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Abstract—Knowledge Tracing (KT) is a fundamental but
challenging task in online education that traces learners’ evolving
knowledge states. Much attention has been drawn to this area
and several works such as Bayesian and Deep Knowledge Tracing
have been proposed. Recent works have explored the value of
relations among concepts and proposed to introduce knowledge
structure into KT tasks. However, the propagated influence
among concepts, which has been shown to be a key factor
in human learning by the educational theories, is still under-
explored. In this paper, we propose a new framework called
Structure-based Knowledge Tracing (SKT), which exploits the
multiple relations in knowledge structure to model the influence
propagation among concepts. In the SKT framework, we consider
both the temporal effect on the exercising sequence and the
spatial effect on the knowledge structure. We take advantages
of two novel formulations in modeling the influence propagation
on the knowledge structure with multiple relations. For undi-
rected relations such as similarity relations, the synchronization
propagation method is adopted, where the influence propagates
bidirectionally between neighbor concepts. For directed relations
such as prerequisite relations, the partial propagation method is
applied, where the influence can only unidirectionally propagate
from a predecessor to a successor. Meanwhile, we employ the
gated functions to update the states of concepts temporally and
spatially. We demonstrate the effectiveness and interpretability
of SKT with extensive experiments.

Index Terms—Transfer of Knowledge, Knowledge Tracing,
Influence Propagation, Recurrent Neural Network

I. INTRODUCTION

Recent years have witnessed the booming of online ed-

ucation systems, such as KhanAcademy.org and Junyia-
cademy.org. These systems can not only assist tutors to give

proper instruction based on the individual characteristics, e.g.,

strengths and weaknesses, of learners, but also help learners be

aware of their learning progress. The conveniences and rapid

developments have attracted increasing attention of educators

and public [13], [19]. A key issue in the online education sys-

tems is Knowledge Tracing, the goal of which is to precisely

trace the evolving knowledge states of learners on the concepts

based on their past exercising performance.

∗Corresponding Author.

Traditional Knowledge Tracing models [7], [25], [41]

mainly leverage the temporal information (i.e., learners’ se-

quential performance on the exercises). For example, Bayesian

Knowledge Tracing (BKT) [7] employs a hidden markov

model to respectively trace the evolving knowledge state of

each concept while Deep Knowledge Tracing (DKT) [25]

uses the recurrent neural networks to jointly model the states

of all concepts. Recently, more and more works [23], [34],

[35] have noticed the value of the knowledge structure, which

contains abundant domain knowledge. Chen et al. [4] used the

prerequisite relations in knowledge structure to reformulate

knowledge tracing as a constraint problem and Nakagawa et

al. [23] utilized graph neural networks on a homogeneous

graph knowledge structure to enhance knowledge tracing.

Although with significant improvement by utilizing knowledge

structure, previous works ignore the propagated influence

among concepts.

According to one of education theories, transfer of knowl-
edge [8], [31], [36], not only the proficiency of the current

learning concept but also some relevant concepts will be

changed when a learner learns a concept. As illustrated in the

middle part of Figure 1, a learner practices several exercises

on concepts B, D, ..., C, D sequentially and correctness (right

or wrong) of the answer given by learner is shown under

the concepts. The concept and correctness of the answer at

each time step are called an exercise-performance pair. The

bottom part shows the knowledge structure. The vertexes are

the pedagogical concepts and are linked by multiple relations.

The multiple relations include not only directed relations but

also undirected relations. Without loss of generality, here we

use two typical relations as a toy example. In Figure 1, the

black directed lines represent prerequisite relations1 and blue

undirected lines stand for similarity relations2. At the most

beginning, after the learner finishes the learning on concept

B, her proficiency on concept B increases, which can be seen

1A concept points to another concept with prerequisite relation means the
former one is considered as the foundation of the later one.

2Concepts linked by similarity relations is somehow similar in the content.

541

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00063

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 14,2021 at 06:18:30 UTC from IEEE Xplore.  Restrictions apply. 



A B

DC

E F

A B

DC

E F

A B

DC

E F

A B

DC

E F

��

��Knowledge 
Tracing

Knowledge 
Structure

Learning
Process ��

� � � �
ID Concept Name
A

C
B

D
E

one digit addition
two digit addition

count number within 100
one digit multiplication
two digit multiplication

F decimal multiplication

Legend
� Correct Response
� Wrong Response

Prerequisite
Similarity
Learning In�uenced

Fig. 1: Illustration of Knowledge Tracing. B → D → ... → C → D is an exercises sequence where each exercise corresponds

to one concept. The knowledge structures showed in the bottom contain two types of relations (i.e., prerequisite and similarity).

