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ABSTRACT
Knowledge-based question answering (KBQA) is a key task in nat-
ural language processing research, and also an approach to access
the web data and knowledge, which requires exploiting knowledge
graphs (KGs) for reasoning. In the literature, one promising solution
for KBQA is to incorporate the pretrained language model (LM)
with KGs by generating KG-centered pretraining corpus, which has
shown its superiority. However, these methods often depend on
speci�c techniques and resources to work, which may not always
be available and restrict its application. Moreover, existing meth-
ods focus more on improving language understanding with KGs,
while neglect the more important human-like complex reasoning.
To this end, in this paper, we propose a general Knowledge-Injected
Curriculum Pretraining framework (KICP) to achieve comprehen-
sive KG learning and exploitation for KBQA tasks, which is com-
posed of knowledge injection (KI), knowledge adaptation (KA) and
curriculum reasoning (CR). Speci�cally, the KI module �rst injects
knowledge into the LM by generating KG-centered pretraining
corpus, and generalizes the process into three key steps that could
work with di�erent implementations for �exible application. Next,
the KA module learns knowledge from the generated corpus with
LM equipped with an adapter as well as keeps its original natural
language understanding ability to reduce the negative impacts of
the di�erence between the generated and natural corpus. Last, to
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enable the LM with complex reasoning, the CR module follows hu-
man reasoning patterns to construct three corpora with increasing
di�culties of reasoning, and further trains the LM from easy to
hard in a curriculum manner to promote model learning. We pro-
vide an implementation of the general framework, and evaluate the
proposed KICP on four real-word datasets. The results demonstrate
that our framework can achieve higher performances, and have
good generalization ability to other QA tasks.
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1 INTRODUCTION
Knowledge-based question answering (KBQA) is a key task in nat-
ural language processing (NLP) and data mining research [33],
which could act as an approach to access and process web data and
knowledge, and lead to useful applications such as smart voice as-
sistant and search engine especially with the large language models
(LLMs) [30]. As shown in Figure 1, KBQA aims to answer questions
in natural language based on background knowledge, which is of-
ten formatted as knowledge graphs (KGs) [19, 45, 49]. Therefore,
KBQA requires abilities of both natural language understanding
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Figure 1: A toy example of KBQA, which requires complex
reasoning marked in red.

(NLU) and knowledge reasoning, making it a challenging task in
related �elds.

In the literature, researchers have proposed many solutions for
KBQA [28, 33, 49] based on deep learning due to their remark-
able results on other NLP tasks [12, 15, 18], among which the pre-
trained language models (LMs) have become the most promising
for its strong NLU ability [4, 6, 29, 30]. Unfortunately, LMs includ-
ing the LLMs work not so well in knowledge application [21, 23],
which hinders its application in KBQA. Therefore, researchers
have tried great e�orts to enhance the LMs with KGs (inputting
knowledge facts into LMs, or pretraining LMs with knowledge-
based tasks [21, 31, 34, 36, 37, 46, 47, 50, 53]), which has greatly
improved LMs in knowledge-related tasks. However, these meth-
ods often learn KGs as supplementary to additional pretraining
corpus [21, 50], which can not cover the whole KG and may over-
look some knowledge useful in certain tasks, and thus leads to
incomplete knowledge learning. Towards this point, a straight-
forward solution is to generate the pretraining corpus based on
the KGs. Although many methods have been developed along this
line [2, 3, 20, 48], they usually depend on speci�c techniques or
resources for e�ective corpus generation (e.g., requiring pretrained
generative model to generate sentences, or generating sentences
in a �xed format), which may be unavailable in practice and thus
restricts its application. Therefore, in this paper we hope to design a
general framework to generate KG-centered corpus for comprehen-
sive knowledge pretraining of LMs, which is not limited to speci�c
techniques and could work with di�erent detailed implementations
for �exible application.

However, along this line there exist several nontrivial technical
challenges. First, there are many solutions to generate sentences
based on given KGs for di�erent demands (e.g., pretrained gener-
ative LMs [2], �xed sentence templates [20]). Moreover, although
most KGs store the knowledge triples with entity IDs, some high-
quality KGs also contain additional attribute information, which
is stored in various forms (e.g., texts, numbers and dates) and re-
quires di�erent processing. How to unify and generalize these
various techniques and data forms remains much open. Second, the
generated sentences di�er from natural ones and may even seem
distorted, which may mislead the LM and hurt natural language
understanding ability of the LM in pretraining [2, 20]. Existing
methods address this problem with speci�c techniques in accor-
dance with their generation methods (e.g., generating sentences

more similar to natural ones with complex generative LMs [2],
or adopting specially designed sentence templates to reduce the
negative impacts [20]), but how to overcome this shortcoming
for an arbitrary generation method in the general framework is
a nontrivial problem. Last, existing methods enhancing LMs with
KGs focus more on improving language understanding with related
knowledge such as K-BERT [21] and ERNIE [50], while seldom have
considered the human-like complex reasoning ability. Humans can
perform reasoning over multiple knowledge facts following speci�c
patterns, which is also widely required in KBQA tasks. For example,
in Figure 1, to reach the answer, the LM �rst needs to �nd that
the author of O� on a Comet is Jules Verne, and then the period of
Jules Verne is 1828-1905. How to enable the LMs with such complex
reasoning is a challenging problem.

