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ABSTRACT
Cognitive diagnosis (CD) is a fundamental issue in intelligent ed-
ucational settings, which aims to discover the mastery levels of
students on different knowledge concepts. In general, most previous
works consider it as an inter-layer interaction modeling problem,
e.g., student-exercise interactions in IRT or student-concept inter-
actions in DINA, while the inner-layer structural relations, such
as educational interdependencies among concepts, are still under-
explored. Furthermore, there is a lack of comprehensive modeling
for the student-exercise-concept hierarchical relations in CD sys-
tems. To this end, in this paper, we present a novel Relation map
driven Cognitive Diagnosis (RCD) framework, uniformly modeling
the interactive and structural relations via a multi-layer student-
exercise-concept relation map. Specifically, we first represent stu-
dents, exercises and concepts as individual nodes in a hierarchical
layout, and construct three well-defined local relationmaps to incor-
porate inter- and inner-layer relations, including a student-exercise
interaction map, a concept-exercise correlation map and a concept
dependencymap. Then, we leverage a multi-level attention network
to integrate node-level relation aggregation inside each local map
and balance map-level aggregation across different maps. Finally,
we design an extendable diagnosis function to predict students’ per-
formance and jointly train the networks. Extensive experimental
results on real-world datasets clearly show the effectiveness and
extendibility of our RCD in both diagnosis accuracy improvement
and relation-aware representation learning.
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1 INTRODUCTION
Cognitive Diagnosis (CD) has been recognized as a crucial task
in intelligent educational applications [3, 6, 20], such as student
assessment [4, 22] and resource recommendation [25]. In principle,
a CD system consists of three components: students, exercises and
knowledge concepts. Specifically, given the students’ exercising
records (e.g., answer correctly or not), the goal of CD is discovering
their actual mastery levels on specific knowledge concepts [27].

As shown in Figure 1 (a), a CD system can be abstracted as a
three-layer student-exercise-concept hierarchy. Existing CD studies
can be basically summarized as modeling interactions between dif-
ferent layers from a higher perspective. For example, Item Response
Theory (IRT) [13], Multidimensional IRT (MIRT) [1, 36] and Matrix
Factorization (MF) [24, 41] try to model the interactions between
students and exercises with linear functions, while Neural Cogni-
tive Diagnosis (NCD) [44] leverages higher-order student-exercise
interactions with neural networks. There are also some researches
(e.g., Deterministic Inputs, Noisy-And gate (DINA) [10]) that model
the student-concept interaction through mapping exercises to cor-
responding concepts directly with a so-called Q-matrix.

Although great efforts have been made, rich information con-
tained in the student-exercise-concept hierarchy is not effectively
utilized yet. Specifically, there exist two problems along this line.
First, the multi-layer interactions among the hierarchy should be
fully modeled instead of partially modeled (i.e., student-exercise
or student-concept). As illustrated in Figure 1 (b, c), in a learning
system, students (e.g., 𝑠1) interacts with exercises (e.g., 𝑞2) by re-
sponsing them, meanwhile exercises relate to concepts (e.g., 𝑐1 and
𝑐3) with knowledge correlations. Since entities of each layer have
particular features and unique inter-layer interactions with other
layers, a complete and comprehensive modeling will benefit the CD
task best. Second, in addition to the inter-layer interactions (e.g.,
between students and exercises), there also exist complex inner-
layer structures, especially among concepts. Sufficient pedagogical
researches [12, 48] have proved the existence of interdependencies
between knowledge concepts, which are usually represented by a
concept dependency map [30]. Without loss of generality, Figure 1

Session 2F: Applications 2  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

501

https://doi.org/10.1145/3404835.3462932
https://doi.org/10.1145/3404835.3462932


𝐄𝐱𝐞𝐫𝐜𝐢𝐬𝐞

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞

Exercise
𝐪𝟏

𝐪𝟐

𝐪𝟑

𝐪𝟒

𝐜𝟏

𝐜𝟐

𝐜𝟑

𝐜𝟒

𝐪𝟏 𝐪𝟐 𝐪𝟑 𝐪𝟒

𝐒𝟏

𝐒𝟏’𝐬 r𝐞𝐬𝐩𝐨𝐧𝐬𝐞 𝐫𝐞𝐜𝐨𝐫𝐝𝐬

(b) (c)

Similarity
Prerequisite

Concept Map

𝐜𝟏

𝐜𝟒

𝐜𝟐
𝐜𝟑

Cube Cone

Number Arithmetic

Geometry

1 2 3
4

5 6

(d)

Interaction

Concept
Student(a) 

Student

Exercise

Concept

𝐜𝟏 𝐜𝟐

𝐜𝟑

CD System

𝐜𝟏
𝐜𝟐
𝐜𝟑

𝐜𝟒

Correlation

𝐜𝟒 𝐜𝟏

𝐜𝟐𝐜𝟑

Diagnostic 
report

Figure 1: The illustrative examples of (a) the cognitive diagnosis system; (b) students exercising interactions; (c) correlations
between exercises and concepts; (d) a concept dependency map showing educational relations between concepts.

(d) demonstrates a concept dependency map with two typical rela-
tions: similarity and prerequisite. Specifically, similarity relations
involve a pair of concepts belonging to the same topic (e.g., concept
Cone and concept Cube of topic Geometry). Prerequisite relations
involve a pair of concepts which are assumed that students should
logically learn one before another (e.g., concept Number before con-
cept Arithmetic). Such structural information can obviously help
the CD task. Taking Figure 1 (d) as an example, if student 𝑠1 is
known to have mastered concept 𝑐2 , she has probably mastered
the similar concepts 𝑐1 and 𝑐4, and the prerequisite concept 𝑐3. In
summary, an ideal cognitive diagnosis system should exploit the
complete inter-layer student-exercise-concept interactions as well
as the inner-layer concept dependency structures.

However, difficulties lie ahead to achieve the ideal CD system
due to the complexity of the student-exercise-concept hierarchy.
On the one hand, the system contains different types of relations
that make it highly heterogeneous. On the other hand, these rela-
tions are not thoroughly unorganized but in hierarchical layouts.
To address the challenges of modeling the co-existing heterogeneity
and organization, we propose a general CD framework, namely
Relation map driven Cognitive Diagnosis (RCD), which uniformly
models the interactive and structural relations from the multi-layer
student-exercise-concept relation map. Specifically, different from
previous work, RCD explicitly represents all the entities in the
student-exercise-concept hierarchy with an embedding layer. In or-
der to effectively learn relation-aware representations, we introduce
three well-defined local maps, i.e., student-exercise interaction map,
exercise-concept correlation map and concept dependency map,
(described in section 3), on which the nodes recursively aggregate
information from neighbors. Since each node is shared by multiple
maps, a fusion layer is designed to apply sophisticated node-level
and map-level aggregation for each node and leverage an atten-
tion network to automatically balance the multi-level information.
Thereafter, given the relation-aware representations, RCD predicts
the students’ performance with a carefully designed diagnosis func-
tion. Furthermore, as a general framework, RCD is expected to have
the capacity of extending the existingmethods. In other words, RCD
is well-designed so that it can naturally blend additional interac-
tions and structural information into current methods and improve
their performance. Finally, extensive experiments on real-world
datasets clearly demonstrate the effectiveness and extendibility of
RCD. In summary, our key contributions are listed as follows:

• We comprehensivelymodel the hierarchical student-exercise-
concept relations for CD and integrate interactive and struc-
tural information with multiple relations explicitly. Besides,

we design amulti-level attention network to attentively learn
how the model prefers different map sources.