Radar graphs in the top show the evolving proficiency on each concepts during learning. Graphs in the bottom indicate the

knowledge structure where current-learning concepts are highlighted in green and influenced concepts in red.

from the radar graphs on the top of Figure 1. Meanwhile,

the proficiency of concepts linked by multiple relations is

also influenced. For instance, the proficiency on concept D (a

successor of B) and concept A (a concept similar with B) also

increase. The reason why the learning on concept B influences

the proficiency on concept A, D is that the knowledge can

be transferred among concepts. In other words, the learning

influence can be propagated along the multiple relations in

the knowledge structure. Thus, it is essential to consider the

influence propagation when utilizing the knowledge structure

for knowledge tracing.

However, there are two major challenges along this line.

First, the knowledge state of each concept is determined by

two types of effects. One is the temporal effect from the

exercise sequence and the other one is the spatial effect

from the knowledge structure. As shown in Figure 1, at

each time step, when a learner practices an exercise, the

learning behaviour results in a temporal effect on the learning

concept, which changes the state of the concept (e.g., the

state on concept B is changed by the learning at the first

step); Then, the variation of states of the learning concept

will furthermore influence its neighbors and successors in

the knowledge structure through different relations, which

is called spatial effect. Thus, there are two dimensions of

learning effects which we need to simultaneously model. How

to jointly model the temporal and spatial effect is a challenging

problem. Second, it is not easy to model the spatial effect

on a knowledge structure with multiple relations. Because the

influence can be propagated along different relations, a key

issue is to consider the different influence propagation ways

on different types of relations. As shown in Figure 1, there

are multiple relations in the knowledge structure, including

directed relations and undirected relations. Therefore, when we

model the spatial effect, the influence propagation on different

types of relations needs to be respectively considered.

To address the challenges above, we propose a new frame-

work called Structure-based Knowledge Tracing (SKT), which

can concurrently model the temporal and spatial effects.

Specifically, at each time step, we first extract the temporal

effect from the exercise-performance pair and update the state

of the practiced concept via a gated function. Then, to model

the influence propagation in the knowledge structure caused

by the temporal effect, we apply the synchronization and

partial propagation methods to characterize the undirected and

directed relations among knowledge structure, respectively.

Finally, for those influenced concepts, the same gated function

as mentioned above will be used to update the states based

on the influence propagated to them. In this way, we model

the influence propagation in the knowledge structure and

furthermore jointly model the temporal and spatial effect.

Extensive experiments on real-world datasets show that SKT

not only significantly outperforms several baselines, but also

effectively provides interpretable insights for understanding

the evolving states of learners.

II. RELATED WORK

Generally, the related works of this study are grouped into

the following two categories.

A. Knowledge Tracing

Knowledge tracing is a task of modeling learners’ knowl-

edge states over time so that we are able to accurately

predict how learners will perform on future exercises [13].

One of the classical knowledge tracing models is Bayesian

Knowledge Tracing (BKT) [7]. BKT-based approach models

learner’s knowledge in a Hidden Markov Model (HMM) as a

set of binary variables, which represents whether the learner

has mastered a skill or not (e.g., 0 indicates no while 1

indicates mastered). As deep learning models outperform the

conventional models in a range of domains such as pattern

recognition and natural language processing, Piech et al. [25]

used RNN to model the evolving proficiency on concepts

and proposes the Deep Knowledge Tracing (DKT) model.

Different from BKT using the binary variables to represent
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the learner’s knowledge states, by using Recurrent Neural Net-

work (RNN), DKT models such states in a high-dimensional

and continuous representation. Another kind of deep learning

models is Deep Key-Value Memory Networks (DKVMN) [41].

DKVMN facilitates one static key memory matrix and one

dynamic value memory matrix. The key memory matrix stores

the knowledge concepts and the value memory matrix stores

and updates the mastery levels of corresponding concepts.

DKVMN is able to automatically learn the correlation between

input exercises and underlying concepts. DKT and DKVMN

encourage increasing amounts of research on deep learning-

based knowledge tracing models [22], [39].

Recently, more and more works have paid attention to

introduce the knowledge structure into knowledge tracing.

Chen et al. [4] and Wang et al. [35] respectively proposed

a regularization term based on the prerequisite and similarity

relations. Wang et al. [34] used the hierarchical knowledge

structure and put forward the Deep Hierarchical Knowledge

Tracing (DHKT) model while Nakagawa et al. [23] introduced

the Graph Neural Network (GNN) into knowledge tracing

with a graph-like knowledge structure. Nevertheless, previous

works ignore the influence among concepts during learning

or can only handle the knowledge structure with one-type

relations, which somehow limits their performance.

B. Influence Propagation

Several models [14], [15], [33] have been provided to

describe the dynamics of influence propagation. These models

define the stochastic process of information propagation. Thus

they are called stochastic diffusion models. Among them, the

Independent Cascade model (IC) and Linear Threshold model

(LT) have been widely used and studied [14], [20]. In both

models, the influence spread is simply defined as the expected

number of activated nodes. Recently, some authors proposed to

introduce neural networks to influence propagation models [1],

[17], [37]. Atwood et al. [1] presented diffusion-convolutional

neural networks to learn diffusion-based representations from

graph-structured data and used as an effective basis for node

classification. Li et al. [17] proposed Diffusion Convolutional

Recurrent Neural Network (DCRNN) on traffic forecasting to

incorporate both spatial and temporal dependency in the traffic

flow. These methods receive a graph with a single relation

type, which makes it hard to be directly applied in our task.