To this end, in this paper, we propose a general Knowledge-
Injected Curriculum Pretraining framework (KICP) to achieve
comprehensive KG learning and exploitation for KBQA, which
is composed of knowledge injection (KI), knowledge adaptation
(KA) and curriculum reasoning (CR). Speci�cally, the KI module
converts KG triples into sentences to construct pretraining corpus
for complete knowledge learning, and generalizes the process into
three key steps, i.e., text characterization, sentence construction
and masking, which can be implemented with di�erent detailed
techniques and various data forms for �exible application. Next,
to reduce the negative impacts brought by the di�erence between
generated and natural corpus on LM pretraining, the KA module
�xes the original LM to keep its NLU ability, and learns knowledge
from the generated corpus with a trainable adapter working with
the LM. Last, to pretrain the LM with complex reasoning ability,
the CR module follows common reasoning patterns of humans
and constructs corpora requiring complex knowledge reasoning.
Furthermore, the CR module arranges the complex corpora into
three lessons with increasing di�culties, and trains the LM from
easy to hard following the curriculum learning manner to reduce
pretraining di�culty. Finally, we provide an implementation of the
general framework, and conduct extensive experiments on four
real-word datasets to evaluate KICP. The results demonstrate that
our framework can achieve higher performances, and generalize to
other QA tasks well.

2 RELATEDWORK
Knowledge-Based Question Answering. In the literature, stud-
ies on KBQA can be roughly divided into the knowledge-enhanced
LM (introduced later), and the KG-based reasoning including path-
based [27], embedding-based [11, 33] and graph-based methods [10,
14, 28, 44, 45, 49]. Path-based methods map the question into enti-
ties and relations for reasoning on the KG [27]. Embedding-based
methods such as EmbedKGQA [33] represent the question and KG
in the same latent space, and infer the answer with simple vector
computation. Graph-based methods [10, 14, 28, 44, 45, 49] sample a
sub-graph from the KG, and perform reasoning on the sub-graph
with neural networks. Graph-based methods are widely applied in
complex reasoning for the good trade-o� between interpretability
and performance, but the insu�cient knowledge modeling within
the sub-graph may lead to limited robustness. Besides, the large lan-
guage models (LLMs) have become a promising method in KBQA
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Figure 2: The architecture of the proposed KICP framework. (a) The overview of KICP. (b) The knowledge injection module
(KI) converts KG triples into sentences. (c) The knowledge adaptationmodule (KA) works with the LM to keep NLU ability and
learn knowledge. (d) The curriculum reasoning module (CR) constructs easy-to-hard reasoning-required pretraining corpora.

tasks recently [1, 8]. Researchers have proposed several advanced
techniques to improve its knowledge reasoning ability, including
the chain-of-thought prompt [39], question decomposition [52],
and retrieval augmented generation [43].
Knowledge-Enhanced Language Model. As the pretrained LMs
have shown its weakness on knowledge-based tasks [21, 23], re-
searchers have tried many e�orts to enhance LMs with knowledge
from KGs, including the explicit methods [21, 26, 31, 50] and implicit
methods [9, 20, 34, 36, 37, 42]. Explicit methods feed knowledge
facts or embeddings into LM as additional inputs to exploit re-
lated knowledge. For example, K-BERT [21] injected the knowledge
triples into the sentences as inputs to the LM. Zhang et al. [50]
developed an aggregator network to incorporate KG entity em-
beddings into LMs. Implicit methods design special pretraining
tasks to learn knowledge from KGs and corpus with LM. Sun et
al. [34] introduced an entity masking strategy for pretraining, and
Wang et al. [37] trained LM as knowledge embedding model with
entity descriptions. To better exploit KG triples, Liu et al. [20] gener-
ated multilingual synthetic pretraining corpus with KG triples and
Agarwal et al. [2] employed the generative LM to synthesize more
natural corpus. In summary, explicit methods exploit the knowl-
edge more directly but require additional knowledge annotations as
inputs, while implicit methods can be easily applied in downstream
tasks, but require heavy pretraining.

Our work di�ers from previous methods as follows. First, exist-
ing methods converting the KG into corpus are often limited to
speci�c techniques and resources, while our method is a general
framework which can work with di�erent detailed implementations
for di�erent circumstances. Second, existing methods focus more on
improving language understanding with related knowledge, while
our method further enables the LM with complex reasoning ability
with specially designed pretraining task.

3 KICP: KNOWLEDGE-INJECTED
CURRICULUM PRETRAINING

3.1 Problem De�nition
Knowledge-based question answering (KBQA) is composed of the
knowledge graph KG and the question-answer pair (Q,Y ). We
suppose that the KG contains knowledge triples about the relation
between two entities and the attribute of each entity, where the
attribute values are in diverse forms that can be converted into
texts (texts are de�ned as V + on vocabulary V ). Therefore, the KG
can be de�ned as KG = (E,R,

∑
), where E is the entity set, R is

the relation and attribute set, and
∑

means the knowledge triples.
Each triple (h, r , t) ∈

∑
(h, t ∈ E, r ∈ R) means that the entity h and

t have the relation r (e.g., “Jules Verne” is the “author” of “O� on a
Comet” in Figure 1), and (h, r , t) ∈

∑
(h ∈ E, r ∈ R, t ∈ V +) means

the attribute r of entity h is t , where t is the attribute value in text
(e.g., the “period” of “Jules Verne” is “1828-1905”) Besides, each en-
tity e ∈ E is assigned with several names Ne = {ne 1,ne 2, . . . ,ne k }
(each name ne i ∈ V +). R is assigned with names similarly. In the
question-answer pair (Q,Y ), Q = {q1,q2, . . . ,qn } ∈ V + (qi ∈ V )
is the question in natural language, and Y is the answer to Q in-
ferred under KG, whose form depends on the task (e.g., KBQA
often selects an entity or attribute value from KG, and generative
QA generates formal language from certain vocabulary such as
natural text or mathematical expression [16, 17]).

