 of Figure 1, the words that describe the same

image are noted with the same color underline. Thus, when under-

standing each exercise, it is necessary to capture these text-concept

and text-image associations. Third, a pair of similar exercises may

consist of different types of texts, images and concepts, such as the

similar exercise pair (E1,E2) in Figure 1. Thus, for finding similar

exercises, it is also critical to measure the similar parts in each

exercise pair by deeply interpreting their semantic relations.

To address the challenges mentioned above, in this paper, we de-

velop a novelMultimodalAttention-basedNeuralNetwork (MANN)

framework for finding similar exercises in large-scale online educa-

tion systems by learning a unified semantic representation from the

heterogenous data. Specifically, given the exercises with texts, im-

ages and concepts, we first apply a Convolutional Neural Network

(CNN) to extract image representations and use an embedding

layer for representing concepts. Then, we design an Attention-

based Long Short-Term Memory (Attention-based LSTM) network

to learn a unified semantic representation of each exercise by han-

dling its heterogeneous materials in a multimodal way. Here, two

attention strategies, i.e. Text-Image Attention and Text-Concept

Attention, are proposed to capture the text-image and text-concept

associations in each single exercise, respectively. Next, we design a

Similarity Attention to measure the similar parts in each exercise
pair with their semantic representations. Finally, a pairwise train-

ing strategy is proposed for MANN to find similar exercises. In this

way, those candidate exercises having the largest similarity score

with the given exercise will be classified as the similar exercises. Ex-

tensive experiments on a large-scale real-world dataset reveal that

MANN not only significantly outperforms several baselines on the

FSE task, but also provides interpretable insights to the similarity

information of exercise pairs.

2 RELATEDWORK
Generally, the related work can be grouped into the following three

categories, i.e. studies on finding similar exercises, multimodal

learning and pair modeling.

Studies on FSE. There are several efforts for FSE in the litera-

ture. Some prior works leveraged the texts or concepts of exercises

to calculate exercise similarity. For example, Vector Space Model

(VSM), combining TF-IDF and cosine similarity to measure text

similarity of exercises, was a common and effective method in item

bank systems [9, 36]. Williams et al. [37] held that similar exer-

cises had core concepts in common, and they used concepts to

analyze similarity between two exercises. Yu et al. [44] developed

a method combining ontology and VSM to reveal the intrinsic rela-

tionship among words for text similarity of exercises. However, few

of existing solutions can synthetically exploit the multiple hetero-

geneous materials (especially, the massive image data) to precisely

understand and represent the semantics of each exercise. Recently,

another direction made attempts to utilize students’ performance

data for measuring similar exercises by obtaining clusters of exer-

cises [29]. Unfortunately, the similar performance of students (e.g.

the similar percentage of students who answer the two exercises

right [13]) usually does not guarantee the similarity of exercises.

Multimodal Learning. In our framework, one of the most im-

portant steps is to integrate heterogeneous exercise materials in a

multimodal way, and this is related to multimodal learning. Multi-

modal learning is a powerful approach to deal with multiple hetero-

geneous data, such as sound and video [24], video and text [42], or

image and text [3, 6]. What relate to our approach more closely are

the works on handling images and texts. For example, some repre-

sentative works attempted to map images (or image regions) and

texts to a common embedding space and used canonical correlation

analysis to obtain relations between images and texts [3, 14]. In

another direction, Park et al. [27] developed a coherent recurrent

convolutional network architecture to capture the associations be-

tween a sequence of images and sentences. Ma et al. [21] designed

a CNN architecture with a multimodal convolution layer to learn

the joint representations of image questions.

Unfortunately, these existing methods could not be directly ap-

plied to learn the semantics of exercises, as understanding exercise

purposes has to not only handle multiple heterogeneous data (i.e.,

texts, images and concepts) but also consider the text-concept and

text-image associations in each exercise.What’s more, none of these

methods can measure the similar parts between two exercises.

Pair Modeling. Modeling exercise pairs is relevant to many

researches in pair modeling, such as sentence pair [25], image

pair [22] or video-sentence pair [42]. Generally, methods for pair

modeling tried to learn the relations between two instances in a pair.

For example, Xu et al. [42] designed a joint video-language embed-

ding model to learn the matching relations between the video and
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its describing sentence in video-sentence pairs. Mueller et al. [25]

utilized a LSTM architecture to extract semantic representations

for analyzing the similarity relations of sentences in pairs. Yin et

al. [43] incorporated attention strategies into CNN to catch related

parts of sentence pairs from words, phrases to sentences views.

However, these methods do not focus on pair modeling of the in-

stances having multiple heterogeneous data. Therefore, we should

design novel solutions for measuring exercise pairs.

3 MANN FRAMEWORK
In this section, we first give the formal definition of the FSE task.

Then, we introduce technical details of MANN framework. At last,

we specify a pairwise loss function to train MANN.