• Our proposed RCD has high extendibility with existing CD
methods, which easily improves previous CD studies that
only model student-exercise interaction in a natural way.

• We conduct extensive experiments on real-world datasets
to validate the effectiveness and extendibility of RCD, in-
cluding quantitative comparison, qualitative analysis and
interpretable visualization.

2 RELATEDWORK
Cognitive Diagnosis. The task of cognitive diagnosis (CD) orig-
inates from the pedagogical assumption that the cognitive state
of each student is stable in a static scene (e.g., an exam) thus can
be diagnosed through their interactive behaviors (i.e., historical
exercising records). Therefore, existing research of CD can be gen-
erally categorized into two genres which model student-exercise
interaction and student-concept interaction respectively. The first
genre of work characterizes the student feature (e.g., ability level)
and the exercise feature (e.g., difficulty level) and models the perfor-
mance of exercising behavior with a interaction function. As typical
representatives, traditional IRT [13], MIRT [1, 36] and MF [24, 41]
use linear functions, while recent NCD [44] leverages neural net-
works to learn a high-order non-linear function. Another genre
of work directly builds student-concept interaction by simply ig-
noring the feature of individual exercises and replacing them with
their corresponding concepts. For example, DINA [10] character-
izes each student with a binary vector which indicates whether or
not the student has mastered the knowledge concepts. Although
existing methods have made great progress, none of them models
students, exercises and concepts thoroughly, thus leaving abundant
information underexploited.

Knowledge Concept Structure. According to educational the-
ories [12, 34, 35], the knowledge concepts usually do not exist alone.
There are many conceptual relations which specify the implicit in-
terdependencies between concepts.Without loss of generality, these
relations can be categorized into the directed and the undirected.
The directed relations generally indicate knowledge influence prop-
agation among concepts, such as prerequisite relation [8] and reme-
dial relation [38]. On the contrary, the undirected relations usually
indicate knowledge overlapping or interplay among concepts, such
as similarity relation [47] and collaboration relation [19]. The rich
structural information between concepts has been proved to be
fairly helpful for many educational tasks [8, 29, 39]. Along this way,
our RCD properly incorporates knowledge concept structure into
cognitive diagnosis via modeling the relation map.
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Graph Structure Modeling. In recent years, graph structure
modeling [9] has been one of the most popular topics due to the re-
markable performance for modeling many graph-structured data [7,
52]. The goal of graph based models [15, 33, 45] is learning struc-
tural representation for nodes or edges to further support various
graph mining tasks. As the state of the art technique, graph neural
network (GNN) [14, 17, 37] has shown huge success for model-
ing graph structures. The key idea behind GNN is to recursively
aggregate feature information from neighboring nodes via neu-
ral networks. However, a lot of previous work in GNNs, such as
GAT [43] and GraphSage [16], are designed solely for homoge-
neous graphs, which are not enough for many real-world problems
with various types of nodes and edges, e.g., the student-exercise-
concept relations mentioned above. Recently, much efforts have
been made to address graph heterogeneity which mainly focuses
on preserving the meta-path based structural information. For ex-
ample. metapath2vec [11] and GTN [50] capture hierarchy with
manually designed or automatically learned meta-paths. HAN [46]
and HetG [51] consider the multi-level information and the atten-
tion mechanism to further improve heterogeneous graph learning.

3 PRELIMINARIES
In this section, we first introduce the student-exercise-concept
relation map, which is illustrated in Figure 2 (a). Then we formally
define the problem of relation map driven cognitive diagnosis.

3.1 Relation Map
The relation map presents as three local maps, from top to bottom
are a concept dependency map, an exercise-concept correlation
map and a student-exercise interaction map, respectively.
3.1.1 Concept dependency map. The concept dependency map
with educational dependencies labeled by experts could be repre-
sented as a graph G𝑐 (C,R𝑐 ). In this graph, C is a set of concepts
and R𝑐 =

{
R𝑟𝑐 , 𝑟 = 1, . . . , 𝑅

}
is a set of multiple educational depen-

dency relations, where 𝑟 stands for a certain type of educational
dependency relations (e.g., prerequisite and similarity).
3.1.2 Exercise-concept Correlation Map. An exercise-concept cor-
relation map G𝑞𝑐

(
Q ∪ C,R𝑞𝑐

)
, could be denoted as a bidirectional

exercise-concept bipartite graph, where Q is a set of exercises, C is
a set of concepts, and R𝑞𝑐 refers to the set of correlations between
exercises and concepts. In addition, the relation 𝑟𝑞𝑖↔𝑐 𝑗 = 1 refers to
that exercise 𝑞𝑖 includes the main concept 𝑐 𝑗 . For example, exercise
𝑞1 has main concepts 𝑐2 and 𝑐4 in Figure 1 (c).
3.1.3 Student-Exercise Interaction Map. The student-exercise inter-
action data could be represented as a bidirectional student-exercise
bipartite graph G𝑠𝑞

(
S ∪ Q,R𝑠𝑞

)
, where S is a set of students, Q

is a set of exercises, and R𝑠𝑞 refers to the set of interactions from
training data. If relation 𝑟𝑠𝑖↔𝑞 𝑗 = 1, student 𝑠𝑖 has chosen exercise
𝑞 𝑗 and answered it. Please note that, here we do not reveal students’
exercising response data (i.e., answer correctly or not) in fact.
3.1.4 Relation Map in RCD. After introducing the above three lo-
cal maps, here we define the relation map as G(G𝑐 ∪G𝑞𝑐 ∪G𝑠𝑞,R𝑐 ∪
R𝑞𝑐 ∪ R𝑠𝑞), which contains educational dependencies among con-
cepts, exercise-concept correlations and student exercising response
interactions as illustrated in Figure 2 (a). For the hierarchical re-
lation map, it naturally presents a multi-level structure. From the

map-level perspective, the map consists of three cross-layer lo-
cal maps. From the node-level perspective, each local map has a
relatively independent map source (i.e., nodes and relations).
3.2 Problem Statement
LetS = {𝑠1, 𝑠2, . . . , 𝑠𝑁 } be the set of𝑁 students,Q = {𝑞1, 𝑞2, . . . , 𝑞𝑀 }
be the set of 𝑀 exercises and C = {𝑐1, 𝑐2, . . . , 𝑐𝐾 } be the set of 𝐾
knowledge concepts. R𝑞𝑐 =

{
𝑟𝑞𝑖↔𝑐 𝑗 | 𝑞𝑖 ∈ Q, 𝑐 𝑗 ∈ C

}
is the set of

correlations between exercises and concepts. Suppose each student
individually chooses some exercises to practice. We record the re-
sponse records of a certain student as a set of triplet

(
𝑠, 𝑞, 𝑟𝑠𝑞

)
where

𝑠 ∈ S, 𝑞 ∈ Q and 𝑟𝑠𝑞 is the score that student 𝑠 got on exercise 𝑒 .
Let L be the set of response records. As described above, we have
the hierarchical relation map G. Then we give a clear formulation
of the cognitive diagnosis driven by relation map as:

Given: students’ response records L, exercises and concepts’
correlations R𝑞𝑐 and relation map G;

Goal: diagnosing students’ cognitive states (i.e., proficiency on
specific knowledge concepts) by modeling the student performance
prediction process.