Given the knowledge graphKG and question-answer pair (Q,Y ),
the goal of KBQA is to train a model M :(KG,Q)→Y to predict the
answer Y of question Q underKG. In this paper, we �rst pretrain a
language model LM with KG, and then use it in M to predict the
answer Y to Q . We expect that LM could learn knowledge from
KG comprehensively and well handle complex reasoning.
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3.2 Method
We propose a general Knowledge-Injected Curriculum Pretraining
framework (KICP) to pretrain LM for comprehensive knowledge
learning and complex reasoning, which is not limited to speci�c
techniques and could easily work with di�erent implementations
for �exible applications. As shown in Figure 2 (a), KICP is composed
of three key components, i.e., knowledge injection (KI), knowledge
adaptation (KA) and curriculum reasoning (CR). Speci�cally, KI in-
jects knowledge from the KG into the LM completely by converting
the KG triples to sentences to construct the pretraining corpus,
and generalize the various generation techniques into three key
steps. To reduce the negative impacts brought by the gap between
generated and natural corpus, KA �xes the original LM to keep its
NLU ability, and equips the framework with a trainable knowledge
adapter to learn knowledge from the generated corpus. To pre-
train the LM with complex reasoning ability, CR follows common
patterns of human reasoning and constructs several reasoning-
required corpora with di�erent di�culties, and trains the LM from
easy to hard in a curriculum manner to promote model learning.

3.2.1 Knowledge Injection. To overcome the insu�cient knowl-
edge learning brought by using the KG as supplementary to external
corpus, we directly convert the KG triples into sentences as pre-
training corpus to inject knowledge into the LM. Moreover, there
exist several e�ective sentence generation techniques for di�erent
requirements in the literature [2, 20], and the KGs contain multiple
forms of data that requires di�erent processing (e.g., IDs, texts, num-
bers and dates). Therefore, to generalize these detailed techniques
to a general framework that is not limited to speci�c techniques
for �exible application in various circumstances, as shown in Fig-
ure 2 (b), we abstract the sentence generation process into three key
steps, i.e., text characterization, sentence construction and masking.
Text Characterization. Given one triple k = (h, r , t) ∈

∑
sam-

pled from KG, KI �rst characterizes all �elds of the triple as texts
(Txt), which serve as the backbone elements of the sentence to
generate. For the entities and relations stored in IDs, We map the
meaningless ID (e.g., e1) to a meaningful name (Jules Verne), which
is dynamically sampled from the associated name set in each itera-
tion to increase corpus diversity. More sampling strategies can also
be applied here for other demands [20]. For the various forms of
attribute values (e.g, numbers, dates and texts), we use their textual
descriptions as they can always be expressed with texts despite the
original forms. In this way, we can unify the diverse processing of
the entities, relations and attribute values.
Sentence Construction. After getting the textual elements, KI ap-
plies a sentence construction strategy τ to assemble these elements
into a complete sentence, including reordering and transforming
the elements and adding auxiliary words. The strategy τ can be
implemented with di�erent existing techniques, such as sentence
templates, grammar-based rules, and the generative LMs [2, 20].
Masking. The last step is to mask the generated sentence for
masked language model (MLM) pretraining. To force knowledge
learning and match the di�erences between entities and attribute
values, we prefer paying more weights to the knowledge elements
in the sentence (those converted from the triple), and applying
di�erent masking strategies Msk to entities and attribute values.
For example, we apply the entity masking [34] on entities which

masks the whole entity name to force learning relation knowledge
instead of memorizing the entity name, and whole word masking
(WWM) [5] on attribute values since the values may contain too
much information (e.g., biography) and are too hard to recover if
all masked. WWM also works similarly to entity masking on short
values (e.g., numbers) by masking as a whole word. More masking
techniques can be used here as Msk.

Overall, the sentence generation process is formulated as follows:

KI (k) = Msk(τ (Txt(h), Txt(r ), Txt(t))), k = (h, r , t) ∈
∑
. (1)

The knowledge-injected corpus is composed of the sentences KI (k),
which are dynamically generated from triples sampled from the
KG in pretraining. In this way, KI converts the whole KG into
the corpus, and thus implicitly stores all information from the KG
in the corpus such as the structural infromation. Compared with
existing methods rewriting KG as corpus, KI does not depend on
speci�c techniques or resources, and thus could work with di�erent
implementations for various application demands.

3.2.2 Knowledge Adaptation. Obviously the corpus generated by
KI di�ers from natural ones as the sentences may not strictly follow
the grammar (especially for some simple τ ), and the diversity of
the corpus is limited. Pretraining the LM on the corpus may hurt
NLU ability and work badly on natural texts. Furthermore, as the
sentence generation technique in the proposed general framework
is arbitrary, we can not use methods associated with speci�c gener-
ation techniques to address the problem as existing studies [2, 20].
Therefore, in knowledge adaptation (KA), we turn to keeping the
NLU ability of LM during knowledge pretraining.

As demonstrated by Figure 2 (c), following the adapter paradigm
in LM tuning [7, 36], we �x the LM parameters and add a trainable
knowledge adapter module Ad above the original LM LM . Ad uses
the semantic outputs of LM as inputs, and outputs the knowledge-
enhanced representations. Moreover, to deeply improve the fusion
of the semantics and knowledge, the semantic outputs of all layers
in the LM are used. The computation of KA is formulated as follows:

KA(x) = Ad(LM(x)), (2)

where x is the input sentence. Ad can be implemented with any
neural networks, which is expected to have a proper size to contain
enough space for knowledge learning and avoid greatly increasing
computation complexity as well.

In pretraining, the parameters of Ad is trained to learn knowl-
edge from the constructed corpus, while the original LM is �xed. As
the original LM is not a�ected by Ad, the NLU ability is retained as
much as possible to reduce the negative impacts of the gap between
generated and natural corpus.

3.2.3 Curriculum Reasoning. With KI and KA, KICP can e�ectively
inject the KG into LM, but still lacks complex reasoning ability
over multiple knowledge facts as required in real-world KBQA
tasks. To enable the LM with such ability, the curriculum reasoning
module (CR) pretrains LM on corpora requiring complex reasoning
as shown in Figure 2 (d).