3.1 Problem Definition
Similar exercises are those having the same purpose [7, 32] which is

related with the semantics of exercises [16]. For any two exercises

Ea and Eb , we use score S(Ea ,Eb ) to measure the similarity between

Ea and Eb . The higher S(Ea ,Eb ) is, the more similar Ea and Eb are.

Without loss of generality, the problem of finding similar exercises

can be formulated as:

Definition 1. Given a set of exercises with corresponding het-
erogeneous materials including texts (ET ), images (EI ) and concepts
(EC), our goal is to integrate these heterogeneous materials to learn
a model F , which can be used to measure the similarity scores of
exercise pairs and find similar exercises for any exercise E by ranking
the candidate ones R with similarity scores, i.e.

F (E,R,Θ) → Rs , (1)

where Θ is the parameters of F , R = (E1,E2,E3, . . . ) are the can-
didate exercises for E and Rs = (Es

1
,Es

2
,Es

3
, . . . ) are the candidates

ranked in descending order with their similarity scores (S(E,Es
1
), S(E,Es

2
),

S(E,Es
3
), . . . ). The similar exercises for E are those candidates having

the largest similarity score.

For tackling the above problem, we propose a two-stage solution

containing a training stage and a testing stage. The flowchart is

shown in Figure 2. In the training stage, given exercises with texts,

images and concepts, we propose MANN to learn a unified semantic

representation for each exercise by handling the heterogeneous ma-

terials in a multimodal way, and meanwhile, calculate the similarity

score for each pair of exercises. We utilize a pairwise loss function

to train MANN, i.e. for an exercises E, its similar pairs (E,Es ) should
have higher similarity scores than dissimilar ones (E,Eds ). Here,
Es ∈ Sim(E), Eds ∈ DS(E) and we suppose the similar exercises

Sim(E) for E are previously given, e.g. labeled by the experts, and

its dissimilar ones DS(E) can be gotten by sampling. After obtain-

ing the trained MANN, for any exercise Ea in the testing stage,

we could find its similar exercises (Esa,1,E
s
a,2, . . . ) by ranking the

candidate ones according to their similarity scores.

3.2 Details of MANN
In this subsection, we will introduce the technical details of MANN

framework. As shown in Figure 3, MANN mainly contains three

parts, i.e., Multimodal Exercise Representing Layer (MERL), Simi-

larity Attention (SA) and Similarity Score Layer (SSL). Specifically,

c

Exercises

Model

c

Heterogeneous materials: text, images and concepts

Training

1 1 1

2

(a) (b) (c)

The front, top and side views of a geometric object are shown in figure 
(a), (b) and (c). Please calculate the volume of the object.

Concepts
C1:Solid geometry
C2:Volume 

  MANN
Testing

𝐸𝑎  (𝐸𝑎 ,1
𝑠 ,𝐸𝑎 ,2

𝑠 , 𝐸𝑎 ,3
𝑠 ,… )  

FSE for any exercise 

𝑆 𝐸1, 𝐸1,𝑠 > 𝑆 𝐸1, 𝐸1,𝑑𝑠  

: similar exercises of 
: dissimilar exercises of 

𝐸𝑏  (𝐸𝑏 ,1
𝑠 , 𝐸𝑏 ,2

𝑠 ,𝐸𝑏 ,3
𝑠 ,… )  

Ranked candidates

𝐸𝑠 ∈ 𝑆𝑖𝑚 𝐸 , 𝐸𝑑𝑠 ∈ 𝐷𝑆 𝐸  

𝐸 

𝐷𝑆 𝐸  𝐸 

𝑆 𝐸2, 𝐸2,𝑠 > 𝑆 𝐸2, 𝐸2,𝑑𝑠  

𝑆 𝐸𝑛 , 𝐸𝑛 ,𝑠 > 𝑆 𝐸𝑛 , 𝐸𝑛 ,𝑑𝑠  

𝑆𝑖𝑚 𝐸  

Figure 2: The flowchart of our work.

MERL outputs a unified semantic representation of each exercise

in a multimodal way by utilizing its heterogeneous materials. SA

measures similar parts between two exercises with their seman-

tic representations. SSL calculates the similarity scores of exercise

pairs, which can be used to rank candidate exercises to find similar

ones for any exercise.

3.2.1 Multimodal Exercise Representing Layer. Figure 4

shows the details of MERL in MANN framework. With the exercise

materials input from Exercise Input, we first utilize Image CNN

and Concept Embedding to preprocess the encodings from images

and concepts, respectively. Then, we design an Attention-based

LSTM to learn a unified semantic representation for each exercise

by integrating its heterogeneous materials in a multimodal way.