III. PROBLEM FORMULATION

Before formally introducing SKT, we give the necessary

definitions as follows:

A. Knowledge Structure

Educational theories have emphasized the importance of

knowledge structure [24], [26], which contains many relations

such as prerequisite [4], [28] and similarity [35]. Prerequisite

indicates the hierarchical structure existing among the learning

items. As represented in bottom graphs of Figure 1, the

directed arrow from one vertex to the other means that the

former is a prerequisite for the latter, e.g., count number within

100 is a prerequisite for one digit multiplication. Similarity is

another widely studied relation. As illustrated in Figure 1, the

vertexes linked by the blue undirected edge (i.e., similarity)

are involved in the same topic or area and may overlap in

some knowledge.

Definition 1: (Knowledge Structure) In this paper, the

knowledge structure with multiple relations is represented as

a graph G(V,E), where V = {v1, v2, ..., vN} and each vertex

v corresponds to one concept. There are multiple relations

E = {Er, r = 1, ..., R}, where r stands for a certain type of

relations (e.g., prerequisite and similarity) and Er represents

all relations of the type r. R is the number of relation types.

B. Problem Statement

Knowledge tracing task consists of two parts: (1) modeling a

learner’s knowledge state through their performance sequence

and (2) predicting how a learner will perform on future

exercises. Knowledge tracing task is usually formulated as

a supervised sequence prediction problem. By introducing

the graph-like knowledge structure G into knowledge tracing

problem, we formulate this knowledge tracing problem as:

Definition 2: (Knowledge Tracing with Knowledge Struc-

ture) Given a learner’s past exercise sequence of exercise-

performance pairs, i.e., X = {xt, t = 1, ..., T}, where

xt = (et, pt). pt ∈ {0, 1} is the correctness (i.e., 0 indicates

the learner giving a wrong answer while 1 indicates giving

a correct one.) of the learner’s answer on the exercise et
at the step t. Each exercise et tests one concept ct. Each

concept corresponds to one vertex v in the knowledge structure

G(V,E). Our goal is to model the learner’s knowledge states

Y = {y1,y2, ...,yT } on all N concepts (i.e., the vertexes V
in G), and predict the probability that the learner will correctly

answer a new exercise et+1 when given the learner’s past

exercise sequence x1,...,t and the knowledge structure G, i.e.,

P (pt+1 = 1|et+1, x1,...,t, G).

IV. STRUCTURE-BASED KNOWLEDGE TRACING

This section begins with a brief overview of our framework.

The components of SKT are then introduced in detail.

A. Overview

SKT is a sequential model, which leverages the graph-

structured nature of knowledge and applies two different prop-

agation models to trace the influence along different relations.

We present the architecture of SKT in Figure 2. At each time

step t, a dh-dimension vector ht
i is used to represent the hidden

state on concept i. The learner’s hidden state vectors on all

concepts form up the hidden states H, as shown in the left-

top part of Figure 2. A Cascade Influence Propagation (CIP)

unit is used to jointly model the temporal and spatial effects

on concepts. At each time step t, the CIP unit first extracts

the temporal effect on the current practice concept from the

exercise-performance pair xt = (et, pt). After that, some other

concepts are spatially affected after the temporal effect on

concept i. To model the spatial effect on different types of re-

lations, we propose two different propagation methods: partial
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Fig. 2: The overview of Structure-based Knowledge Tracing (SKT).

propagation method for directed relations and synchronization

propagation method for undirected relations. A gated function

is then adopted to update the hidden state based on temporal

and spatial effect. To predict whether the learner will correctly

answer a new exercise, a map function fout(h
t
i) is used to infer

the correctly answering probability based on the hidden state

on concept i. The following paragraphs explain the processes

in detail.

B. Modelling of Temporal Effect
Based on the educational studies on concept learning [11]

and previous works in KT [7], [25], [41], when a learner

practices the exercise, a learning effect will be generated and

acts on the learning concept. As shown in Figure 2, at each

time step t, a temporal learning effect Et
T acts on concept i,

which changes the hidden state on concept i from ht
i to ht,T

i .

The temporal effect on current learning concept is implied

based on the exercise-performance pair xt = {et, pt}, where

et tests the concept i. Similar to previous works [25], [38],

[40], a performance vector xt ∈ {0, 1}2N is used to represent

the exercise-performance pair xt:

xt
j =

{
1 if j = 2 · et + pt,
0 otherwise.

(1)

Then we embed the performance vector to formulate the

temporal effect vector Et
T :

Et
T = xtEr, (2)

where Er ∈ R
2N×de is a matrix embedding the performance

vector xt. The temporal effect vector Et
T is then input into a

gated function G to update the state of the concept i:

ht,T
i = G(Et

T ,h
t
i), (3)

where G(•, •) is the Gated Recurrent Unit (GRU) gate [5]3.