It is hard to collect enough reasoning-required corpus for all KGs,
so we also build the corpus based on the KG. Humans often perform
complex reasoning following speci�c patterns (e.g., multi-top rea-
soning), which put restrictions on the participating triples (e.g., the
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chain-like triples). Therefore, we build the corpus following these
patterns (e.g., “The period of the author of O� on a Comet is 1828-
1905”). We �rst sample several triples {k1, . . . ,kn } matching the
restrictions from KG, such as the chain-like triples {(O� on a Comet,
author, Jules Verne), (Jules Verne, period, 1828-1905)} for multi-hop
reasoning, and then convert them into a complex composition with
a pipeline Comp similar to KI as follows:

Comp(k1, . . . ,kn ) =Msk′(τ ′(Txt(h1), Txt(r1), Txt(t1),

. . . , Txt(tn ))), ki = (hi , ri , ti ) ∈
∑
,

(3)

where τ ′ and Msk′ are sentence construction and masking in Comp.
In this way, the complex corpus matches human reasoning, and
explicitly exploits the structural information from the KG as well.
Much more reasoning patterns can be supported by the CR module.

The complex composition often discards some information to
infer from knowledge, so it is hard to pretrain LM directly (e.g., in
previous example “Jules Verne” is discarded, which makes it hard
to understand without related knowledge). Therefore, as shown in
Figure 2 (d), we split the pretraining into three lessons with gener-
ated corpora from easy to hard following curriculum learning [51]
to promote model learning.
Lesson 1: Knowledge Learning. We start by pretraining LM on
single triples from the KG. We build this corpus with KI based on
one triple k for each sentence, and pretrain the LM (i.e., KA) on the
MLM task to memorize the knowledge facts as follows:

min
θAd, θMLM

L1(k) = MLM(KA(KI (k))), (4)

where θAd and θMLM means trainable parameters for knowledge
adapter Ad in KA and MLM head.
Lesson 2: CoT Learning. Having learned basic knowledge facts
from KG, next we teach the LM how to conduct complex reason-
ing with related knowledge facts. Inspired by chain-of-thought
(CoT) [25, 40], we assemble each sentence with complex composi-
tion by Comp for certain reasoning pattern and all related knowl-
edge by KI as reasoning steps base on triples {k1, . . . ,kn }. To avoid
information leakage, we mask the same element (e.g., entity) in
both the �nal composition and reasoning steps, and pretrain the
LM on the MLM task as follows:

min
θAd, θMLM

L2(k1, . . . ,kn ) =MLM(KA([KI (k1), . . . ,

KI (kn ),Comp(k1, . . . ,kn )])),
(5)

where [, ] means text concatenation, and {k1, . . . ,kn } matches the
reasoning pattern for Comp.
Lesson 3: Composition Learning. In the hardest lesson, we pre-
train the LM to reason with memorized knowledge as real-world
QA tasks, where we only provide the �nal compositions without
related reasoning steps. Therefore, We construct the corpus with
the complex compositions by Comp, and pretrain the LM on the
MLM task as follows:

min
θAd, θMLM

L3(k1, . . . ,kn ) = MLM(KA(Comp(k1, . . . ,kn ))). (6)

The corpora are dynamically generated with randomly sampled
triples in pretraining. We demonstrate some samples of corpora in
three lessons in Appendix D. Through the three pretraining lessons,
we explicitly enable the LM with human-like complex reasoning

ability required in KBQA tasks, and reduce the pretraining di�culty
with the curriculum learning.

3.2.4 QA Fine-Tuning. After pretrained on the KG, the LM can be
easily applied in di�erent downstream QA tasks without additional
annotations or external knowledge inputs. Speci�cally, the LM (i.e.,
KA) reads the question Q as input, and outputs the knowledge-
enhanced vector, which is fed to a task-dependent prediction head
Pred to generate the answer Y . The whole system (LM and Ad in
KA and Pred) can be �ne-tuned on di�erent QA tasks subject to the
task-dependent objective function L as follows:

min
θLM, θAd, θPred

LQA(Q,Y ) = L(Pred(KA(Q)),Y ), (7)

where θLM , θAd and θPred are parameters of these modules.

3.3 Implementation
In this section, we provide an implementation of the general KICP
framework. In KI, we implement text characterization and masking
as mentioned in section 3.2.1, and realize τ by simply concatenating
all �elds, which works well on our datasets.

In KA, we implement the knowledge adapter Ad as BERT with
the same number of layers and halved vector dimension. In each
layer of Ad, the input (semantic vector from corresponding layer
of LM) is �rst projected with a linear model to the latent space
of hidden vector from last layer, and then added with the hidden
vector to feed to the BERT layer. The �nal vectors of Ad and LM
are merged with a linear layer as the output.

In CR, we implement Comp with two widely-used reasoning pat-
terns, i.e., multi-hop reasoning and multi-object reasoning. Multi-
hop reasoning (e.g., the period of the author of O� on a Comet
is 1828-1905) �rst infers an intermediate entity from the topic en-
tity in the question (the author of O� on a Comet is Jules Verne),
and then use it to infer the next intermediate entity until reaching
the answer (the period of Jules Verne is 1828-1905). Therefore, the
knowledge triples form a chain-like structure, where the tail entity
of one triple is the head of the next one (e.g., Jules Verne). Given
these triples, Comp discards all intermediate entities and concate-
nates other �elds sequentially. Multi-object reasoning (e.g., the
occupation of Jules Verne is novelist and playwright) infers several
results from one topic entity, thus the knowledge triples share the
same head entity and relation (Jules Verne and occupation). Given
the triples, Comp discards the heads and relations expect the �rst
one, and concatenates all tails with the �rst head and relation. Be-
sides, our framework could also easily generalize to other reasoning
patterns such as the comparative reasoning in the similar way by
de�ning the sampling restrictions and Comp methods for triples.
For each sentence we sample 2 to 3 triples matching the patterns.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We use three KBQA datasets to evaluate KICP
on knowledge-based reasoning, i.e., CN-QA (with CN-KG as KG),
ComplexWebQuestions [35] and FreebaseQA [13] (both with Wiki-
data [37]), and a generative dataset Math23K [38] (with HowNet [32])
for generalization to other knowledge-related QA. The introduction
and statistics of the datasets are available in Appendix A.
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Table 1: Overall Results of All Methods on Four Datasets