1) Exercise Input. The input to MERL is the materials of an

exercise E, i.e., the text (ET ), images (EI ) and concepts (EC), as
shown in Figure 4. Intuitively, the text ET is formalized as a se-

quence of N words ET = (w1,w2, . . . ,wN ), where wi ∈ Rd0 is

initialized by an d0-dimensional pre-trained word embedding with

Word2vec [23]. The concepts in E can be represented by a matrix

EC = (k1,k2, . . . ,kL) ∈ {0, 1}L×Lall , where ki is a one-hot vector
with the dimension equaling to the total number Lall of all con-
cepts in the item bank, L is the number of concepts in E. For images

EI , similar to the works [12, 31], we convert them to gray images

with the resizing size (64 × 64) and each pixel value in [0, 1]. Thus,

EI = (p1,p2, . . . ,pM ) ∈ RM×64×64
, where pi ∈ R64×64 represents

the i-th image and M is the number of images in E. After the ini-
tialization from Exercise Input, in the following, we apply Image

CNN and Concept Embedding to enhance feature representations

of images and concepts, respectively.

2) Image CNN. For the images EI in E, we utilize a CNN archi-

tecture, i.e. Image CNN (ImCNN), with five layers of convolution

and max pooling, which is similar to the work [17], to get the

feature vector for each image. We use an encode-decode architec-

ture for pre-training ImCNN. Specifically, we set ImCNN as the

encode and five corresponding deconvolution layers [45] as the

decode, DeImCNN, and then pre-train ImCNN with the following

loss function:

LImCNN =
∑
p
(DeImCNN (ImCNN (p)) − p)2, (2)

where p is a pre-trained image.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1823



MERL

  Attention Matrix A

concatenate

full-connect

MERL

Similarity Score LayerSimilarity AttentionMultimodal Exercise Representing Layer  

𝑟(𝐸𝑎 ) 

𝒉(𝐸𝑎 ) 

𝑟(𝐸𝑏 ) 

𝒉(𝐸𝑏 ) 

shared weights Unified semantic 
representation

𝑠(𝐸𝑏 ) 

𝑠(𝐸𝑎 ) 

𝐸𝑎  

𝐸𝑏  

ℎ𝑎𝑡𝑡
(𝐸𝑎 ) 

ℎ𝑎𝑡𝑡
(𝐸𝑏 ) 

𝑆(𝐸𝑎 ,𝐸𝑏) 

similarity 
score

Figure 3: MANN framework with the input of an exercise pair (Ea ,Eb ) and the output of its similarity score.
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representation
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representation of    
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Concept Embedding

E
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𝒉(𝐸) (     =300)Attention-based LSTM
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𝑑2 
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ℎ2
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...
ℎ𝑁

(𝐸)
 

Figure 4: Multimodal Exercise Representing Layer (MERL).

Through ImCNN, each image pi can be represented by a fixed

length vector vi , which can be expressed as

vi = σ (ImCNN (pi )), (3)

where vi ∈ R
d1
, d1 is the output dimension of ImCNN, and σ (x) is

the sigmoid function. As a result, the representation EI of images

is transformed into a matrixv = (v1,v2, . . . ,vM ) ∈ RM×d1
, which

is shown in Figure 4.

3) Concept Embedding. Since the one-hot representations for
concepts are too sparse to train, we utilize an embedding operation

to convert the initialized vectors of concepts into a low-dimensional

ones with dense values. Formally, for a concept ki , the converted
vector ui is expressed as:

ui = kiWu, (4)

here, Wu ∈ RLall×d2 are the parameters of the embedding layer

and ui ∈ R
d2
, where d2 is the output dimension of it. As a result,

the representation EC of concepts is transformed into a matrix

u = (u1,u2, . . . ,uL) ∈ R
L×d2

, which is also shown in Figure 4.

4) Attention-based LSTM. After getting the feature represen-
tations of images and concepts, Attention-based LSTM aims at

learning a unified semantic representation for an input exercise E
by integrating its all heterogeneous materials, i.e., texts, images and

concepts. In each exercise, different parts of the text are associated

with different concepts and images. As shown in Figure 1, words

in E1 on the “red” underline pay more attention to the concept

C1 while the ones on the “green” underline focus more on C2. In

E2, the words that describe the same image are on the same color

underline. Therefore, we design the Attention-based LSTM archi-

tecture to learn representations for each exercise in a multimodal

way, where we utilize two attention strategies, i.e. Text-Concept

Attention (TCA) and Text-Image Attention (TIA), to capture the

text-concept and text-image associations respectively. The archi-

tecture of this Attention-based LSTM is shown in Figure 5.

