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ABSTRACT
With the development of online education systems, a growing num-
ber of research works are focusing on Knowledge Tracing (KT),
which aims to assess students’ changing knowledge state and help
them learn knowledge concepts more efficiently. However, only
given student learning interactions, most of existing KT methods
neglect the individualization of students, i.e., the prior knowledge
and learning rates differ from student to student. To this end, in
this paper, we propose a novel Convolutional Knowledge T racing
(CKT) method to model individualization in KT. Specifically, for
individualized prior knowledge, we measure it from students’ his-
torical learning interactions. For individualized learning rates, we
design hierarchical convolutional layers to extract them based on
continuous learning interactions of students. Extensive experiments
demonstrate that CKT could obtain better knowledge tracing results
through modeling individualization in learning process. Moreover,
CKT can learn meaningful exercise embeddings automatically.

CCS CONCEPTS
• Information systems → Data mining; • Social and profes-
sional topics → Student assessment;
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Figure 1: A toy example of the learning process.

1 INTRODUCTION
With the emergence of online education systems on the internet
[10], increasing attention has been paid to knowledge tracing (KT).
By assessing the knowledge state of students based on their learn-
ing interactions, KT can improve the learning efficiency of students
and help them better understand their learning process [1]. Nev-
ertheless, most previous KT methods assess the knowledge state
without considering the individualization of prior knowledge and
learning rates of various students. Actually, the prior knowledge
and learning rates differ from student to student, which have proved
to be of great significance in learning process [16].

In order to better illustrate the individualization of student, we
give a toy example in Figure 1, where 3 students have answered 7
exercises related to 3 different knowledge concepts. As shown in Fig-
ure 1, student s2 could master concepts k1 and k2 fastly after fewer
mistakes, showing that s2 had a faster learning rate than student s1
and s3. Meanwhile, student s3 could correctly answer exercise e7
for the first time, indicating that s3 may have mastered concepts
k3 already. Unfortunately, the individualized prior knowledge and
learning rates of different students are not given in advance, which
makes it very challenging to measure them.

To address the challenges in modeling individualization of stu-
dent, we propose a novel Convolutional Knowledge T racing (CKT)
model tomeasure individualized prior knowledge and learning rates
of students from their learning interaction sequences. Specifically,
for individualized prior knowledge, we assess it comprehensively
according to students’ historical learning interactions. For individu-
alized student learning rates, we design hierarchical convolutional
layers to extract the learning rate features by processing several
continuous learning interactions simultaneously within a sliding
window. Extensive experiments have been conducted on five public
datasets to evaluate the performance of CKT, which shows that
CKT could get better knowledge tracing results through modeling
individualization in student learning process.
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2 RELATEDWORKS
Knowledge Tracing (KT). Most of existing methods for solving

KT problem can be classified into the traditional Bayesian Knowl-
edge Tracing (BKT) [1], and deep learning based methods such
as Deep Knowledge Tracing (DKT) [12] and Dynamic Key-Value
Memory Networks (DKVMN) [17]. BKT is a classic and widely-used
model for modeling student learning [1], which defines two knowl-
edge parameters and two performance parameters for all students.
DKT introduces deep learning into KT for the first time [12] and it
takes the learning sequence as the input of long short term memory
networks (LSTMs) [6] and represents student knowledge states
by hidden states. DKVMN pinpoints whether a student is good at
specific concepts or not [17].

Convolutional Neural Networks (CNNs). CNNs are invented
for computer vision originally [9]. CNNs operate over a fixed-size
sliding window of the input sequence, which can extract the con-
nections and changes between several continuous input elements.
Moreover, the multi-layer convolutional architecture can extract
deep features and creates hierarchical representations over the in-
put sequence, where the nearby input elements interact at lower
layers and the distant elements interact at higher layers [4, 11].

3 MODEL ARCHITECTURE
3.1 Problem Definition
Generally, the KT task can be formalized as follows: given the
learning sequence XN = (x1,x2, ...,xt , ...,xN ) with N learning in-
teractions of a student, we aim to assess the student’s knowledge
state after each learning interaction. In the learning sequence, xt is
an ordering pair {et ,at }, which stands for a learning interaction.
Here et represents the exercise being answered at learning inter-
action t and at ∈ {0, 1} indicates whether the exercise et has been
answered correctly (1 stands for correct and 0 represents wrong).

3.2 Models of CKT
3.2.1 Embedding. Given the dataset withM different exercises

in total, we randomly initialize et ∈ RK as the embedding of
exercise et , which will be learned automatically in training pro-
cess. Thus, exercises can be converted into an embedding matrix
E ∈ RN×K , where K is the number of dimensions [15]. To distin-
guish influences of right and wrong responses on student knowl-
edge state, inspired by [13], we extend the answer value at to a
zero vector at = (0, 0, ..., 0) with the same K dimensions as et and
express the embedding of learning interaction xt ∈ R2K as:

xt =

{
[et ⊕ at ], if at = 1,
[at ⊕ et ], if at = 0,

(1)

where ⊕ concatenates two vectors. We represente the embedding
of learning interaction sequence as LIS ∈ RN×2K .