Dataset CN-QA ComplexWebQuestions FreebaseQA Math23K
Metric F1 EM F1 EM ACC ACC

GPT4 0.459 0.358 0.802 0.721 0.918 /
ChatGLM2-6B 0.389 0.274 0.494 0.432 0.610 /

EmbedKGQA 0.417 0.303 0.760 0.730 0.707 /

BERT 0.607 0.458 0.856 0.763 0.896 0.801
RoBERTa 0.610 0.456 0.863 0.779 0.892 0.803

ERNIE 0.614 0.459 0.861 0.772 0.901 0.796
K-BERT 0.620 0.462 0.866 0.774 0.896 0.799
KEPLER 0.628 0.467 0.868 0.785 0.906 /

K-Adapter 0.612 0.462 0.866 0.802 0.905 /

KICP-KA 0.633 0.469 0.871 0.809 0.903 0.797
KICP-ATT 0.629 0.466 / / / /

KICP 0.639* 0.480* 0.880* 0.819* 0.911* 0.809*

KBQA answers questions with entities or attribute values from
KG. To reduce computation complexity without losing much dif-
�culty, we sample 10 hard candidate answers with the same type
of the truth for prediction on KBQA. We also sample a sub-graph
from the whole KG for each dataset to accelerate pretraining.

4.1.2 Baseline Methods. We compare KICP with original LMsBERT [6]
and RoBERTa [22], and knowledge-enhanced LMs ERNIE [50],
K-BERT [21], KEPLER [37] and K-Adapter [36]. We also include
the embedding-based EmbedKGQA [33] and two LLMs GPT4 [1]
and ChatGLM2 [8] as baselines for KBQA datasets. We provide a
brief introduction to baselines in Appendix B.

4.1.3 Training Details. We implement KICP with Pytorch based on
pretrained BERT by huggingface. 1 We use the “bert-base-chinese”
version as LM on Chinese datasets CN-QA and Math23K, and “bert-
base-uncased” on English datasets ComplexWebQuestions and Free-
baseQA for all methods. The number of BERT layers of Ad for KA
is 12 (equal to LM), the dimension is 384 for hidden vector (half of
LM) and 768 for output vector(equal to LM).

We pretrain the model for 3 epochs with AdamW [24]. The batch
size is set to 32, and the learning rate is 0.0005, which warms up
over the �rst 10% steps, and then linearly decays. The masking
probability for MLM is set to 0.15 in lesson 1 and 3, and 0.3 in lesson
2 as the corpus contains more repeated information.

We run all experiments on a Linux server with two 2.20 GHz
Intel Xeon E5-2650 CPUs and a Tesla K80 GPU. 2

4.2 Experimental Results
4.2.1 Overall Results. In this section, we compare KICP with all
baselines. We use the F1 score (F1) and exact match score (EM) as
metrics for multi-label datasets CN-QA and ComplexWebQuestions,
and accuracy (ACC) for single-label dataset FreebaseQA. Math23K is
evaluated with answer accuracy (ACC), i.e., the predicted expression
is viewed correct if the computed answer equals the truth.

1https://huggingface.co/transformers
2Our codes are available at https://github.com/l-xin/KICP.

The results on four datasets are reported in Table 1. 3 We statis-
tically test the improvement of KICP over baselines (except GPT4)
with paired t-test, and �nd the improvement to be signi�cant with
p < 0.05 (marked *). We can get the following observations. First,
KICP outperforms all baselines, which clearly demonstrates its ef-
fectiveness on knowledge learning and exploitation for QA tasks.
Second, KICP performs better than K-Adapter with similar model
but di�erent pretraining task, showing the signi�cant in�uence of
pretraining task. Third, LLMs do not perform better than the �ne-
tuned methods on KBQA. GPT4 achieves comparable performance
on the widely studied ComplexWebQuestions and FreebaseQA, but
falls far behind on CN-QA, and the smaller ChatGLM2 performs
even worse. Fourth, knowledge-enhanced methods outperform orig-
inal LMs in most cases, proving that knowledge is a key element
in QA reasoning. Last, knowledge injection does not bring much
improvement and even negative e�ect on Math23K. The reason
may be that Math23K requires NLU much more than knowledge.

4.2.2 Ablation Study. In this section, we conduct ablation exper-
iments to study the e�ectiveness of the attribute knowledge and
knowledge adaptation (We will investigate the curriculum reason-
ing in detail in section 4.3). We introduce two variants of KICP:
KICP-KA removes the knowledge adaptation module and directly
trains the parameters of original LM, and KICP-ATT discards the
attribute knowledge and pretrains only on the entity relation knowl-
edge. The results of the two variants are also reported in Table 1. 4

We can summarize the following conclusions. First, the two variants
perform worse than KICP, which shows that KA could reduce the
negative impacts of generated corpus, and the attribute knowledge
is also useful in KBQA. Next, in CN-QA, KICP-ATT performs worse
than KICP-KA, which means that attribute knowledge exploitation
contributes more than knowledge adaptation on this task. The re-
sult is reasonable since a large part of CN-QA requires attribute

3We do not evaluate KEPLER and K-Adapter on Math23K, as pretraining the two
methods requires entity descriptions, which are unavailable on HowNet.
4The results of KICP-ATT on ComplexWebQuestions, FreebaseQA and Math23K are
unavailable, as Wikidata and HowNet do not contain attribute knowledge.
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Table 2: Performances on Easy and Hard Questions

Dataset CN-QA FreebaseQA
Di�culty Easy Hard Easy Hard

BERT 0.633 0.603 0.920 0.891
KICP 0.676 0.634 0.933 0.907
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Figure 3: Pretraining loss trend on three KGs in lesson 1.

knowledge (about 45%). Last, KICP-KA performs worse than BERT
in Math23K, which may be due to that KICP-KA hurts the NLU
ability of original LM in knowledge pretraining.