Methodology-wise, Attention-based LSTM is a variant of the

traditional LSTM architecture [8, 11] with improvements. As LSTM

can handle an any long sequence and learn long range dependencies

across the input sequence [8, 11], we use a LSTM-based architecture

to learn the representations for exercises with word sequences of

any length. Specifically, in this paper, the input to the LSTMnetwork

is a sequence x = (x1,x2, . . . ,xN ) combined with all materials of

each exercise, and then the hidden state ht at the t-th input step is

updated as following formulas:

it = σ (Wxixt +Whiht−1 + bi),
ft = σ (Wxfxt +Whfht−1 + bf ),
ot = σ (Wxoxt +Whoht−1 + bo),
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc),
ht = ot tanh(ct ), (5)

where i•, f•, c•, o• are the input gate, forget gate, memory cell,

output gate of LSTM respectively. W• and b• are learned weight

matrices and biases.

Here we introduce how to obtain the combined sequence input x .
Obviously, at each input step, xt is a multimodal vector integrating

the text, images and concepts, i.e.

xt = wt ⊕ ût ⊕ v̂t , (6)

where “⊕” is the operation that concatenates two vectors into a long

vector,wt is the t-th word representation in the text ET , ût and v̂t
are the representations of the associated concepts and images of

this word, which are learned by TCA and TIA respectively.
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ℎ1 ℎ2 ℎ𝑁 

 

TCA TIA

𝒘𝟏 𝒗 𝟏 

𝒙𝟏 

u

semantic representations of different parts, 𝒉(𝐸) 

𝑟(𝐸) ℎ0 

TCA TIA

𝒘𝟐 𝒗 𝟐 

𝒙𝟐 

 ℎ𝑁−1 

TCA TIA

𝒘𝑵 𝒗 𝑵 

𝒙𝑵 

𝒖 𝑵 𝒖 𝟐 𝒖 𝟏 

Figure 5: Attention-based LSTM in MERL.

TCA aims at capturing the text-concept associations. In TCA, at

the t-th input step, we first measure the association between wt
and each concept representation. As a concept is related to words of

a text part, and ht−1 holds the information of words before the t-th
input step, ht−1 should be taken into account during measuring

the association. Then, the associated concept representation ût can
be modeled as a vector by a weighted sum aggregated result of u,
which is expressed as

ût =
L∑
j=1

α juj , α j =
φ(uj ,wt ,ht−1)∑L
i=1 φ(ui ,wt ,ht−1)

,

φ(uj ,wt ,ht−1) = Vactanh(Wac[uj ⊕wt ⊕ ht−1]), (7)

where Vac andWac are learned parameters of TCA, φ(uj ,wt ,ht−1)
measures the association between the j-th concept uj andwt in E,
α j denotes the attention score ofφ(uj ,wt ,ht−1) after normalization.

TIA aims at capturing the text-image associations. Similar to

TCA, in TIA, the associated image representation v̂t forwt can be

modeled as the form of Eq. (7), where we can simply use vj and the
learned parameters of TIA, i.e. Vai and Wai, to replace uj , Vac and
Wac. Please also note that, v̂t can be a zero vector if the exercise E
has no image.

Through Attention-based LSTM, we can get the hidden state

sequence h = (h1,h2, . . . ,hN ) with the combined input sequence

x . Furthermore, inspired by the works applying LSTM to natural

language processing [8, 25], the final hidden state hN holds the

semantic information of the whole input sequence x of the exer-

cise E, so we employ hN as the semantic representation r (E) for

E, i.e. r (E) = hN . Besides, the t-th hidden state ht only holds the

information of the sequence (x1,x2, . . . ,xt ), so different hidden

states contain semantic information of different parts of the exer-

cise E. Therefore, we further denote h(E) = h as representations

of different parts of E. Thus, we can obtain the unified semantic

representation (r (E), h(E)) for E.

3.2.2 Similarity Attention. As shown in Figure 3, for each

exercise pair (Ea ,Eb ) with their unified representations, i.e. (r (Ea ),

h(Ea )) and (r (Eb ), h(Eb )), obtained by MERL, Similarity Attention

targets at measuring the similar parts between Ea and Eb with the

semantic representations. As shown in Figure 1, though E1 and

E2 are similar exercises, they have different texts, images and con-

cepts. This evidence indicates that similar exercises may consist of

different materials. Thus, when finding similar exercises, it is nec-

essary to catch semantic similar parts of two exercises. Therefore,

we design the Similarity Attention to measure similar parts of two

exercises and learn attention representations for them.

In Similarity Attention, we use a similarity attention matrix A
to measure similar parts of the input pair (Ea ,Eb ) by calculating

cosine similarities between each part of Ea and each part of Eb with

h(Ea ) and h(Eb ). A ∈ RNEa×NEb can be expressed as

Ai, j = cos(h
(Ea )
i ,h

(Eb )
j ), (8)

here, 1 ≤ i ≤ NEa , 1 ≤ j ≤ NEb , NEa and NEb are the lengths

of the word sequences of Ea and Eb respectively. h
(Ea )
i is the i-th

representation in h(Ea ) and h(Eb )j is the j-th representation in h(Eb ).

Particularly, the cosine similarity score Ai, j in A greatly enhances

the explanatory power of MANN. It helps us analyze the similar

parts in an exercise pair, e.g. by visualization.