Next, the follow-up parts will elaborate on how other concepts

are spatially affected after the temporal effect on concept i.

C. Modelling of Spatial Effect

Once the state of concept i is changed, the influence will

be propagated to the related concepts along the multiple

relations. As illustrated in the left-bottom part of Figure 2,

the hidden state of concept j is changed by the propagated

influences from concept i. The following parts will thoroughly

describe the two different influence propagation methods:

partial propagation and synchronization propagation.
1) Partial Propagation: For those directed relations, such

as prerequisite relations [4] and remedial relations [28], we

adopt a partial propagation method. Among the direct re-

lations, prerequisite relations is the most well studied one.

Previous works [4], [23] have established the ordering relation

of the proficiency of predecessor concepts and successor

concepts, where the proficiency of the former one is expected

to be higher than the latter. The conclusion can be further

explained from the perspective of transfer of knowledge [29]:

the influence is unidirectionally propagated from only prede-

cessors to successors. Therefore, we propose the partial prop-

agation method, which generates the influence based on the

variation of the state of predecessor concepts and propagates

the influence to successor concepts along directed relations.

Concretely, as shown in Figure 2, after the temporal effect

where the hidden state on concept i is changed from ht
i to

3Here we use GRU for it is computationally more efficient with less
complex structure compared with Long Short Term Memory (LSTM) [10],
[18]. However it should be noticed that the performance of LSTM is on a par
with GRU [6], which means GRU can also be replaced by LSTM.
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ht,T
i , the variation of the state on concept i will result in an

influence and be propagated along the directed relations to its

successors:

partrij = fpart(h
t,T
i ,ht

i,Ec(j)), ∀j ∈ Sr(i),

fpart(h
t,T
i ,ht

i,Ec(j)) = relu(Wr
pP

r
ij + br

p),

P r
ij = (ht,T

i − ht
i)⊕Ec(j). (4)

Sr(i) is a successorhood function, which returns all successor

concepts of i on r. Wr
p and brp are learned parameters. ⊕ is

the operation that concatenates two vectors into a long vector.

In addition to the variation of the state on concept i, we also

include a vector Ec(j) to represent the concept feature. Ec ∈
R

N×dc is a matrix embedding the concept index, where N
is the number of concepts and dc is the embedding size, and

Ec(j) represents the j-th row of Ec.
2) Synchronization Propagation: Previous works on undi-

rected relations, such as similarity relations [35] and collab-

oration relations [12], have got some interesting conclusions.

Wang et al. [35] found that, in similarity relations, the pro-

motion of the proficiency of a certain concept brought the

promotion to its neighbor concepts and vice versa, which

results in the similar proficiency of the neighbor concepts. The

idea can be further explained based on the theories of transfer

of knowledge [27], the influence is bidirectionally propagated

between neighbor concepts. Inspired by these observations, we

propose a synchronization propagation method to model the

bidirectional influence propagation. Similar to partial propa-

gation, after the temporal effect where the hidden state on

concept i is changed from ht
i to ht,T

i , the variation of the

state on i will be result in an influence and be propagated

along the undirected relations to its successors. To be noticed

that, different from partial propagation which is unidirectional

where the propagated influence is only decided by the variation

of concept i, in synchronization propagation, the influence is

determined by the state on both i and its neighbors and will be

propagated bidirectionally. Specifically, we use two formula-

tions to respectively model the influence propagated from the

concept i to its neighbors and the influence propagated from

the neighbors to the concept i.
We first use the following formulation to model the influ-

ence propagated from the concept i to its neighbors:

syncrij = fsync(h
t,T
i ,ht

j ,Ec(j)), ∀j ∈ N r(i),

fsync(h
t,T
i ,ht

j ,Ec(j)) = relu(Wr
sS

r
ij + brs),

Sr
ij = ht,T

i ⊕ ht
j ⊕Ec(j). (5)

N r(i) is a neighborhood function, which returns all neighbor

concepts of i on r. Wr
s and brs are learned parameters. Ec

is the same embedding matrix as Section IV-C1 and Ec(j)
represents the concept feature.

Then, we model the influence propagated from the neigh-

bors of concept i to itself:

syncri = relu(Wr
ssR

r
i + brss),

Rr
i = (ht,T

i +
∑

j∈N r(i)

ht
j)⊕Ec(i), (6)

Algorithm 1 Cascade Influence Propagation.

Input: Knowledge Structure G(V, E); performance vector xt; current
learning concept i; neighborhood function N r for a specific
relation type r; successorhood function Sr for a specific relation
type r; current state of concepts Ht = {ht

v, ∀v ∈ V }; The
relations to apply synchronization propagation method RS =
{rS1 , rS2 ...}; The relations to apply partial propagation method
RP = {rP1 , rP2 , ..., };.