4.2.3 Performance over Di�iculty. We also investigate the perfor-
mance of KICP on questions with di�erent di�culties to study the
complex reasoning ability. We split CN-QA and FreebaseQA into
easy questions (answerable with one knowledge triple) and hard
ones (requiring multiple triples). 5 We report the performances of
KICP and BERT in Table 2 (F1 on CN-QA and ACC on FreebaseQA).
We have the following observations. First, it is reasonable that all
methods perform much better on the easy questions than the hard
ones. Second, KICP outperforms BERT on both easy and hard ques-
tions, showing that both easy and complex QA reasoning bene�ts
from knowledge injection and exploitation. Next, the improvement
on hard questions are larger in FreebaseQA. The reason may be that
KICP are pretrained on corpus requiring more reasoning ability,
which contributes to the higher performance in hard questions.
However, in CN-QA the easy questions bene�t more, which may
result from the much larger proportion of easy questions bene�ting
from knowledge, and leads to a higher improvement.

4.3 Curriculum Reasoning Analysis
In this section, we investigate the feasibility and e�ectiveness of
curriculum reasoning in KICP.

4.3.1 Loss of Curriculum Pretraining. Obviously the corpus gen-
erated by the CR module greatly di�ers from the natural ones.
Therefore, to verify the feasibility of pretraining with such corpus,
we plot the trend of loss in pretraining. Due to limited space, we
report the lesson 1 results on three KGs in Figure 3. From the �g-
ure, the loss keeps dropping and then gradually converges, which
demonstrates that the generated corpus contains enough informa-
tion to train the LM for knowledge learning, although it may seem
odd compared with natural ones.
5ComplexWebQuestions only contains hard questions and Math23K is a generative
dataset which is hard to distinguish knowledge requirement, so we do not conduct the
experiment on the two datasets.
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Figure 4: Pretraining loss trend on three KGs in lesson 3.
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Figure 5: Performances of LM pretrained for each lesson.

CR also aims to reduce di�culty of pretraining LM for complex
reasoning in lesson 3. To investigate the e�ectiveness, we plot
the loss trend in lesson 3 in Figure 4 with two variants: CR-03
directly trains on lesson 3 without previous lessons, and CR-13
skips lesson 2. There are several observations. First, the loss of CR
drops faster and �nally reaches lower, proving that the curriculum
setting could reduce the training di�culty. Second, the trend of
CR-03 is similar to lesson 1 in Figure 3, meaning that in CR-03
the model may �rst learn basic knowledge as lesson 1 and then
reasoning. Third, the loss of CR and CR-13 has a short increase in the
beginning which may be due to the higher di�culty of lesson 3 and
the di�erent distribution from previous easier lesson. Last, CR-13
works better than CR-03 in CN-KG and Wikidata, showing that the
LM can perform reasoning better with knowledge memorized. The
exception in HowNet may be due to that HowNet mainly contains
semantic information, which has been partially covered in LM.

4.3.2 Performance of Curriculum Reasoning. We also evaluate the
e�ectiveness of CR on downstream QA tasks. Ideally, the LM per-
forms better after pretrained on each lesson. Therefore, we evaluate
the LM �nishing lesson 1, 2, 3 (“L1”, “L2”, “L3”) with CR-03 and
CR-13 (“L03” and “L13”) in Figure 5. We can get the following
observations. First, performances of models keep increasing after
�nishing each lesson, which proves the above assumption. Second,
L3 performs much better than L03 and L13 (all pretrained on lesson
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Figure 6: Performances ofKICP andBERTover training size.

3), showing that the curriculum setting helps in both convergence
and the �nal outcome. Third, the results can also be viewed as
an ablation study on each lesson (“L3” for “KICP”, “L1” for “KICP
w/o CR”, “L13” for “KICP w/o L2”, “L2” for “KICP w/o L3”, and
“L03” for “KICP w/o L1&L2”), which demonstrates the e�ectiveness
of each lesson. Last, the performances on Math23K do not di�er
greatly. The reason may be that Math23K requires NLU more than
knowledge, thus the e�ect of pretraining are limited.

4.4 Training Size Analysis
The pretrained LM aims to reduce the requirement of labeled data
and improve the generalization, so the LM pretrained on the KG
is expected to have a better performance than the original ones
with limited labeled data. Therefore, we split the QA datasets with
di�erent training proportion (i.e., 20%, 40%, 60%, 80%) to evaluate
performances of KICP and BERT. The results are demonstrated in
Figure 6. From the �gure, there are several observations. First, the
performances of both KICP and BERT reasonably increase with
more training samples. Next, although KICP outperforms BERT in
all training settings, generally the di�erences are larger with less
training data. The reason may be that the pretrained KICP could
utilize the knowledge learned from KG and exploit less labeled
data to learn the mapping from question to answer and achieve a
good performance, while BERT needs to learn knowledge from the
labeled data, which may be harder without enough data and result
in worse performance.