4 RCD: RELATION MAP DRIVEN COGNITIVE
DIAGNOSIS

In this section, we first briefly present a general description of our
model. Then we introduce each part of the model in detail. Finally,
we demonstrate the expandability of the model.

Overview. Our RCD model can jointly learn the relation-aware
representations of students, exercises and concepts based on the
heterogeneous relation map, and utilize the learned representations
to infer students’ proficiency on concepts. As shown in Figure 2,
RCD contains three main parts: an embedding layer, a fusion layer
and an extensible diagnosis layer. Specifically, by taking response
records, the embedding layer outputs the vectorized embedding rep-
resentations of concepts, exercises and students. In the fusion layer,
we implement a multi-level attention structure to automatically bal-
ance interactive information among the multi-layer relation map,
for effectively embedding learning. After fusing interactive infor-
mation, the diagnosis layer utilizes the relation-aware embeddings
to infer students’ cognitive level through predicting the response
score of each pair of student-exercise. Particularly, our model has
superior expandability since it can naturally blend additional in-
teractions and structural information into current methods and
improve their performance.

4.1 Embedding Layer
It encodes students, exercises and knowledge concepts with 𝑑-
dimensional trainable matrices S ∈ R𝑁×𝑑 , Q ∈ R𝑀×𝑑 and C ∈
R𝐾×𝑑 respectively. Here 𝑁 ,𝑀 and 𝐾 are the numbers of students,
exercises and concepts respectively. For student 𝑠𝑧 , her factor 𝒔0𝑧
aforementioned is obtained by multiplying his one-hot represen-
tation vector 𝒙𝑧 with the trainable matrix S, i.e., the transpose of
𝑧-th row from student embedding matrix S. Similarly, exercise 𝑞𝑑 ’s
embedding 𝒒0

𝑑
is the transpose of 𝑑-th row of matrix Q and each

related concept 𝑐𝑘 ’s embedding 𝒄0
𝑘
is the transpose of 𝑘-th row of

matrix C. We model the embedding layer as:

𝒔0𝑧 = 𝒙𝑇𝑧 S, 𝒒0
𝑑
= 𝒙𝑇

𝑑
Q, 𝒄0

𝑘
= 𝒙𝑇

𝑘
C, (1)
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Figure 2: The overview architecture of RCD: (a) The relation map with multiple relations; (b) The embedding layer and fusion
layer (illustrate the 𝑙-th iteration fusing process); (c) The diagnosis layer for performance prediction.

where 𝒔𝑧 , 𝒒𝑑 , 𝒄𝑘 ∈ R𝑑 , 𝒙𝑧 ∈ {0, 1}𝑁 , 𝒙𝑑 ∈ {0, 1}𝑀 and 𝒙𝑘 ∈
{0, 1}𝐾 .

4.2 Fusion Layer
After obtaining the vectorized representations of each student 𝑠𝑧 ’s
embedding 𝒔0𝑧 , each exercise 𝑞𝑑 ’s embedding 𝒒0

𝑑
and each concept

𝑐𝑘 ’s embedding 𝒄0
𝑘
from the previous layer, to address the first chal-

lenge of modeling the co-existing heterogeneity and organization
among student-exercise-concept, the fusion layer uniformly models
the interactive and structural relations with iteration-wise multi-
level fusion. Specifically, at each iteration 𝑙 +1, our fusion operation
updates student 𝑠𝑧 ’s embedding 𝒔𝑙+1𝑧 , exercise 𝑞𝑑 ’s embedding 𝒒𝑙+1

𝑑

and concept 𝑐𝑘 ’s embedding 𝒄𝑙+1
𝑘

from the previous iteration 𝑙 , as
illustrated in Figure 2 (b). In the following, we would respectively
introduce how to update concept, exercise and student embeddings.

4.2.1 Knowledge Concept Fusion. For each knowledge con-
cept 𝑐𝑘 , let 𝒄𝑙𝑘 denote its embedding at the 𝑙-th iteration. Each
concept appears in the concept dependency map G𝑐 , and also plays
an important role in the exercise-concept correlation map G𝑞𝑐 .

In the G𝑐 , there exist multiple educational dependency relations
R𝑐 between knowledge concepts. For those directed dependen-
cies, such as prerequisite relation [8] and remedial relation [38],
the proficiency of the former one is expected to be higher than
the latter [8, 29], where the influence propagates unidirectionally
from predecessor concepts to successor concepts among directed
dependencies. Therefore, we define this type of dependencies as
the directed relations in G𝑐 , where concepts can interact with their
predecessor concepts, not with successor concepts. While for those
undirected dependencies, such as similarity relation [47] and collab-
oration relation [19], the promotion of the proficiency of a certain
concept brought the promotion to its neighbor concepts and vice
versa, which can be further explained as the influence is bidirec-
tionally propagated between neighbor concepts. Inspired by these
observations, we define this type of dependencies as the bidirec-
tional relations in G𝑐 , where neighbor concepts can interact each
other. Besides, in the G𝑞𝑐 , concept 𝑐𝑘 relates to a set of exercises,
where concepts can interact with related exercises.

Thus, 𝑐𝑘 is influenced by the concept dependency aggregation
from G𝑐 and the exercise correlation aggregation from G𝑞𝑐 . Let �̃�𝑙+1𝑟
denote the aggregated embedding of concept dependency and �̃�𝑙+1

𝑘
denoted the aggregated embedding of exercise correlation. Then,
each concept’s updated embedding 𝒄𝑙+1

𝑘
is modeled as:

𝒄𝑙+1
𝑘

= 𝒄𝑙
𝑘
+
∑

𝑟 ∈R𝑐

𝜂𝑙+1
𝑘𝑟

�̃�𝑙+1𝑟 + 𝜂𝑙+1
𝑘1 �̃�𝑙+1

𝑘
, (2)

�̃�𝑙+1𝑟 =
∑

𝑎∈𝑁 𝑟
𝑘

𝛼𝑙+1
𝑘𝑎

Wc
𝑙 𝒄𝑙𝑎, (3)

�̃�𝑙+1
𝑘

=
∑

𝑏∈𝑁𝑞

𝑘

𝛽𝑙+1
𝑘𝑏

Wq
𝑙𝒒𝑙
𝑏
, (4)

where Eq. (2) models that how each concept 𝑐𝑘 updates its embed-
ding by fusing concept dependency aggregation �̃�𝑙+1𝑟 with certain
educational relation 𝑟 and exercise correlation aggregation �̃�𝑙+1

𝑘
, as

well as its own embedding 𝒄𝑙
𝑘
from the previous iteration. Since

each concept appears in both the concept dependency map and the
exercise correlation map, Eq. (3, 4) model the concept dependency
aggregation for each relation 𝑟 and exercise correlation aggregation
from the two local maps respectively. Specifically, 𝑁 𝑟

𝑘
and 𝑁𝑞

𝑘
are

the concept sets that contains 𝑐𝑘 ’s neighbor concepts with relation
𝑟 and exercise set that contains 𝑐𝑘 ’s neighbor exercises respectively.
W𝑙 ∈ R𝑑×𝑑 is a trainable matrix for linear transformation.