Output: States of all concepts at next step Ht+1 = {ht+1
v , ∀v ∈

V };

1: ht,T
i = G(xtEr,h

t
i) // Temporal effect (Section IV-B)

2: for r in RP do // Partial propagation (Section IV-C1)
3: for j in Sr(i) do
4: partrij = fpart(h

t,T
i , ht

i,Ec(j))
5: end for
6: end for
7: for r in RS do // Synchronization propagation (Section IV-C2)
8: for j in N r(i) do
9: syncrij = fsync(h

t,T
i ,ht

j ,Ec(j)),
// from i to its neighbor j (Equation 5)

10: end for
11: syncri = relu(Wr

ss((h
t,T
i +

∑
j∈Nr(i) h

t
j)⊕Ec(i)) + brss)

// from neighbors to i (Equation 6)
12: end for
13: // update the hidden state (Section IV-D)
14: use Equation 7 and 8 to get Ij for each influenced concept j.
15: // update the hidden state on j (Equation 9)
16: ht+1

j = G(Ij ,h
t
j)

17: return Ht+1

where N r(i) is the same neighborhood function as Equation 5.

Wr
ss and brss are learned parameters.

In summary, synchronization propagation differs from par-

tial propagation in two aspects: (1) the influence is only

decided by the variation of concept i in partial propagation,

while it is determined by the state on both i and its neighbors

in synchronization propagation; (2) not only the neighbors

but also the concept i are influenced during synchronization

propagation, while only successors are influenced in partial

propagation. These differences make synchronization propa-

gation bidirectional and partial propagation unidirectional.

D. Update of Knowledge State

Next, for those concepts influenced by synchronization

propagation or partial propagation, the model first aggregates

the influences from both synchronization propagation and

partial propagation and then updates the hidden states based

on the aggregated influences. For each influenced concept j,

the the aggregated influence Ij is calculated as:

Aj =

{ ∑
r sync

r
j j = i,

α ·∑r sync
r
ij + (1− α) ·∑r part

r
ij j �= i,

(7)

Ij = relu(WIAj + bI), (8)

where WI , bI are learned weight matrix and bias, and α is

a hyper-parameter. Then we use the following formulation to

update the state on each influenced concept j:

ht+1
j = G(Ij ,h

t
j), (9)

545

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 14,2021 at 06:18:30 UTC from IEEE Xplore.  Restrictions apply. 



where G(•, •) is a GRU gate. The full process of influence

propagation is shown in Algorithm 1.

E. Final Prediction

Finally, for each concept i, the model will output the

predictive probability of a learner correctly answering the

corresponding exercise at the next time step t:

p̂ti = fout(h
t
i),

fout(h
t
i) = σ(Woh

t
i + bo), (10)

where Wo is a learned weight matrix and bo is a learned bias

item. At time step t, the learner’s knowledge state is calculated

as: yt = {p̂t1, ..., p̂tN}.

The probability that the learner will correctly answer a new

exercise et:

P (pt = 1|et, x1,...,t−1, G) = p̂tet . (11)

F. Loss Function and Model Training

During the training stage, the parameters of SKT are jointly

learned by minimizing a standard cross entropy loss between

p̂t and the true label pt:

L = −
∑
t

(ptlogp̂t + (1− pt)log(1− p̂t)). (12)

SKT is fully differentiable and can be trained efficiently

with stochastic gradient descent. The framework setting and

training details are presented respectively in Section V-B2 and

Section V-B3.

V. EXPERIMENTS

In this section, we first introduce the datasets. Then, per-

formance of SKT is compared with several baselines. At last,

we show the interpretability of SKT.

A. Dataset

We use two real-world datasets, ASSISTments2014-2015

“skill-builder” dataset provided by the online educational

service ASSISTments4 and Junyi academy5 [3] crawled from a

Chinese e-learning platform. We preprocess each dataset using

certain conditions and the preprocessed datasets are depicted

in Table I, where ASSISTments2014-2015 is abbreviated as

ASSISTments and Junyi academy is abbreviated as Junyi.

1) Junyi: The Junyi academy dataset includes a knowledge

structure labeled by experts and learners’ exercise performance

logs in mathematics, where a learner has several exercise

sequences. Each exercise-performance pair recorded in the

learners’ log contains the information of a learner for one

exercise. Here is an example of one exercise performance se-

quence: {(representing numbers, correct), (division 4, wrong),

(conditional statements 2, wrong), (conditional statements 2,

wrong)}). Similar to [39], we select 1,000 most active learners

from the exercise log to yield the dataset.

4https://sites.google.com/site/assistmentsdata/home/ 2015-assistments-skill-
builder-data

5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Fig. 3: Correct rate comparison.