4.5 Case Study
We demonstrate three typical cases by KICP and BERT on KBQA
datasets in Table 3, and provide more in Appendix C. In case 1,
BERT does not understand the knowledge about the lyricist of the
song, and fails in the question, while KICP learns related knowledge
in pretraining and correctly answer the question. In case 2, KICP
is capable of conducting multi-hop reasoning to �nd the complex
relation between “Thomas Harris”, “The Silence of the Lambs” and

Table 3: Cases of KICP and BERT

Case 1: Who composed the song Alexander’s Ragtime Band
in 1911 ?
KICP: Irving Berlin (correct)
BERT: Woody Guthrie (wrong)

Case 2: Thomas Harris’s 1988 novel The Silence of the Lambs
was actually a sequel - what was the name of the �rst book in
the series ?
KICP: Red Dragon (correct)
BERT: Dubliners (wrong)

Case 3: Which producer is responsible for Pearl Harbour,
Pirates of the Caribbean, and Armageddon ?
KICP: Robert Mulligan (wrong)
BERT: John Ridley (wrong)
Answer: Jerry Bruckheimer

“Red Dragon” for the answer when the direct relation is unavailable,
while BERT does not support such complex reasoning. In case 3,
although both methods fail in the question, KICP predicts a closer
answer which is also a producer with related knowledge, but BERT
fails and makes an unrelated prediction.

5 CONCLUSION
In this paper, we proposed a general Knowledge-Injected Curricu-
lum Pretraining framework (KICP) to learn the KG for question
answering, which could work with di�erent detailed techniques for
�exible application. We developed a general knowledge injection
module to convert the KG into the pretraining corpus for LM with
three key steps, and proposed a knowledge adaptation module to
reduce the negative impacts of the gap between the generated and
natural corpus by keeping the NLU ability of LM in knowledge
learning. Furthermore, we designed a curriculum reasoning module
to e�ectively pretrain the LM for human-like complex knowledge
reasoning. Experimental results on four QA datasets demonstrated
that the proposed KICP could achieve a more comprehensive learn-
ing and exploitation of KG for questions answering, and the cur-
riculum setting could e�ectively reduce the pretraining di�culty
and promote the outcome.

The proposed framework still had some limitations. First, the
diversity of corpus generated by KICP was limited, and it would
bene�t if the generated corpus could be more similar to natural ones.
Second, in the paper we mainly focused on the LM for language
understanding, and we will generalize our framework to generative
LM in the future. Last, KICP only exploited the KG as knowledge
source, and there were much more types of knowledge to be studied.
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A DATASETS
CN-QA is a Chinese KBQA dataset collected from smart voice
assistant accompanied by a KG named CN-KG with both entity
relations and attributes. ComplexWebQuestions [35] is a public
KBQA dataset with complex questions built on WebQuestions and
Freebase. FreebaseQA [13] is another public KBQA dataset based
on Freebase with both simple and complex questions derived from
TriviaQA and trivia websites. Since Freebase has been merged to
Wikidata, we use the Wikidata dump in [37], and map entities to
Wikidata to construct an answerable subset for ComplexWebQues-
tions and FreebaseQA. Math23K [38] is a public generative math
word problem dataset which answers the question with a generated
mathematical expression. We construct a KG based on the semantic
web HowNet [32] for Math23K following [41]. The statistics of the
datasets are available in Table 4.

B INTRODUCTION TO BASELINES
The introduction to the baselines are listed as follows.
• BERT [6] was the most widely used pretrained language

model, based on which our framework is implemented, thus
we add BERT as baseline to evaluate the improvement.

• RoBERTa [22] studied the impacts of hyperparameters and
task design in pretraining, and achieved a robustly optimized
BERT with signi�cant improvements.
• ERNIE [50] developed an aggregator network to explicitly

combine the entity embedding learned from KG with the
semantics learned by LM to inject knowledge into the LM.
• K-BERT [21] directly linked the related KG triples with the

sentence to inject the knowledge, which was fed to the LM
together for the knowledge-enhanced representation.
• KEPLER [37] trained the LM as the knowledge embedding

model, where the entity embedding was generated by the
LM on the entity description.
• K-Adapter [36] designed a neural adapter for each kind of

infused knowledge, and trained the adapters on di�erent
knowledge pretraining tasks.
• EmbedKGQA [33] represented the question and KG in the

same latent space, and inferred the answer with simple vector
computation.
• GPT4 [1] is the state-of-the-art LLMs developed by OpenAI,

which provides API to access the service.
• ChatGLM2 [8] is an open-sourced bilingual LLMs with good

performance, with its 6B pretrained weights released.

C MORE CASES
We also provide more cases predicted by KICP and BERT on the
KBQA datasets in Table 5 in addition to section 4.5. We classify
these cases into three categories, i.e., the easy questions, hard ques-
tions, and wrong questions that both KICP and BERT fail. We can
summarize the following observations. First, the easy questions
can be answered with only one knowledge triples, which investi-
gates whether the LM can memorize and exploit the knowledge.
From the cases, KICP performs better than BERT. Next, the hard
questions require reasoning over multiple knowledge facts. There
are two typical mistakes in these cases, i.e., wrong answers (case 6
and 7) and failed prediction (case 5), which shows that the method
may be not so capable of e�ective reasoning. Last, there are also
questions mistakenly answered by KICP (case 8 and 9). In these
cases, both the two methods make similar wrong prediction, which
shows that there are still much room to improve for KICP, such
as more reasoning patterns and more e�cient knowledge learning
and exploitation.