With the attention matrix A, we can find that the sum score

value s
(Ea )
i =

∑NEb
k=1 Ai,k actually measures the sum similarity of

the i-th representation in h(Ea ) with each one in h(Eb ). Similarly,

the sum score value s
(Eb )
j =

∑NEa
k=1 Ak, j measures the sum similarity

of the j-th representation in h(Eb ) with each one in h(Ea ). Thus, we
denote these two similarity score vectors, i.e. s(Ea ) and s(Eb ), as the
similarity attention representations of Ea and Eb respectively.

Furthermore, as discussed in Attention-based LSTM, h
(Ea )
NEa

and

h
(Eb )
NEb

hold the whole semantic information of Ea and Eb respec-

tively, so Ai,NEb
and ANEa , j actually measure the similarity of the

i-th part (h
(Ea )
i ) of Ea with Eb and the similarity of the j-th part

(h
(Eb )
j ) of Eb with Ea , respectively. Thus, for exercises Ea and Eb ,

we can model their semantic attention representations, i.e. h
(Ea )
att

and h
(Eb )
att , by the weighted sum aggregated results of h(Ea ) and

h(Eb ), respectively:

h
(Ea )
att =

NEa∑
i=1

Ai,NEb
h
(Ea )
i ,

h
(Eb )
att =

NEb∑
j=1

ANEa , jh
(Eb )
j . (9)

With the help of Similarity Attention, we can get the attention

matrix A and learn the similarity attention representations (s(Ea )

and s(Eb )) and semantic attention representations (h
(Ea )
att and h

(Eb )
att )

of the input exercise pair (Ea ,Eb ).

3.2.3 Similarity Score Layer. Similarity Score Layer targets

at calculating the similarity score of each exercise pair, which can

be used to rank candidate exercises to find similar ones for any

exercise. As shown in Figure 3, the similarity score of the input pair

(Ea ,Eb ) is computed by leveraging their semantic representations

(i.e. r (Ea ) and r (Eb )) and attention representations (i.e., s(Ea ), h
(Ea )
att ,

s(Eb ) and h
(Eb )
att ). Specifically, we first concatenate them to a vector,

i.e. z̃ab = r (Ea ) ⊕ r (Eb ) ⊕ s(Ea ) ⊕ s(Eb ) ⊕ h
(Ea )
att ⊕ h

(Eb )
att , and then

obtain the similarity score S(Ea ,Eb ) by using two full-connected

networks [10] with a nonlinear activation function ReLU (x) =

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1825



40 80 120 160 200
Number of Words

0

0.5

1

1.5

2

2.5
104

0 1 2 3 4 5 6 7 8 9 10
104

N
um

be
r 

of
 E

xe
rc

ise
s 

ha
vi

ng
 th

e 
sa

m
e 

co
nc

ep
ts

 
w

ith
 th

e 
la

be
le

d 
ex

er
ci

se
s

Index of Labeled Exercises
1 2 3 4 5 6 7 8
Number of Similar Exercises

0

1

2

3 104

1 2 3 4 5 6 7 8
Number of Concepts 

0

3

6

9 105

0 2 4 6 8 10 12 14 16 18
Number of Images 

0

1

2

3

4 105 10000

 

0

2000

4000

6000

8000

N
um

be
r 

of
 E

xe
rc

is
es

  

N
um

be
r 

of
 E

xe
rc

is
es

  

N
um

be
r 

of
 E

xe
rc

is
es

  

N
um

be
r 

of
 L

ab
el

ed
 E

xe
rc

is
es

  

Figure 6: Number distributions of the observed records.

Table 1: Toy examples of the labeled similar exercises.

Labeled

exercise

Expert

Similar exercises

labeled by expert

Similar exercises

Selected in experiments

Ea
exp1 E1, E2, E3, E4, E5

E2, E3, E5exp2 E1, E2, E3, E5
exp3 E2, E3, E4, E5

Eb
exp4 E6, E7, E8, E9, E10 E6, E7, E8, E9exp5 E6, E7, E8, E9

Ec exp6 E11, E12, E13 E11, E12, E13
. . . . . . . . . . . .

max(0,x) used in the first one and the sigmoid function for the

second one:

õab = ReLU (W1z̃ab + b1),
S(Ea ,Eb ) = σ (W2õab + b2), (10)

where W1, b1, W2, b2 are parameters of the network. Therefore,

this method precisely measures the similarity scores of exercise

pairs by leveraging the heterogeneous materials. Those candidates

with the largest similarity score will be returned as similar exercises

of the given one, e.g. (Esa,1,E
s
a,2, . . . ) for exercise Ea in Figure 2.