The knowledge structure in Junyi academy contains two

types of relations: the prerequisite relation and the similarity

relation. They both contain several edges, e.g., in prerequisite

relation, (one digit addition, two digit addition) stands for the

linkage between the vertex one digit addition and the vertex

two digit addition where the former is the prerequisite of

the latter. In the prerequisite relation, we delete some loops

in order to keep the graph to be a Directed Acyclic Graph

(DAG). Due to the original data format of similarity relation

is like (concept1, concept2, similarity value) (e.g., (writing
expressions 1, evaluating expressions 1, 6.333)), where the

1 ≤ similarity value ≤ 9. We set the threshold as 5.0 to

get the similarity edges, i.e., concept1 and concept2 have an

edge of similarity if similarity value ≥ 5.0.

Furthermore, we investigate the practicing sequences of

learners to verify the existence of the learning influence

among concepts. Inspired by Piech et al. [25] and Nakagawa

et al. [23], we use the following equation to calculate the

correctness probability for concept pairs (i, j):Pij = nc(j|i)
n(j|i) ,

where nc(j|i) is the times that concept j is correctly answered

in the first time step when its neighbor or predecessor i has

been correctly answered, where n(j|i) is the times that concept

j is answered. We respectively calculate the influence factor

for prerequisite and similarity and denote them as P p
ij and

P s
ij . As shown in Figure 3, compared with the non-conditional

correctness probability Pn
j = nc(j)

n(j) , we can see that when the

neighbors and predecessors have been learned, the correctness

probability of answering concept j is promoted. From the

observation, we can conclude that there is some influence

propagated from one concept to its neighbors or successors.

2) ASSISTments: We use the preprocessed dataset provided

by Zhang et al. [41]6. As the knowledge graph structure is

not explicitly provided in the dataset, inspired by previous

works [23], [25], we provide an implementation of construct-

ing the graph structure.

Correct graph is a counting matrix, where Cij = cij if

i �= j; else, it is 0. Here, cij represents the number of times

concept j is answered correctly and immediately after concept

i is answered correctly.

Correct transition graph is a directed graph denoted as

T . We first calculate the transition probability matrix T̃ :

Tij =
Cij∑
k Cik

if i �= j; else, it is 0. Here, C is the correct

graph. Tij indicates the probability that the influence can be

6https://github.com/jennyzhang0215/DKVMN/tree/master/data/assist2015
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TABLE I: The statistics of the dataset.

Statistics ASSISTments Junyi
# learners 19,840 1,000

# sequence 19,840 59,792
# exercise-performance pair 683,801 4,049,359

# vertexes 100 835
# prerequisite relations 1,112 978
# similarity relations 1,512 1,040

unidirectionally propagated from concept i to concept j. Then,

we determine the relations by Tij = 1 if T̃ij > threshold;

else it is 0, where threshold is set as the average value of T̃
0.02. Loops are deleted to keep the graph a DAG.

Correct concurrency graph is a undirected graph denoted

as O. We first calculate the correct concurrency matrix: C̃ij =
Cij+Cji

|Cij−Cji|+ε , where ε = 0.1 is used to prevent zero division.

And then we use the max-min-scaling method to scale C̃ and

get Õ: Õij =
C̃ij−min(C̃)

max(C̃)−min(C̃)
. Õij is the probability that the

influence can be bidirectionally propagated between concept

i and j. Finally, we determine the relations by Oij = 1 if

Õij > threshold; else it is 0, where threshold is set as the

average value of Õ 0.02.

B. Experimental Setup

1) Data Partition: For each dataset, we divide the learners

into training: test = 8:2. We use 90% of the learners’ training

data to train SKT and use the automl tool nni7 to apply TPE

algorithm [2] to adjust the hyperparameters on the remaining

10% of the data.

2) Framework Setting: We set the size de and dc for

embedding matrix as 64, and the size of hidden states dh as 64.

In ASSISTment, the synchronization propagation method is

used on the correct concurrency graph and partial propagation

method is employed on the correct transition graph. In Junyi,

we adopt synchronization propagation method on similarity

relations and partial propagation method on prerequisite re-

lations. We respectively set α in Equation (7) as 0.55 in

ASSSISTment and 0.45 in Junyi. The discussion for α will be

presented in Section V-G. Dropout [30] is used in Equation 10

from the hidden vectors to the output vectors with a drop

probability of 0.5.

3) Training Details: We initialize parameters in all net-

works with Xavier initialization [9], which is designed to

keep the scale of gradients roughly the same in all layers.

The initialization fills the weights with random values in the

range of [−c, c] where c=
√

3
nin+nout

. nin is the number of

neurons feeding into weights, and nout is the number of

neurons the result is fed to. We use the Adam algorithm [16]

for optimization. The initial learning rate is set to 0.001.

Furthermore, we set mini-batches as 16 and max training

epoch number as 30. All models are trained on a Linux server

with two 2.30GHz Intel(R) Xeon(R) Gold 5218 CPUs and a

Tesla V100-SXM2-32GB GPU.8

7https://github.com/microsoft/nni
8The code is available at https://github.com/bigdata-ustc/XKT

TABLE II: Characteristics of the comparison methods.