In addition, there are three groups of weights (i.e., 𝛼𝑙+1
𝑘𝑎

, 𝛽𝑙+1
𝑘𝑏

,
𝜂𝑙+1
𝑘𝑟

and 𝜂𝑙+1
𝑘1 ) in the above three equations. They naturally present

a multi-level structure. Specially, 𝛼𝑙+1
𝑘𝑎

denotes the concept depen-
dency strength between concept 𝑐𝑘 and 𝑐𝑎 , where 𝑐𝑘 and 𝑐𝑎 main-
tain the education dependency relation 𝑟 in the concept dependency
map. 𝛽𝑙+1

𝑘𝑏
denotes the correlation strength between exercise 𝑞𝑏 and

concept 𝑐𝑘 in the exercise-concept correlation map. These two
weights can be seen as the node-level attentive weights, which
model how each concept balances different relations in each local
map. For the Eq. (2), 𝜂𝑙+1

𝑘𝑟
and 𝜂𝑙+1

𝑘1 are the map-level weights which
learn the contribution of each aspect with different maps. The map-
level weights balance the educational dependency relation and the
exercise correlation strength from different maps. To model the
multi-level structure, we design a multi-level attention network
to learn the attentive weights. Specifically, we first calculate the
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node-level weights as:

𝛼𝑙+1
𝑘𝑎

= 𝑭𝑐𝑐 ( [Wc
𝑙 𝒄𝑙
𝑘
,Wc

𝑙 𝒄𝑙𝑎]), (5)

𝛽𝑙+1
𝑘𝑏

= 𝑭𝑐𝑞 ( [Wq
𝑙 𝒄𝑙
𝑘
,Wq

𝑙𝒒𝑙
𝑏
]), (6)

where a full connection layer 𝑭 (·) is used to learn the node attention
weights with concatenation [·], where bias is optional. After that,
we normalize the attention weights and take 𝛼𝑙+1

𝑘𝑎
as example:

𝛼𝑙+1
𝑘𝑎

=

exp
(
𝛼𝑙+1
𝑘𝑎

)
∑
𝑗 ∈𝑁 𝑟

𝑘
exp

(
𝛼𝑙+1
𝑘 𝑗

) . (7)

As all of them share the similar form as shown in Eq. (7), we
omit the normalization step of all node- and map-level attention
modeling in the following without confusion. After obtaining the
node-level attention weights 𝛼𝑙+1

𝑘𝑎
and 𝛽𝑙+1

𝑘𝑏
, by taking the aggrega-

tion information �̃�𝑙+1𝑟 and �̃�𝑙+1
𝑘

into Eq. (2), the map level attention
weights 𝜂𝑙+1

𝑘𝑟
and 𝜂𝑙+1

𝑘1 can be calculated as:

𝜂𝑙+1
𝑘𝑟

= 𝑭𝑐𝑝 ( [𝒄𝑙𝑘 , �̃�
𝑙+1
𝑟 ]), 𝜂𝑙+1

𝑘1 = 𝑭𝑐𝑒 ( [𝒄𝑙𝑘 , �̃�
𝑙+1
𝑘

]). (8)

4.2.2 Exercise Fusion. For each exercise 𝑞𝑑 , let 𝒒𝑙𝑑 denote its
embedding at the 𝑙-th layer. As each exercise appears in both the
exercise-concept correlation map 𝐺𝑞𝑐 and the student-exercise in-
teraction map 𝐺𝑠𝑞 . Exercise 𝑞𝑑 is influenced by the concept cor-
relation aggregation from 𝐺𝑞𝑐 and student exercising interaction
aggregation from 𝐺𝑠𝑞 . Specifically, in the 𝐺𝑞𝑐 , each exercise 𝑞𝑑
has main concept set 𝑁𝑐

𝑑
and exercises can interact with contained

concepts. In the𝐺𝑠𝑞 , each exercise will be practiced by students and
interacts with students by exercising behaviors and responses. Let
�̃�𝑙+1
𝑑

and �̃�𝑙+1
𝑑

denote the aggregated embeddings of correlation and
interaction respectively, similar to concept fusion, each exercise
𝑞𝑑 ’s updated embedding 𝒒𝑙+1

𝑑
can be calculated as:

𝒒𝑙+1
𝑑

= 𝒒𝑙
𝑑
+ 𝛾𝑙+1

𝑑1 �̃�𝑙+1𝑎 + 𝛾𝑙+1
𝑑2 �̃�𝑙+1

𝑏
, (9)

�̃�𝑙+1
𝑑

=
∑

𝑎∈𝑁 𝑐
𝑑

𝜇𝑙+1
𝑑𝑎

Wcu
𝑙 𝒄𝑙𝑎, (10)

�̃�𝑙+1
𝑑

=
∑

𝑏∈𝑁 𝑠
𝑑

𝜈𝑙+1
𝑑𝑏

Ws
𝑙 𝒔𝑙
𝑏
, (11)

where Eq. (9) shows how each exercise 𝑞𝑑 fuses concept correlation
aggregation �̃�𝑙+1𝑎 and student interaction aggregation �̃�𝑙+1

𝑏
from

different maps, as well as its own embedding 𝒒𝑙
𝑑
from the previous

iteration. 𝑁𝑐
𝑑
and 𝑁 𝑠

𝑑
denotes the set of exercise 𝑞𝑑 ’s related con-

cepts and students respectively, and 𝛾𝑙+1
𝑑1 and 𝛾𝑙+1

𝑑2 are the map-level
weights to balance the relation aggregation from𝐺𝑞𝑐 and𝐺𝑠𝑞 . 𝜇𝑙+1𝑘𝑎

and 𝜈𝑙+1
𝑘𝑏

are the node-level weights to model how each exercise
balances correlation aggregation and interaction aggregation in
each local map. The above three groups of weights can be modeled
similar to the forms as shown in Eq. (5 - 8).

4.2.3 Student Fusion. Generally, at an online learning system,
each student will choose some exercises for practicing, and she can
obtain the responses (e.g., answer correctly or not). Thus, students
directly interact with exercises in 𝐺𝑠𝑞 . Given each student 𝑠𝑧 ’s
𝑙-th iteration embedding 𝒔𝑙𝑧 , then we model the updated student

embedding 𝒔𝑙+1𝑧 at the (𝑙 + 1)-th iteration as:

𝒔𝑙+1𝑧 = 𝒔𝑙𝑧 + �̃�𝑙+1𝑎 , �̃�𝑙+1𝑎 =
∑

𝑎∈𝑁𝑞
𝑧

𝜌𝑙+1𝑧𝑎 Wqs
𝑙𝒒𝑙𝑎, (12)

where attention weight 𝜌𝑙+1𝑧𝑎 balances the exercise aggregation for
each student 𝑠𝑧 and 𝑁

𝑞
𝑧 is the exercise set practiced.