D SAMPLES OF CORPUS
We demonstrate some samples of the constructed corpora for the
three lessons of the CR module in Table 6. We place the unmasked
version of each sentence on �rst line and masked one on second, and
recover the split words for readability. The sentences are all in lower
cases due to tokenization. We also provide related knowledge in the
last two lines for lesson 3 for readability as some key information
may be discarded.
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Table 4: Statistics of Datasets

Dataset CN-QA ComplexWebQuestions FreebaseQA Math23K
KG CN-KG Wikidata Wikidata HowNet

#Questions 13,041 13,544 15,811 23,162
#Simple questions 12,265 0 13,070 /
#Hard questions 776 13,544 2,741 /

Avg. answer per question 1.67 1.43 1 1

#Entity 1,477,923 397,133 397,133 237,861
#Relations & attributes 1,112 733 733 6

#All triples 6,352,980 2,900,156 2,900,156 1,206,695
#Relation triples 4,081,756 2,900,156 2,900,156 1,206,695
#Attribute triples 2,271,224 0 0 0

# Corpus for lesson 1 6,352,980 2,900,156 2,900,156 1,206,695
# Corpus for lesson 2 1,806,861 3,128,153 3,128,153 1,356,960
# Corpus for lesson 3 1,806,861 3,128,153 3,128,153 1,356,960

Table 5: More Cases Predicted by KICP and BERT

Category Cases

Easy

Case 1: Aberystwyth lies on which bay ?
KICP: Cardigan (correct)
BERT: Blaenau Gwent (wrong)

Case 2: In Alice in Wonderland, who wanted to decapitate anyone who o�ended her ?
KICP: Queen of Hearts (correct)
BERT: Daisy Fay (wrong)

Case 3: Who wrote the thriller novel Birds of Prey ?
KICP: Wilbur Smith (correct)
BERT: Ludwig von Mises (wrong)

Case 4: Io, Europa, Ganymede and Callisto are all moons of which planet in our solar system ?
KICP: Jupiter (correct)
BERT: Pluto (wrong)

Hard

Case 5: What kind of money does the country with the nation anthem Du gamla, Du fria use ?
KICP: Swedish Krona (correct)
BERT: / (wrong)

Case 6: What form of government is used in the country that uses Chilean Peso ?
KICP: Presidential system | Unitary state (correct)
BERT: Presidential system | Unitary state | Patrimonial monarchy (wrong)

Case 7: What is the nationality of the author of The Little Prince ?
KICP: France (correct)
BERT: America (wrong)

Wrong

Case 8: Which comedy actor played Charlie Bind in the 1964 �lm Carry on Spying ?
KICP: Peter Hinwood (wrong)
BERT: Peter Hinwood (wrong)
Answer: Charles Hawtrey

Case 9: What team did Drogba play for that won the 2014 Coupe de France Final championship ?
KICP: Piast Gliwice (wrong)
BERT: Germinal Beerschot (wrong)
Answer: En Avant de Guingamp
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Table 6: Samples of the Constructed Corpus in the CR Module

Lesson Samples

Lesson 1

(1) [CLS] sir frederick ashton nationality united kindom [SEP]
[CLS] [MASK] [MASK] [MASK] nationality united kindom [SEP]

(2) [CLS] wilhelm friedrich kuhne member of royal society [SEP]
[CLS] wilhelm friedrich kuhne member of [MASK] [MASK] [SEP]

(3) [CLS] republic of maldives used money maldivian ru�yah [SEP]
[CLS] republic of maldives [MASK] [MASK] maldivian ru�yah [SEP]

(4) [CLS] sarbogard district time euro time [SEP]
[CLS] sarbogard district time [MASK] orthogonal [SEP]

(5) [CLS] �rst hellenic republic �ag �ag of greece [SEP]
[CLS] [MASK] [MASK] [MASK] �ag �ag of greece [SEP]

Lesson 2

(6) [CLS] collaroy plateau based in p : nsw [SEP] au - ns divides into gundagai shire council [SEP] collaroy plateau
based in divides into gundagai shire council [SEP]

[CLS] collaroy plateau based in p : nsw [SEP] au - ns [MASK] into gundagai shire council [SEP] collaroy plateau
based in [MASK] [MASK] gundagai shire council [SEP]

(7) [CLS] star fox 64 3d part of the series star fox ( virtual boy ) [SEP] starfox ( virtual boy ) characters fox makuraudo
[SEP] fox mccloud recording by ohara takashi [SEP] star fox 64 3d part of the series characters recording by ohara
takashi [SEP]

[CLS] star fox 64 3d part of the series [MASK] fox [MASK] [MASK] [MASK] ) [SEP] starfox ( virtual boy ) [MASK]
fox makuraudo [SEP] [MASK] [MASK] [MASK] [MASK] recording by ohara takashi [SEP] star fox 64 3d part of the
series [MASK] recording by ohara takashi [SEP]

(8) [CLS] spannarhyttan timezone utc + 2 : 00 [SEP] spannarhyttan timezone utc + 1 : 00 [SEP] spannarhyttan timezone
utc + 2 : 00 utc + 1 : 00 [SEP]

[CLS] spannarhyttan timezone utc [MASK] [MASK] : [MASK] [SEP] spannarhyttan [MASK] [MASK] utc + 1 : 00
[SEP] spannarhyttan ##unes ##zone [MASK] [MASK] 133 : [MASK] utc + 1 : 00 [SEP]

Lesson 3

(9) [CLS] theobald ziegler working at on lake the rhine [SEP]
[CLS] theobald ziegler working at on lake [MASK] [MASK] [SEP]
( [CLS] theobald ziegler working at strassbourg [SEP]

[CLS] strassbourg on lake the rhine [SEP] )

(10) [CLS] ferrieres , somme shares border with ailly - sur - somme pont - de - metz [SEP]
[CLS] ferrieres , somme [MASK] [MASK] [MASK] ailly - sur - somme pont - de - metz [SEP]
( [CLS] ferrieres , somme shares border with ailly - sur - somme [SEP]

[CLS] ferrieres , somme shares border with pont - de - metz [SEP] )
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