Modeling Concept Relations Directed Undirected
BKT × × ×
DKT × × ×

DKT+ × × ×
DKVMN � × ×

GKT � � ×
SKT (ours) � � �

C. Baseline Approaches

1) BKT: BKT9 [7] is a kind of HMMs. Based on the

exercise sequences on a specific concept, BKT uses HMM

to model the learner’s latent knowledge state as a set of

binary variables. Although BKT model assumes that mastered

knowledge will not be forgotten, factors such as guessing and

slipping are still considered.

2) DKT: DKT [25] applies the recurrent neural network

model on the exercise performance sequences to estimate the

learner’s proficiency on each concept (i.e., knowledge state)

simultaneously. DKT takes the one-hot performance vector,

and outputs a vector representing the learner’ proficiency on

all concepts, whose elements are all between 0 and 1.

3) DKT+: DKT+10 [40] is an extended variant of DKT,

which aims at solving two major problems in the DKT model.

One is that the DKT model fails to reconstruct the observed

input and the other one is the predicted performance for DKT

model across time-steps is not consistent. By introducing three

regularization terms, the authors redefine the loss function

of the original DKT model to enhance the consistency in

prediction. Specifically, the loss function in DKT+ is L′ = L+
λrr+λw1

w1+λw2
w2

2 , where λr is for reconstructing the input

and λw1
and λw2

are for smoothing the transition in prediction.

In experiment, we set λr = 0.1, λw1
= 0.003, λw2

= 3.0.

4) DKVMN: DKVMN [41] is another classic model for

knowledge tracing. DKVMN has the capability of exploiting

the relationships between underlying concepts and directly

output the learner’s proficiency on each concept. DKVMN has

one static matrix called key, which stores the knowledge con-

cepts and the other dynamic matrix called value, which stores

and updates the mastery levels of corresponding concepts. In

ASSISTments, for key memory, we set the memory slot size

as 20 and memory state dimension as 50. In addition, for value

memory, we set the memory slot size as 20 and memory state

dimension as 200. In Junyi, we set the memory slot size as

40 and memory state dimension as 200 for key memory. In

addition, we set the memory slot size as 40 and memory state

dimension as 200 for value memory.

5) GKT: GKT [23] is a GNN-based knowledge tracing

method, which only adopts prerequisite relations to construct

the knowledge structure. At each time step, GKT will aggre-

gate the states of neighbors to infer the new state, and update

the state of not only what is learning currently but also its

neighbors. The size of all hidden vectors and the embedding

matrix is set as 32.

9https://github.com/myudelson/hmm-scalable
10https://github.com/ckyeungac/deep-knowledge-tracing-plus
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TABLE III: Performance comparison on the KT task.

Dataset Eval BKT DKT DKT+ DKVMN GKT SKT (ours)

ASSISTments
AUC 0.678 0.727 0.728 0.730 0.735 0.746

F1 0.554 0.541 0.572 0.575 0.577 0.607

Junyi
AUC 0.831 0.847 0.889 0.890 0.893 0.908

F1 0.760 0.779 0.819 0.817 0.825 0.835

TABLE IV: Performance comparison of SKT and its variants.

Model
ASSISTments Junyi

AUC F1 AUC F1

SKT TE 0.710 0.533 0.887 0.824

SKT Part 0.711 0.548 0.898 0.829

SKT Sync 0.736 0.579 0.899 0.828

SKT 0.746 0.607 0.908 0.835

For better illustration, we summarize the characteristics of

these models in Table II.

D. Evaluation Metrics

Same as the previous works [25], [41], we evaluate models

from classification perspective. During evaluation, learner’s

exercise result is defined as a binary value, in which 0

represents incorrect answer as negative sample and 1 repre-

sents correct answer as positive sample. Hence, two popular

classification metrics, Area Under ROC Curve (AUC) and F1

Score, are adopted to measure the models performance. An

AUC score of 0.5 indicates that the model performance is

merely as good as random guess and a higher AUC indicates

better performance. The F1 score can be interpreted as a

weighted average of the precision and recall, where an F1

score reaches its best value at 1 and worst score at 0. And a

higher F1 score indicates a better performance.

E. Experimental Results

1) Performance Comparison: We first compare the over-

all performance of SKT with baseline models. Results of

two datasets on two performance metrics are presented in

Table III. we can find that our proposed SKT achieves a

better performance than any other baselines both in AUC

and F1 in all datasets. Among baselines, we notice that

DKVMN and GKT are the best two models, which either

model the relations of concepts or explicitly utilize the exist-

ing knowledge structures. This observation demonstrates that

utilizing the concept relations (i.e., knowledge structure), no

matter explicitly or implicitly, does provide additional useful

information for estimating learners’ knowledge states. Further-

more, with significant promotion, our SKT achieves the best

performance by (1) modeling the temporal and spatial effect

based on influence propagation; (2) respectively modeling the

propagation ways along different relations. This indicates the

importance of simultaneously combining temporal information

and spatial information and considering the multiple relations

among the knowledge structure.