3.3 MANN Learning
In this subsection, we specify a pairwise loss function for training

MANN. In the training stage, we suppose there are a subset of

exercises which have been labeled with several similar ones. For an

exercise E, we use Sim(E) to denote its labeled similar exercises and

treat unlabeled exercises as its dissimilar ones DS(E). Considering
the similar pairs (E,Es ) should have higher similarity scores than

the dissimilar ones (E,Eds ), where Es ∈ Sim(E) and Eds ∈ DS(E), as
shown in Figure 2, we further formulate the pairwise loss function

as following:

L(Θ) =
∑

E,Es ,Eds

max(0, µ−(S(E,Es )−S(E,Eds )))+λΘ | |Θ| |
2, (11)

where S(·, ·) is computed by Eq. (10); Θ denotes all parameters of

MANN and λΘ is the regularization hyperparameter; µ is a margin,

forcing S(E,Es ) to be greater than S(E,Eds ) by µ. In this way, we

can learn MANN by directly minimizing the loss function L(Θ)
using Adam [15].

As the number of dissimilar exercises of each labeled exercise E
is huge, it will take much time to train MANN if using all of them

at each iteration of the training process. Therefore, inspired by

the work [38, 39], we only sample a number (e.g. 50) of dissimilar

exercises as DS(E) for E at each iteration. Specifically, in our work,

we have two sampling ways:

Table 2: The statistics of the dataset.

Statistics Values

number of exercises 1,420,727

number of exercises having images 1,064,964

number of labeled exercises 104,515

number of similar pairs 401,476

number of similar pairs having the same concepts 174,672

Average similar pairs per labeled exercise 3.84

Average concepts per exercise 1.61

Average images per exercise 3.04

Sampling Randomly (Random). At each iteration, for each

given exercise E, we randomly select a number of dissimilar exer-

cises from all the dissimilar ones of E.
Sampling by Concepts (Concept). At each iteration, for each

given exercise E, we randomly select a number of dissimilar exer-

cises from those having at least one common concept with E.

4 EXPERIMENTS
In this section, we first assess the performance of MANN on the

FSE task comparing with several baselines. Then, we conduct a case
study to visualize the explanatory power of MANN.

4.1 Dataset Description
The experimental dataset supplied by iFLYTEK is collected from

Zhixue
2
, which is an online education system for providing a series

of exercise-based applications to high school students in China. The

dataset contains 1,420,727 real-world math exercises
3
, which are

collected from schools or the Internet. Images in math exercises

include geometric figures, some equations and mathematical nota-

tions as shown in the red box in E2 of Figure 1. Moreover, education

experts (e.g. teachers) are invited to label similar exercises. Different

from crowdsourcing labeling, labeling similar exercises not only is

time-consuming and laborious, but also requires strong expertise.

As a result, in the dataset, 104,515 exercises are labeled with several

similar exercises and each labeled (given) exercise is labeled by at

least one expert.

As shown in Table 1, for each labeled exercise, we select those

similar exercises labeled by all its labeling experts as its similar

exercises, so we get 401,476 similar pairs of exercises totally after

pruning. For a labeled exercise E, we denote those which are not

its labeled similar exercises as the dissimilar exercises of E. Table 2
shows the basic statistics of the dataset, and Figure 6 illustrates the

2
http://www.zhixue.com

3
Please note that MANN solution is a general framework which can also handle the

exercises from all the disciplines, e.g. Physics.
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Figure 7: Performance comparison on the FSE task.

number distributions of similar exercises, concepts, images, words

in text and the exercises having the same concepts with each labeled

exercise. We can observe that: (1) On average 3.84 similar exercises

are labeled for the given one; (2) Each exercise consists of about

1.61 concepts and 3.04 images; (3) About 75% exercises have at least

one image; (4) 99% exercises contain less than 200 words in the

text; (5) More than 55% labeled exercises have the same concepts

with at least 1,000 exercises. These observations once again prove

that similar exercises cannot be easily identified (e.g. just based on

the same concepts or from the similar words of two exercises) in

large-scale online education systems, and it is necessary to exploit

the multiple heterogeneous data for precisely understanding each

exercise on the FSE task.

4.2 Experimental Setup
For validating the effectiveness of MANN, we employ 5-fold cross

validation on the labeled exercises in the dataset, where one of five

folds is targeted to construct the testing set and the rest for the

training set.

Word Embedding Pre-training. The word embedding used in

Exercise Input of MERL is trained on texts of math exercises in the

dataset, using the Word2vec tool [23] with the dimension (d0) 100.
Image CNN Pre-training. Image CNN (ImCNN) for getting

the feature vector of each image in MERL is trained on images in

the training set by minimizing the loss function as Eq. (2), and the

dimension (d1) of feature vectors for images is 100.

MANN Setting.We set the size (d2) of embedding representa-

tions for concepts as 100, the dimension (d3) of hidden states in

Attention-based LSTM as 300 and the size of the output of the first

full-connected network as 200.