Generally, the fusion layer uniformly models the interactive
and structural relations among student-exercise-concept after the
iterative fusion process with 𝐿 times.

4.3 Extendable Diagnosis Layer
With the fused relation-aware representations of students, exercises
and concepts (i.e., 𝒔𝑧 , 𝒒𝑑 and 𝒄𝑘 respectively), we finally predict the
student exercising performance and jointly train RCD via student
response records in the diagnosis layer. In order to keep RCD as
a general framework, the diagnosis layer is carefully designed to
be compatible with a uniform diagnosis pattern followed by most
previous works, which can be formally described as follows. For
each record of student 𝑠𝑧 practicing exercise 𝑞𝑑 that contains 𝑛
concepts {𝑐𝑘 }𝑛1 , the diagnosis layer predicts the probability of 𝑠𝑧
answers 𝑞𝑑 correctly as:

𝑦𝑞𝑑 = A(S(𝒉𝑧 ,𝒉𝑑 )),𝑤ℎ𝑒𝑟𝑒 S(𝒉𝑧 ,𝒉𝑑 ) = T (U(𝒉𝑧 − 𝒉𝑑 )) . (13)

𝒉𝑧 represents student factor (e.g., ability level) and 𝒉𝑑 represents
exercise factor (e.g. difficulty level).S(·) is a scoring function which
evaluates the student’s performance upon each concept of the ex-
ercise, and A(·) is an accumulation function, such as average op-
eration, that selectively accumulates the utility according to the
concepts contained in the exercise. Specifically, the score function
is comprised of two parts. Firstly, a utility function U(·) quantifies
the advantage utility between the student and the exercise rep-
resented by (𝒉𝑧 − 𝒉𝑑 ), e.g., comparing the student ability to the
exercise difficulty. Then, a transform function T (·) normalizes the
score into a probabilistic prediction.

In the typical implementation of RCD, A(·) is an average op-
eration over the related concepts, U(·) is a full connection layer
denoted as 𝑭 (·) which outputs scalar, and T (·) is the commonly
used Sigmoid 𝜎 (·).

To generate the student factor 𝒉𝑧 and exercise factor 𝒉𝑑 from
the relation-aware representations, we incorporate the concept
embedding into the student and exercise embeddings by neural
network 𝒇𝑠𝑐 and 𝒇𝑞𝑐 . Formally, the diagnosis layer of RCD is:

𝑦𝑞𝑑 =
1
𝑛

∑
𝑐𝑘
𝜎 (𝑭 (𝒉(𝑘)𝑧 − 𝒉(𝑘)

𝑑
)), (14)

𝒉(𝑘)𝑧 = 𝜎 (𝒇𝑠𝑐 (𝒔𝑧 ⊕ 𝒄𝑘 )), (15)

𝒉(𝑘)
𝑑

= 𝜎 (𝒇𝑞𝑐 (𝒒𝑑 ⊕ 𝒄𝑘 )) . (16)

We can jointly train RCD with the cross entropy loss between
each diagnosis prediction 𝑦 and its corresponding ground truth 𝑟 :

loss = −
∑

𝑖
(𝑟𝑖 log𝑦𝑖 + (1 − 𝑟𝑖 ) log (1 − 𝑦𝑖 )) . (17)

By optimizing with the above loss, the vector of 𝒉(𝑘)𝑧 in Eq. (15)
denotes student 𝑠𝑧 ’s knowledge proficiency on the concept 𝑐𝑘 . If
we just want to estimate her mastery value, inspired by [26] we
mask the exercise factor 𝒉(𝑘)

𝑑
to zero as 0 = (0, 0, . . . , 0), and obtain

the mastery level estimation from Eq. (14):
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Table 1: The statistics of the dataset.

Statistics Junyi ASSIST
#Students 10,000 2,493
#Exercises 835 17,746
#Knowledge concepts 835 123
#Response records 353,835 267,415
#Knowledge concepts per exercise 1 1.20
#Response records per student 35.38 107.27
#Prerequisite relations among concepts 988 1,164
#Similarity relations among concepts 1,040 1,256

𝑚
(𝑘)
𝑧 = 𝜎 (𝑭 (𝒉(𝑘)𝑧 )) . (18)

Finally, we demonstrate how the diagnosis layer of RCD Eq. (14,
15, 16) also adapts to the general diagnosis pattern Eq. (13). In fact,
we can utilize the outputs from the fusion layer to construct arbi-
trary form of CD methods. Here we give the general methods as
examples. Generally, to extend an existing CDmodel, we replace the
student factor and exercise factor with the ones output by RCD (i.e.,
𝒉𝑧 and 𝒉𝒅 ), and then specialize the utility and accumulation func-
tions. The extendibility over representative models are illustrated
as follows:

IRT. Take the typical formation of IRT: 𝑦 = 𝜎 ((ℎ𝑝𝑟𝑜 − ℎ𝑑𝑖 𝑓 𝑓 ) ×
ℎ𝑑𝑖𝑠𝑐 ) as example, where ℎ𝑝𝑟𝑜 , ℎ𝑑𝑖 𝑓 𝑓 and ℎ𝑑𝑖𝑠𝑐 demote student
proficiency, exercise difficult and discrimination respectively. To
extend from IRT, in the utility function U(·), we project 𝒉𝑧 and
𝒉𝒅 to unidimensional ℎ𝑝𝑟𝑜 and ℎ𝑑𝑖 𝑓 𝑓 respectively, and set ℎ𝑑𝑖𝑠𝑐 as
additional trainable parameters; as for the accumulation function
A(·), we simply set it as identity.

MIRT. MIRT is a multidimensional extension of IRT [2]: 𝑦 =

𝜎 (𝑸𝒆 · (𝒉𝑠 − 𝒉𝑒 )), where 𝒉𝑠 and 𝒉𝑒 are latent trait vectors of stu-
dents and exercises, 𝑸𝑒 is the one-hot index vector of related con-
cepts for exercise 𝑒 . To extend from MIRT, we just replace 𝒉𝑠 and
𝒉𝑒 with our 𝒉𝑧 and 𝒉𝒅 , set the utility functionU(·) as identity, and
change the accumulation functionA(·) from the average operation
to the sum operation.

NCD. NCD models the student-exercise interaction more gener-
ally as: 𝑦 = 𝐹 (𝑸𝒆 ◦

(
𝒉𝒔 − 𝒉𝒅𝒊𝒇 𝒇

)
× ℎ𝑑𝑖𝑠𝑐 ), where 𝐹 denotes multi-

layer full connection layer. Similar to IRT and MIRT, we replace
𝒉𝑠 and 𝒉𝑑𝑖 𝑓 𝑓 with our 𝒉𝑧 and 𝒉𝒅 , treat ℎ𝑑𝑖𝑠𝑐 as trainable parame-
ters in the neural network based utility function U(·), and set the
accumulation function A(·) as the sum operation.