These evidences indicate that considering transfer of knowl-
edge during knowledge tracing and modeling the influence

� �
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Fig. 4: Influence of α.

propagation with the help of knowledge structure in a proper

way can significantly enhance the model effectiveness.

F. Ablation Study

In this part, we compared our models with its variants.

SKT TE, SKT Part and SKT Sync are three variants of our

model. SKT TE only models the temporal effect. SKT Part

and SKT Sync respectively models either partial propagation

or synchronization propagation. From Table IV, we can see

the two variants (i.e., SKT Part and SKT Sync) models the

spatial effect have a better performance than SKT TE which

only modeling the temporal effect. This phenomenon suggests

that it is important to model the influence propagated in the

knowledge structure. Meanwhile, we also observe that SKT

has a significant promotion by combining two propagation

methods together. This indicates that when we model the

influence propagation, it is critical to consider the different

ways of the propagation along different relations.

G. Parameter Sensitivity

In SKT, the trade-off parameter α plays a crucial role

which balances the contribution from different influences of

similarity and prerequisite in Eq. (7). When α is smaller, the

influence tends to prioritize the influence from prerequisite

relations. Conversely, as α is larger, the model is allowed

to focus more on the influence from similarity relations. We

perform an experiment on different α where α is selected from

{0.05, 0.15, ..., 0.95}. As shown in Figure 4, when α increases,

the performance of SKT increases at the beginning. However,

the performance afterwards decreases in all three datasets.

These results indicate that properly balancing the influence

from prerequisite and similarity relations is vital for achieving

more accurate prediction performance.

H. Case Study

Figure 5 shows an example of the evolving knowledge

states when a learner learns, where each column represents the

proficiency on each concept. From area I, we can obviously

see from the divergence of the proficiency at time step 2 and
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Fig. 5: An example of a learner’s evolving knowledge states of 5 concepts as she solves 40 exercises of Junyi. In sub-figure (a),

concepts are marked in different colors on the left side. The top part indicates the performance at each time step. Sub-figure (b)

shows two subsequences which show two different propagation effects. The radar figure (c) on the right shows the proficiency

(in the range (0, 1)) of 5 concepts at the beginning (T=0) and the end (T=40).

time step 3 of concept 1 (decimals on the number line 1),

which get promoted at step 3. Meanwhile, the proficiency

of concept 2 (decimals on the number line 2) and concept

3 (number line) also gets promoted, where concept 2 is a

successor with the prerequisite relation while concept 3 is the

neighbor with the similarity relation. Furthermore, from area

II, at step 16, when the learner gets confused with the concept

2 , the proficiency of it decreases. However, the proficiency

of the predecessor of the concept 1 , 2 remains stable.

This observation indicates that the influence along prerequisite

relations is only unidirectionally propagated in SKT. From

these observations, we could see that, owing to the ability

of tracing the influence propagation among concepts, SKT is

able to provide a better interpretable insight on evolving states

for knowledge tracing.

I. Concept Clustering

SKT has the power to cluster related or similar concepts

into a same group, which can not only help the educational

experts discover the relationship among concepts, but also

be helpful for improving curricula arrangement. Following

Piech et al. [25], we visualize the concept representation

vectors utilizing the T-SNE method [21]. Specifically, we first

generate the influence feature vector by Jij = y(j|i)∑
k y(j|k) ,

where y(j|i) is the average correctness probability assigned

by SKT to exercise j when exercise i is answered correctly

at the first time step. Then, we reduce the vector dimension

to two-dimension space and then obtain the graph of concepts

clustering. As shown in Figure 6, the concepts in the same

color is in the same group. The arrow size of the edge

indicates connection strength, i.e., cosine distance. For better

illustration, we choose 42 concepts and omit those edges

with cosine distance smaller than 0.5. From Figure 6, we

can see that SKT clusters the concepts into five groups, and

the concepts in the same group is quite relevant to a certain

knowledge area, which is annotated beside the group. Based on

the clustering result, the educational expert can better discover

the relationship via the connection strength. Meanwhile, the

teachers in the school can also arrange the learners to learn

the concepts in the same group for they may be more related

and may have positive transfer on each other.

VI. CONCLUSION

In this paper, we proposed a new knowledge tracing frame-

work, i.e., Structure-based Knowledge Tracing (SKT). By

utilizing the knowledge structure, SKT succeeds in modeling

transfer of knowledge. Specifically, by concurrently consid-

ering the influence propagation in the knowledge structure

with learners’ exercise performance sequence, SKT is able to

estimate learners’ knowledge states more precisely. Extensive

experiments were conducted on real-world datasets and the

results showed the effectiveness and interpretability of SKT.

For the future work, we would try to involve more re-

lations and node attributes in the knowledge structure such

as collaboration relations [12]. Besides, we would explore

utilizing more features in knowledge tracing along with the

knowledge structure such as components in exercises (e.g.,

equation, image and text). Meanwhile, we would like to apply

our SKT on some other educational problems such as cognitive

diagnosis assessment [32].
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