Training Details. We initialize parameters in MANN with a

truncated normal distribution with the standard deviation 0.1. We

set mini-batches as 64, µ = 0.5 and λΘ = 0.00004 in Eq. (11) for

training MANN, and parameters of MANN, except those in the

pre-trained ImCNN andWord2vec, can be tuned during the train-

ing process. We also use dropout [33] with the probability 0.2 to

prevent overfitting and gradient clipping [28] to avoid the gradient

explosion problem.

Testing Details. As the similar exercises usually have common

core concepts [37], for a given exercise, it is necessary to select

those having at least one common concept with it as candidates to

find its similar ones. However, the number of those exercises is still

very large, and it is impractical to take all of them as candidates, e.g.

more than 55% labeled exercises in our dataset have the same con-

cepts with at least 1,000 exercises. Therefore, similar to the training

process, for each given exercise in the testing set, we randomly

samplem unlabeled exercises having at least one common concept

with it and mix them with its labeled similar exercises together

as candidates. When measuring the performance of a model, we

repeat this process multiple times and report the average results.

4.3 Baseline Approaches
In order to demonstrate the effectiveness of MANN, we compare it

with several methods including some variants of MANN, a tradi-

tional method on the FSE task and the models for pair modeling

and multimodal learning:

• VSM: Vector space model (VSM) combining TF-IDF and cosine

similarity based on the texts of exercises, is a simple, effective

and unsupervised method. It is widely applied for the FSE task

in many educational systems [9, 36, 44].

• LSTM : LSTM is applied to learn the semantic similarity between

sentences [25], based on texts.

• ABCNN : ABCNN is a network architecture based on texts for

modeling sentence pairs [43].

• m-CNN : m-CNN is a multimodal CNN architecture for integrat-

ing texts and images into a vectorial representation [21], which

can be applied to obtain the representation for an exercise by

using its texts and images.

• m-CNN-TIC: We expand m-CNNmodel to integrate Texts, Images

and Concepts in the similar way in m-CNN to obtain the vectorial

representation for an exercise.

The variants of MANN are listed as follows:

• MANN-T : MANN-T is a variant of MANN by only using the Texts

of exercises.

• MANN-TI : MANN-TI is a variant of MANN by only using the

Texts and Images of exercises without TIA.

• MANN-TIA: MANN-TIA is a variant of MANN by only using the

Texts and Images of exercises, and considering the text-image

association with TIA.

• MANN-TC: MANN-TC is a variant of MANN by only using Texts

and Concepts of exercises without TCA.
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Figure 8: Performance with differentm.

• MANN-TCA: MANN-TCA is a variant of MANN by only using

Texts and Concepts of exercises, and considering the text-concept

association with TCA.

• MNN : MNN is a variant of MANN by using texts, images and

concepts of exercises without TIA and TCA.

Note that the above variants of MANN all contain Similarity At-

tention and Similarity Score Layer. The baselines except VSM are

trained with the pairwise loss function as Eq. (11) and implemented

in Tensorflow [1]. All the experiments are conducted on a Pascal

Titan X GPU.

4.4 Evaluation Metrics
To find similar exercises for a given exercise, the candidates that

have the largest similarity score with this exercise will be returned.

Thus, we adopt three widely used top-n ranking metrics [5, 30, 39,

47]: Precision, Recall, and F1 measure, where n denotes the size of

exercises selected from candidate ones. As shown in Table 2 and

Figure 6, on average 3.84 similar exercises are labeled for the given

one and more than 90% given exercises have less than 6 labeled

similar exercises, so we set n = 1, 2, 3, 4, 5 in experiments. For the

three metrics, the larger, the better.

4.5 Experimental Results
4.5.1 Performance Comparison. To investigate the perfor-

mance of MANN and baselines on the FSE task, we train the models

in the Concept sampling way (Section 3.3). As discussed in Testing
Details, we setm = 50 (50 is enough, for the average number of

similar exercises per labeled exercise is only 3.84). The process of

constructing the testing set to calculate the three metrics is repeated

10 times and we report the average results.

Figure 7 shows the performance results of all models. We can

find that our proposed MANN achieves the best performance, with

the improvement by up to 39%, 35% and 35% in Precision, Recall
and F1 at Top 1 compared to ABCNN. Meanwhile, the variants of

MANN also have better performance than other baselines. Specifi-

cally, first, VSM does not perform as well as other models because

VSM just focuses on common words in exercise pairs but cannot

understand exercises semantically. Second, ABCNN performs better

than LSTM, m-CNN and m-CNN-TIC, as ABCNN can learn and

measure similar parts of an exercise pair but LSTM, m-CNN and

m-CNN-TIC cannot. Third, MANN-T performs better than ABCNN,

indicating the effectiveness of Similarity Attention to measure sim-

ilar parts of an exercise pair and that our framework still works

well on FSE task just using texts of exercises. Fourth, MANN-TIA

beats MANN-T and MANN-TI by additionally utilizing images of

exercises and capturing the text-image association with TIA, and

MANN-TCA performs better than MANN-T and MANN-TC by

additionally utilizing concepts and capturing the text-concept as-

sociation with TCA. Last but not least, MANN performs best and

MNN ranks the second, which suggests that it is more effective

for the FSE task by integrating the texts, images and concepts, and

further demonstrates the effectiveness of TIA and TCA.