MF. According to [44], MF can be treated as a special case of the
NCD model where 𝒉𝑑𝑖 𝑓 𝑓 ≡ 0 and ℎ𝑑𝑖𝑠𝑐 ≡ 1. Therefore, extending
from MF is straightforward. In addition, we can also implement MF
by factoring score matrix to 𝒉𝑧 and 𝒉𝑑 .

5 EXPERIMENTS
As the key contribution of this work is the design of relation map
with interactive and structural information for accurate and explain-
able cognitive diagnosis (CD), we conduct experiments to answer
the following research questions:

RQ1: Comparing with existing CD models, how does our pro-
posed RCD perform in terms of accuracy?

RQ2: How about the model’s performance when utilizing RCD
blend interactions and structural information into current methods?

RQ3: How about the effectiveness of modeling the multi-level
student-exercise-concept interaction by RCD?

Junyi ASSIST

average 𝑃𝑛

average 𝑃𝑝

average 𝑃𝑠

Figure 3: Correct rate comparison.

RQ4: How about the ability of RCD to capture student-exercise-
concept interaction in relation map?

RQ5: How about the interpretation of RCD on diagnosing stu-
dent knowledge states for CD?

5.1 Dataset Description
We conduct experiments on two real-world datasets, i.e., Junyi1
and ASSIST2, which both contain learners’ exercising performance
records and exercise-concept correlations. Besides, Junyi provides
the concept dependency relations labeled by experts. In these two
learning systems, students are allowed to resubmit their answers
until they passed the assessment. Since these original datasets are
not suitable for static diagnosis, we first preprocess each dataset by
only employing the first submission for multiple submissions per
student inspired by [21]. To guarantee that each student has enough
data for diagnosis, we remove the students who attempted fewer
than 15 response records for each dataset similar to [31, 44]. The
complete statistical information for datasets is depicted in Table 1.

5.1.1 Junyi. For Junyi dataset, the concept dependency relations
contain the prerequisite and similarity. In prerequisite relation, each
concept pair (𝑐𝑖 , 𝑐 𝑗 ) indicates the former is the prerequisite of the
latter, e.g., (one_digit_addition, one_digit_multiplication). In similar-
ity relation, as the original data format is like (𝑐𝑖 , 𝑐 𝑗 , value) where
value indicates the strength of similarity between two concepts
and 1 ≤ value ≤ 9, e.g., (vertical_angles, angle_types, 5.22), we set
the thresholds as 5.0 to get the similarity relations, i.e., 𝑐𝑖 and 𝑐 𝑗
are similar if value ≥ 5.0. In addition, we randomly select 10,000
learners’ response records to yield the dataset similar to [49].

Furthermore, we conduct analysis based on response records
to verify the existence of the educational dependency. Inspired
by [29, 40], we define the following probability equation for concept
pairs (𝑐𝑖 , 𝑐 𝑗 ): 𝑃𝑖 𝑗 = 𝑛𝑐 (𝑐 𝑗 |𝑐𝑖 )/𝑛(𝑐 𝑗 |𝑐𝑖 ) where 𝑛(𝑐 𝑗 |𝑐𝑖 ) and 𝑛𝑐 (𝑐 𝑗 |𝑐𝑖 )
respectively are the counts that concept 𝑐 𝑗 is answered and con-
cept 𝑐 𝑗 is answered correctly immediately after 𝑐𝑖 is correctly an-
swered. We respectively calculate the probability for prerequisite
and similarity relations and denote them as 𝑃𝑝

𝑖 𝑗
and 𝑃𝑠

𝑖 𝑗
. Then, let

𝑃𝑛
𝑗
= 𝑛𝑐 (𝑐 𝑗 )/𝑛(𝑐 𝑗 ) denote the non-conditional correctness proba-

bility, where 𝑛𝑐 (𝑐 𝑗 ) and 𝑛(𝑐 𝑗 ) respectively are the count that 𝑐 𝑗 is
correctly answered and 𝑐 𝑗 is answered. As shown in Figure 3, we
can obtain that the probability of student correctly answer will be
improved after mastering related knowledge concepts. This result
shows that there are educational dependencies between concepts.

5.1.2 ASSIST. For ASSIST dataset, the educational dependencies
are not provided in original data explicitly. To construct the concept
structure, we provide an implementation method based on certain

1https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
2https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-
data/skill-builder-data-2009-2010
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statistics inspired by [29, 40]. Here, we define two types of edu-
cational relations (i.e., the prerequisite relation and the similarity
relation) similar to Junyi, and introduce the following matrices to
assist in constructing the concept dependency map.

Correct matrix is a probability matrix denoted as C. We calcu-
late the matrix C based on exercising records, where C𝑖, 𝑗 is

𝑛𝑖,𝑗∑
𝑘 𝑛𝑖,𝑘

if 𝑖 ≠ 𝑗 ; else, it is 0. Here, 𝑛𝑖, 𝑗 represents the count that concept 𝑗 is
answered correctly and immediately after 𝑖 is answered correctly.

Transition matrix is a binary transition matrix denoted as T,
where T𝑖, 𝑗 = 1 indicates concept 𝑖 has an edge pointing to 𝑗 . To ob-
tain the transitionmatrix, we first calculate𝑇 :𝑇𝑖 𝑗 =

𝐶𝑖 𝑗−𝑚𝑖𝑛 (𝐶)
𝑚𝑎𝑥 (𝐶)−𝑚𝑖𝑛 (𝐶) .

𝑇𝑖 𝑗 is the probability that the existence of certain educational rela-
tion between concept 𝑖 and concept 𝑗 . Then, we determine the rela-
tions by T𝑖, 𝑗 = 1 if 𝑇𝑖 𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In this paper, we set 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
as third power of the average value of matrix T.

Concept dependency map is the concept dependent matrix.
Specially, the dependency 𝑟𝑖 𝑗 between concept 𝑐𝑖 and concept 𝑐 𝑗
denotes the prerequisite, if T𝑖, 𝑗 = 1 but T𝑗,𝑖 ≠ 1, which denotes that
𝑐 𝑗 is a successor of 𝑐𝑖 . And 𝑟𝑖 𝑗 denotes the similarity, if T𝑖, 𝑗 ×T𝑗,𝑖 = 1.

5.2 Experimental Settings
5.2.1 Baselines and Evaluation Metrics. To verify the effectiveness
of our proposed RCD model, we compare it with some baselines.
Specifically, the compared baselines are selected from two aspects.
One is the representative methods in CD field like IRT, MIRT, MF
and NCD. The details are illustrated as follows:

• IRT [13] as the most popular CD method, models unidimen-
sional students and exercises’ feature by a linear function.

• MIRT [1] is a multidimensional extension of IRT, modeling
multiple knowledge proficiency of students and exercises.

• MF [28, 41] predicts student performance by factoring score
matrix and get students and exercises’ latent trait vectors.