3.2.2 Individualized Prior Knowledge. Actually, the prior knowl-
edge is hidden in students’ historical learning interactions. First,
several researches have proved that students may get similar scores
on similar exercises. Second, the scoring rates of students could
be seen as the reflection of their overall knowledge mastery [14].
Therefore, we measure individualized prior knowledge of students
comprehensively based on their historical learning interactions
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Figure 2: The architecture of CKT model.
from two perspectives: Historical Relevant Performance (HRP) and
Concept-wised Percent Correct (CPC). Specifically, HRP reflects
the concept-specific knowledge mastery of students in detail, while
CPC concerns about overall knowledge mastery of students on all
knowledge concepts roughly.

(1) Historical Relevant Performance. HRP focuses on measuring
student historical performance relevant to the exercise to be an-
swered. To assess the relevance between present answering exercise
et and previous answered exercise ei (i ∈ (1, t − 1)), we compute
the relevant coefficientswt (i) by taking the softmax activation of
the masked dot product between et and ei :{

rt (i) = Maskinд(ei · et ), i ∈ (t ,N ),

wt (i) = So f tmax(rt (i)), i ∈ (1,N ),
(2)

whereMaskinд is the operation (i.e., setting to be −∞) that excludes
subsequent learning interactions and So f tmax(rt (i)) =

exp(rt (i))∑N
i=1 exp(rt (i))

.

Then we take advantage of wi to measure HRP ∈ RN×2K by the
weighted sum of all historical learning interactions:

HRPt(t) =
t−1∑
i=1

wt (i)xi . (3)

(2) Concept-wised Percent Correct. CPC accounts for the over-
all knowledge mastery of student on all knowledge concepts. To
measure global knowledge mastery of students, CPC is made up of
student percent correct on each knowledge concept. We calculate
CPC ∈ RN×M by counting student scoring rate:

CPCt(m) =

∑t−1
i=0 a

m
i == 1

count(em )
, (4)

where m ∈ (1,M) represents exercise related to the knowledge
conceptm, count(em ) is the number of times that exercise em has
been answered,

∑t−1
i=0 a

m
i == 1 is the number of times that exercise

em has been answered correctly.
Then we concatenate LIS with HRP and CPC as the matrix H.

Inspired by the gate mechanism in LSTM [6], we pass H through
the gated linear unit (GLU) [2], which plays the role of non-linearity
and controls the information flowing in the learning process:{

H = LIS ⊕ HRP ⊕ CPC,
Q = (H ∗W1 + b1) ⊗ σ (H ∗W2 + b2),

(5)
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Figure 3: Results of comparison methods on student performance prediction.
where W1 ∈ R(4K+M )×K , b1 ∈ RK , W2 ∈ R(4K+M )×K , b2 ∈ RK

are the parameters to learn, σ is the sigmoid function, and ⊗ is the
operation of point-wise multiplication.

3.2.3 Individualized Learning rate. Next, we are going to extract
the learning rate features from thematrixQ. Individualized learning
rates represent the absorptive capacities for knowledge of different
students. The sequence of student learning interactions could re-
flect learning rate in a way that students with high learning rates
can master knowledge concepts fastly, while others have to spend
more time trying and failing. Therefore, we design hierarchical
convolutional layers to extract the learning rate features contained
in continuous learning interactions of students.

In our design, one-dimensional convolution is applied. The slid-
ing window is parameterized as W ∈ R2d×K , b ∈ RK . We have
masked out (i.e., set to be 0) the second half of the sliding window to
prevent the convolutional operation involving subsequent learning
interactions. Thus a sliding window takes d continuous learning
interactions as input and maps them to a single output element. The
number of feature maps is also set to be K . Then, GLU is utilized
as non-linearity and realizes a simple gating mechanism over the
output of the convolution layer, which controls whether the knowl-
edge would be forgotten in learning. Besides, for speeding up the
training process, we add residual connections [5] from the input
to the output of the convolutional layer. Then we stack L same
convolutional layers on top of each other to make up hierarchical
convolutional layers, where lower layers capture the learning rates
in recent period and higher layers could monitor farther range .

The output matrix of the hierarchical convolutional layers Z ∈

RN×K represents student knowledge state. We utilize the dot prod-
uct of present student knowledge state and the embedding of next
coming exercise to predict student performance:{

yt+1 = zt · et+1,
pt+1 = σ (yt+1).