In summary, these evidences indicate that the concepts and im-

ages are important materials in exercises and are useful for FSE

task. Also, they imply that MANN can more effectively find similar

exercises by integrating the texts, concepts and images in a multi-

modal way, and meanwhile, capturing the text-image association

and text-concept association, as well as measuring similar parts

between two exercises with their semantic representations.

4.5.2 PerformancewithDifferentm. To further demonstrate

the effectiveness ofMANN, we set VSM, LSTM,ABCNN andm-CNN-
TIC as representative baselines, and investigate the performance

of models with different number (m) of the sampled unlabeled ex-

ercises for each given exercise in the testing set (as discussed in

Testing Details). We conduct an experiment for differentm from

the set {10, 20, 30, . . . , 100} and take F1 measure at top n = 1, 3, 5

as the metric. The experimental process is repeated 10 times.

The average results are shown in Figure 8. We can find that with

different m, MANN still outperforms baselines and the F1 value
of MANN degrades the most slowly while m increases. That is,

the more unlabeled exercises (i.e. negative samples) in the testing

set, the more improvement of MANN compared with the baselines

could be observed. These results once again indicate that MANN

can be more effective and powerful for FSE task by integrating texts,

images and concepts, capturing the text-image and text-concept

associations, and measuring similar parts between two exercises.

4.5.3 Influence of SamplingWays inTraining. As discussed
in Section 3.3, we have two sampling ways for training MANN, i.e.

Random and Concept. In the following, we use the same testing

set to investigate the influence of different sampling ways on the

effectiveness of MANN. The experimental process is also repeated

10 times and the average results are reported.

The average results are shown in Figure 9. From this figure, we

can observe that the MANN trained in Concept performs better than

that in Random. We guess a possible reason is that during train-

ing MANN, for each given exercise, its similar exercises are very
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Figure 10: Visualization of the similar parts between two ex-
ample exercises Ea and Eb .

different from most sampled dissimilar ones in Random (sampling

randomly) while its similar exercises are close to the dissimilar

ones in Concept (sampling by concepts), so MANN can focus on the

subtle differences between its similar pairs and dissimilar ones in

Concept. Thus, for the FSE task, the model trained in the sampling

way of Concept can be more powerful.

4.5.4 Case Study. One important characteristic of MANN is

its explanatory power to measure the similar parts between two

exercises from their semantic representations, via visualizing the

similarity attention matrix A in Eq. (8). As an example, Figure 10

shows the similar parts between two exercises, Ea and Eb , and
these exercises are also translated into English in the bottom of the

figure to make them easy to understand. Please note that, we only

show the text information of Ea and Eb in Figure 10 (the images

and concepts are omitted) for the illustration purposes. The color

in Figure 10 changes from white to black while the value of cosine

similarity decreases. We can see that the parts in the green box (or

blue, red box) in Ea and Eb are the similar parts that express the

same meaning. For instance, the similar parts (i.e. “∠C = 30
◦
” and

“the number of degrees of ∠D”) in the green box both describe the

number of degrees of an angle. This implies that MANN provides a

good way to capture the similarity information between exercises

by the Similarity Attention.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we provided a focused study on finding similar exer-

cises (FSE) in online education systems. For modeling the hetero-

geneous materials of exercises semantically, a novel Multimodal

Attention-based Neural Network (MANN) framework was pro-

posed. Specifically, given the texts, images and concepts of exer-

cises, we first utilized a CNN to generate the image representations

and used an embedding layer to obtain representations of concepts.

Then, we designed an Attention-based LSTM network to learn a

unified semantic representation of each exercise in a multimodal

way, where two attention strategies were proposed to capture the

text-image and text-concept associations, respectively. Next, we

designed a Similarity Attention to measure the similar parts in

exercise pairs. Finally, a pairwise training strategy was proposed to

return similar exercises. The experimental results on a large-scale

real-world dataset clearly demonstrated both the effectiveness and

explanatory power of MANN.

In the future, there are still some directions for further studies.

First, besides the semantic similarity, we would like to measure

the relation of exercises in more aspects, e.g. by considering the

difficulty of exercises [13]. Second, as it is not easy to collect a

massive number of similarity labels, we will also try to develop

the semi-supervised or unsupervised learning methods for the FSE

task. Finally, as our MANN is a general framework, we will test its

performance on other disciplines (e.g. Physics), and meanwhile, on

the similar applications in other domains, such as the measurement

of product similarities in e-commerce [34].
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