• NCD [44] is one of the most recent deep learning CDmodels.
It models high-order and complex student-exercise interac-
tion functions with neural networks.

The other aspect is competitive heterogeneous graph represen-
tation learning methods as illustrated in follows:

• metapath2vec [11] designs a meta-path based randomwalk
and utilizes skip-gram to learn heterogeneous graph.

• GTN [50] is a semi-supervised method which can automat-
ically learn useful meta-paths. We generate the adjacency
matrix of the meta-paths based on local maps.

• HAN [46] leverages structure and node features for network
embedding. We set multiple meta-paths for better HAN.

• HetG [51] samples node-level information based random
walk with restart and fuses these nodes by LSTM [18] ag-
gregation. We implement HetG by setting the depth of each
path as 5 and the number of sampling for each node as 20.

To measure the performance of our model, we adopt different
metrics from the perspectives of both regression and classification.
From the regression perspective, we select Root Mean Square Error
(RMSE) [32] to quantify the distance between predicted scores (i.e.,
continuous variable ranges from 0 and 1) and actual ones. From
the classification perspective, we consider that students answer
incorrectly or correctly can be represented 0 and 1 respectively.

Thus, we use Prediction Accuracy (ACC) [44] and Area Under an
ROC Curve (AUC) [5] for model evaluation.

5.2.2 Parameter Settings. To set up training process, we initialize
all network parameters with Xavier initialization [29]. Each param-
eter is sampled from𝑈 (−

√
2/(𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 ),

√
2/(𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 )), where

𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡 denote the numbers of neurons feeding in and feeding
out, respectively. We use the Adam algorithm [23] for optimization
and set mini-batch size as 256. To be fair, we set the embedding
dimension of student, exercise and concept as the number of con-
cepts for all relation map driven methods as well as NCD Besides,
we just set the iterations of fusion operation as 2 to explore the
high-order complex student-exercise-concept interaction.

We implement all models with PyTorch by Python and conduct
our experiments on a Linux server with four 2.0GHz Intel Xeon
E5-2620 CPUs and a Tesla K2/0m GPU. All models were tuned to
have the best performance to ensure the fairness3.

5.3 Performance Comparison (RQ1 and RQ2)
To answer the RQ1 and RQ2, we compare the performance of RCD
with several baselines on student performance prediction. Besides,
we implement some relation-based methods (i.e., R-IRT, R-MIRT,
R-MF and R-NCD) by blending structural information into current
methods based on RCD. Specially, we additionally fuse concept
factors into student and exercise factors similar to Eq. (15, 16) by
neural networks for improving performance, and other settings are
appropriately reinforced by neural networks based on the descrip-
tion in subsection 4.3. Table 2 reports the overall performance of
all models for student performance prediction and the best scores
are denoted in bold. There are several observations. Firstly, RCD
consistently performs the best at all data sparsities, which indicates
that modeling the multi-level student-exercise-concept interaction
for the CD task can achieve outstanding performance, which can
answer RQ1. Secondly, almost all relation map based methods per-
form better than baselines which do not consider such the complex
interaction. This observation demonstrates that it is necessary to
model complete and comprehensive interactions among students,
exercises and concepts for the CD and answers RQ2. Lastly, NCD
performs best in baselines, probably because NCD models high-
order student-exercise relationships which have a satisfactory ap-
proximation ability than those linearly modeling methods.

These evidence demonstrates that integrating the multi-level
interaction relations can improve accuracy for student performance
prediction. In the following, we further conduct experiments on
the training data to verify the modeling ability of RCD.

5.4 The Effectiveness of Multi-level Relations
Modeling (RQ3)

To answer the RQ3, we compare RCD with several competitive
heterogeneous graph representation learning methods on the per-
formance prediction task. To be specific, we employ different graph
learning methods (i.e., HetG, HAN, GTN and metapath2vec) in
fusion layer and set the same diagnosis layer. As listed in Figure
4, RCD achieves the best scores. This result demonstrates that
the multi-level fusion modeling is suitable to model multi-layer
student-exercise-concept interaction. Meanwhile, HAN and HetG
3The code is available at https://github.com/bigdata-ustc/RCD
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Table 2: Experimental results on student performance prediction.

(a) Junyi
Train/Test radio 50%/50% 60%/40% 70%/30% 80%/20%

Methods ACC AUC RMSE ACC AUC RMSE ACC AUC RMSE ACC AUC RMSE

Baseline

IRT 67.56% 75.12% 44.53% 67.46% 76.09% 43.65% 67.45% 76.66% 43.13% 67.60% 77.50% 42.68%
MIRT 74.70% 79.16% 41.43% 74.83% 79.32% 41.36% 74.81% 79.47% 41.35% 75.13% 79.89% 41.17%
MF 66.87% 74.43% 45.20% 67.35% 74.98% 44.79% 67.81% 75.46% 44.37% 68.34% 76.44% 43.73%
NCD 74.21% 78.68% 42.01% 74.40% 79.05% 41.67% 74.30% 78.95% 41.78% 74.43% 79.09% 41.72%

Relation-based

R-IRT 74.64% 79.12% 41.51% 74.67% 79.18% 41.44% 74.71% 79.35% 41.39% 74.68% 79.43% 41.36%
R-MIRT 76.60% 81.82% 40.14% 76.59% 81.71% 40.15% 76.67& 81.87% 40.15% 76.48% 82.23% 40.11%
R-MF 74.38% 78.79% 41.63% 74.33% 78.75% 41.66% 74.54% 78.85% 41.60% 74.43% 79.06% 41.59%
R-NCD 74.48% 78.94% 41.90% 74.56% 78.86% 42.00% 74.61% 79.07% 41.85% 74.66% 79.31% 41.59%
RCD 76.61% 81.84% 40.05% 76.66% 81.88% 40.10% 77.01% 82.26% 39.82% 77.16% 82.62% 39.63%

(b) ASSIST
Train/Test radio 50%/50% 60%/40% 70%/30% 80%/20%

Methods ACC AUC RMSE ACC AUC RMSE ACC AUC RMSE ACC AUC RMSE

Baseline

IRT 63.46% 66.46% 49.10% 63.76% 67.81% 48.13% 64.00% 68.79% 47.36% 64.26% 69.83% 46.59%
MIRT 67.41% 67.85% 47.98% 68.53% 71.18% 48.39% 70.39% 72.83% 46.03% 71.70% 74.94% 45.17%
MF 61.84% 70.09% 49.34% 64.23% 72.85% 47.13% 65.67% 74.62% 45.86% 67.12% 76.45% 44.51%
NCD 71.51% 73.77% 43.90% 71.85% 74.21% 43.81% 72.17% 74.92% 43.78% 73.14% 75.94% 43.08%

Relation-based

R-IRT 69.53% 69.43% 45.15% 70.44% 72.59% 44.11% 71.43% 74.08% 43.58% 69.53% 69.43% 45.15%
R-MIRT 72.82% 76.13% 42.59 72.50% 76.18% 42.73% 72.90% 76.55% 42.49% 73.40% 77.20% 42.22%
R-MF 66.99% 66.90% 46.23% 67.54% 67.53% 45.98% 71.96% 74.85% 44.45% 71.61% 74.35% 43.70%
R-NCD 71.46% 74.42% 43.61% 71.24% 73.84% 43.73% 71.78% 74.62% 43.75% 72.39% 75.32% 43.25%
RCD 72.87% 76.24% 42.50% 72.82% 76.19% 42.54% 73.11% 76.63% 42.41% 73.55% 77.21% 42.13%
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Figure 4: Performance comparison of structure modeling.
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Figure 5: Results comparison of concept similarity.

also achieve good performance as their carefully designed hier-
archical aggregation functions. These results can prove that our
proposed RCD model has outstanding modeling abilities.