(6)

3.2.4 Objective Function. To learn all parameters in CKT and
the exercise embedding matrix E in training process, we choose the
cross entropy log loss between the prediction pt and actual answer
at as the objective function in CKT model, which was minimized
using Adam optimizer [7] on mini-batches:

L = −

N∑
t=1

(at logpt + (1 − at ) log(1 − pt )). (7)

4 EXPERIMENTS
4.1 Datasets Description
Four real-world public datasets and one synthetic dataset have
been used to evaluate the effectiveness of CKT. Table 1 shows the
statistics of all datasets.

Table 1: Statistics of all datasets.
Datasets Statistics

Students Concepts Records Avg.length
ASSIST2009 4,151 110 325,637 78
ASSIST2015 19,840 100 683,801 36
ASSISTchall 1,709 102 942,816 552
Statics2011 333 1,223 189,297 568
Synthetic-5 4,000 50 200,000 50

• ASSIST2009 is collected from the ASSISTments [3], an online
tutoring system created in 2004. The data is gathered from skill
builder problem sets where students need to work on similar
exercises to achieve mastery.

• ASSIST2015 also comes from ASSISTments, which covers re-
sponse records in 2015.

• ASSISTChall is utilized in the 2017 ASSISTments data mining
competition. Researchers collected it from a longitudinal study,
which tracks students from their use of ASSISTments.

• Statics 2011 is obtained from a college-level engineering statics
course [8]. We have concatenated problem name and step name
as the knowldge concept.

• Synthetic-5 is published on the DKT paper [12], which simulates
virtual students learning virtual concepts. It is worth noting
that the simulated virtual learning process does not take the
individualized student learning rates into account.

4.2 Comparison methods
We compare CKT with several variants of CKT and baselines. For a
fair comparison, all these methods are tuned to have the best per-
formances. To facilitate further research in CKT we have published
our code 1 . The details of comparison methods are:
• CKT-ONE with only one concolutional layer.
• CKT-HRP measures prior knowledge only from HRP.
• CKT-CPC measures prior knowledge only from CPC.
• CKT-ILR only models individualized learning rate.
• CKT-IPK only models individualized prior knowledge.
• DKT leverages recurrent neural network to assess student knowl-
edge state [12]. We utilized LSTM in our implemention.

• DKVMN takes advantage ofmemory network to get interpretable
student knowledge state [17].

1https://github.com/bigdata-ustc/Convolutional-Knowledge-Tracing
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Figure 4: Visualization cases of individualized knowledge tracing result of student.
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Figure 5: Visualization of exercise relevant coefficients

4.3 Experimental Results
In order to evaluate the performance of CKT, we conduct extensive
experiments. For providing robust evaluation results, the perfor-
mance was evaluated in terms of Area Under Curve (AUC), Accu-
racy (ACC) and the square of Pearson correlation (r2).

4.3.1 Student performance prediction. In this experiment, we
assess the effectiveness of CKT by predicting student performances
on every learning interaction. The experiment results are depicted
in Figure 3. From the figure, we can easily see that CKT and its vari-
ants get the best prediction results on all four real-world datasets.
Moreover, CKT gets higher promotions on dataset ASSISTchall and
Statics2011 with longer learning sequence length. This observation
demonstrates that CKT can model individualization better with the
longer learning sequences that provide more complete and precise
prior information. On the other hand, for the synthetic dataset
with no differences in student learning rates, CKT’s variant CKT-
ILR, which models only the individualized learning rate, declines
significantly in predicting student performance.

4.3.2 Visualization of knowledge tracing results. As indicated in
Figure 4, we present two cases of individualized knowledge tracing
results on dataset ASSIST2009. The upper part of Figure 4 gives the
knowledge concepts that different exercises are corresponding to.
As can be seen from the figure, CKT can well model individualized
learning rates and prior knowledge of various students as expected.
As shown in the figure, student S1 has a fast learning rate on the
concepts 16: Probability of a Single Event and 4: Table, but gets stuck
for a while in learning deeper concepts 3: Probability of Two Distinct
Events and 29: Counting Methods.

4.3.3 Exercise embeddings learning. Exercise embeddings are
used to be annotated by human experts, which is time-consuming
and laborious. In CKT, we randomly initialize the exercise embed-
dings for training and CKT can automatically learn meaningful
exercise embeddings in training process. As shown in Figure 5, we
visualize the relevant coefficients of 6 various exercises correspond-
ing to the concepts of either Area, Equation or Percent on dataset
ASSIST2009. We can discover that the relevant coefficients tend to
be higher between exercises related to the same concept and drop
significantly among different concepts.

5 CONCLUSIONS
In this paper, we proposed a novel model called Convolutional
Knowledge T racing (CKT) to modeling individualization of student
in KT task. Specifically, we measured individualized prior knowl-
edge from students’ historical learning interactions (i.e., HRP and
CPC). Then, we designed hierarchical convolutional layers to ex-
tract individualized learning rates based on continuous learning
interactions. Extensive experiment results indicated that CKT could
get better knowledge tracing results through modeling individual-
ization in student learning process.
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