5.5 Relation Map Analysis (RQ4)
To answer RQ4, we conduct some interesting visualization experi-
ments on concept dependency map, exercise-concept correlation
map and student-exercise interaction map respectively, to demon-
strate the ability of modeling interaction relations of RCD.

(a) RCD Model (b) Model Without Relation Fusion
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Figure 6: Comparison of exercise-concept correlation study.

5.5.1 Concept Similarity. In concept dependency map, we explore
the similarity between knowledge concepts. Specifically, after ob-
taining each concept embedding by trained model, we measure the
similarity by Euclidean Distance between each pair of concepts. We
respectively calculate the similarity between concepts with sim-
ilarity and prerequisite relations as well as no explicit relations.
Here we define that concepts have no relations if they exceed two
hops. Figure 5 illustrates the results of concept pairs in the forms of
box figures. From the figure, we can see that concepts with similar
relations have the closest similarity on each dataset. Meanwhile,
concepts with similar or prerequisite relations are closer than con-
cepts without explicit relations. These results clearly demonstrate
that RCD can capture the relations between concepts well.

5.5.2 Exercise-Concept Correlation. In the exercise-concept cor-
relation map, we aim to analyze the relations between exercises
and concepts learned from RCD. Specifically, between each pair of
exercise (𝑞𝑖 , 𝑞 𝑗 ), there exist three types of relations: (1) 𝑞𝑖 ’s main
concept is similar to 𝑞 𝑗 ; (2) 𝑞𝑖 ’s main concept is the prerequisite
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(b) ASSIST(a) Junyi

Answer correctly Answer incorrectly

Figure 7: The visualization of interactive response relations
between students and exercises.

of 𝑞 𝑗 and vice versa; (3) there is no explicit relation between 𝑞𝑖
and 𝑞 𝑗 ’s concepts. In this part, we use all exercises in Junyi and
randomly sample 2,000 exercises in ASSIST. We partitioned exercise
pairs into three groups according to these three relations and calcu-
late the Euclidean Distance for each pair of exercises. Besides, we
also measure distances between exercises learned from the model
without relation fusing process for comparison. Figure 6 illustrates
the results which demonstrate that: (1) the distances between ex-
ercises learned by RCD, with similar, prerequisite, and no relation
show a clear increasing trend; (2) for model without relation fusion,
it is difficult to distinguish different relations between exercises.
These findings demonstrate that RCD has a good ability to learn
correlations between exercises and knowledge concepts.

5.5.3 Student Exercising Interaction. In the student-exercise inter-
action map, we aim to explore whether RCD can capture interac-
tions between students and exercises. Specifically, inspired by [15],
we first define each student-exercise interaction relation 𝑟𝑠𝑞 ’s em-
bedding as: 𝑓 (𝑟𝑠𝑞) = 𝑓 (𝑠) − 𝑓 (𝑞), where 𝑓 (𝑠) and 𝑓 (𝑞) denote
student 𝑠 and exercise 𝑞’s embedding representations learned from
RCD respectively. As exercising interaction relations can reflect
students’ performance, we explicitly label each relation 𝑟𝑠𝑞 with
”𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦” or ”𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦” based on the true performance data.
Then we project all the student exercising responses provided from
datasets into vector 𝑓 (𝑟𝑠𝑞) and reduce the vector dimension to two-
dimension space utilizing the T-SNE method [42]. We randomly
select 10,000 interactions for visualization. As shown in Figure. 7,
the interactions in the same color have the same label. We can see
that the interactions that answer correctly are mainly clustered on
the left side of the figure, and the interactions that answer incor-
rectly are mainly clustered on the other side. This shows that our
relation map can capture the interactive relations between students
and exercises. Besides, there are also some messy interaction points
in the figure. This is because the student exercising response is a
complex process and it is not accurate enough to estimate students’
performance only based on their states on concepts. For example,
even if a student does not master some certain concepts, she may
answer related exercises correctly by coincidence. We will continue
to explore the deeper interactions in the future.

5.6 Interpretation of the Diagnosis (RQ5)
We visualize the diagnostic reports and evaluate the interpretation
of RCD. This visualization helps students and teachers recognize the
former’s knowledge state, efficiently and intuitively. Here, we evalu-
ate the interpretability based on whether the diagnostic proficiency
of students is reasonable with the given educational dependencies
in concept dependency map. We randomly sampled a student and
depict her proficiency of a subset of concepts in Figure 8.
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Figure 8: The part of concept structure and the visualization
of student diagnostic report.

Figure 8 (a) shows the dependency structure of a subset of con-
cepts, which contains similarity and prerequisite relations. Figure 8
(b) shows the diagnostic result and each point on the radar diagram
represents the mastery level of the certain knowledge concept. Spe-
cially, the red line (with fusion) denotes the diagnostic proficiency by
integrating the relation map, provided by a trained model, and the
blue line (without fusion) denotes the proficiency which ignores the
fusing process. From the figure, we can obtain that the proficiency
of concept 1○ (alternate exterior angles), 3○ (parallel lines 1) and 5○
(segment addition) gets promoted after fusing concept dependency
relations, where concept 3○ and concept 5○ serve as the similar
neighbor of 1○. Meanwhile, concept 4○ (same side exterior angles)
is stable while concept 2○ (corresponding angles) significantly re-
duces, where 2○ is a successor of 4○. These observations indicate
that: (1) the proficiency of similar knowledge concepts can affect
each other; (2) the influence along prerequisite relations is only
unidirectionally propagated in RCD. From the results, we can see
that, owing to the ability of modeling the concept dependencies,
RCD is able to provide a better interpretable insight on diagnosing
student knowledge states for CD.

6 CONCLUSION
In this paper, we proposed a general cognitive diagnosis (CD) frame-
work, namely Relation map driven Cognitive Diagnosis (RCD),
which comprehensively considers the student-exercise-concept re-
lations for cognitive diagnosis. Specifically, we first represented
students, exercises and concepts as individual nodes in a hierarchi-
cal layout, and constructed three well-defined local relation maps
to incorporate inter- and inner-layer relations. Then, we designed a
multi-level attention network to integrate node-level relation aggre-
gation in each local map and balance map-level aggregation from
different maps. After that, we designed an extendable diagnosis
function to predict students’ performance. Finally, extensive exper-
iments on real-world datasets clearly showed the effectiveness and
extendibility of our RCD framework. We hope this work could lead
to further studies.
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