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Abstract—In intelligent education systems, question difficulty
prediction (QDP) is a fundamental task of many applications,
such as personalized question recommendation and test paper
analysis. Previous work mainly focus on data-driven QDP meth-
ods, which are heavily relied on the large-scale labeled dataset of
courses. To alleviate the labor intensity, an intuitive method is to
introduce domain adaptation into QDP and consider each course
as a domain. In educational psychology, there are two factors
influencing difficulty common to different courses: the obstacles
of comprehending the question and generating a response, namely
stimulus and task difficulty. To this end, we propose a novel
Stimulus and Task difficulty-based Adversarial Network (STAN)
that models question difficulty from the views of stimulus and
task. Then, in order to align the difficulty distribution of the
source domain and the target domain, we utilize the conditional
adversarial learning with readability-enhanced pseudo-labels.
Meanwhile, we proposed a sampling method based on density
estimation to implicit alignment. Finally, we conduct experiments
on the real questions datasets to evaluate the effectiveness of
our QDP model and domain adaptation method. Our method
significantly improves accuracy over state-of-the-art methods on
real-world question data of multiple courses.

Index Terms—domain adaptation, question difficulty predic-
tion, text readability

I. INTRODUCTION

In recent years, intelligent education systems have received

widespread attention due to efficiency and convenience. These

systems can not only help tutors to design high-quality pa-

pers, but also provide students with personalized questions

recommendation to improve their study efficiency [1]. Among

these applications, the difficulty is the most useful property of

test questions analysis. The difficulty of a question is defined

as an estimate of the skill level needed to pass it. There are

two ways to measure the difficulty. In classical test theory,

it is measured by calculating the proportion of students who

answer a question correctly [2]. In practice, the experts are able

to use their own experience to estimate the difficulty index.

However, neither of these two measurements can be applied

to the intelligent education system. The former requires test

logs, which are unavailable before the question is answered

by many students. Although test logs are unnecessary in the
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(a) The proportion of courses by
student number.

(b) The distribution of the student num-
bers in different majors.

Fig. 1. Statistics of the student number in the course.

latter, this human-based way is labor-intensive, subjective and

powerless in the face of massive data.

Recently, data-driven solutions have emerged [3], [4], which

combine educational psychology and NLP methods. By build-

ing question representation and prediction algorithms, data-

driven methods learn from a large amount of data. However,

the dependence on large-scale difficulty-labeled datasets hin-

ders its application. A statistics from a university [5] shows

that more than 50% of the courses are only taken by a small

number of students, while the courses with more students are

concentrated in a few popular majors, as shown in Figure 1.

For these courses without lots of students, although the teacher

can make many questions, the difficulty label is hard to obtain.

Moreover, few schools share their difficulty-labeled question

data, which are private and commercial. Therefore, the data-

driven methods suffer from the lack of labeled question data.

Fortunately, there are some popular public courses that

are resource-rich, such as calculus and probability theory.

It’s meaningful to reuse data and model from resource-rich

courses to resource-poor courses. In order to implement this,

we pay attention to the common factors influencing question

difficulty. According to educational assessment theory [6], the

difficulty of a question is affected by the following two factors:

One is the obstacle that students try to understand the words

and phrases in the question, named stimulus difficulty, which

is related to semantic and readability of question stem. For

example, considering the math-physics course pair, there are
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    C.  line speed
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Fig. 2. An illustration of the cross-domain question difficulty prediction. In the Domain Adaptation Procedure box, points represent the distribution of
features, and the curves represent the distribution of question difficulty. left: original distribution; top: learning the predictor with readability and generating
the pseudo-label; bottom: difficulty-based sampling to pre-align the conditional distributions. right: explicitly alignment to obtain final adaptation result.

both some complex formulas and sentences, which are hard to

understand. The other one is the barrier that students attempt

to generate a response, named task difficulty. For multiple

choice questions, it is about the difficulty of thinking over

options and choosing the correct answer, and the difficulty

depends on the similarity between the answer and distractors.

Therefore, we extract common features by modeling stimulus

and task difficulty. However, due to the distribution shift

between different courses, we introduce domain adaptation to

learn more transferable representations, where each course is

considered as a domain.

There are two major challenges along this line. First, the

professional terms of various courses are quite different. As

shown in the left of Figure 2, red and blue words are domain-

specific words that only appear in specific courses. Although

there are some common words in green color, a large number

of specific vocabulary is detrimental to the representation.

Second, only aligning margin distributions to learn domain-

invariant representations may cause difficulty mismatch be-

tween domains. Although some prior works use pseudo-labels

to learn discriminative representations, the bias caused by

falsely-pseudo-labeled samples will make it be vulnerable [7].

To address the challenges above, we propose a new frame-

work called Stimulus and Task difficulty-based Adversarial

Network (STAN). Firstly, we extract the stimulus and task

difficulty representation according to semantic and readability

features. Text readability is natural transferable since questions

with worse readability are tend to be more difficult, thus we

combine semantics and readability to bridge two courses. Sec-

ondly, we propose readability-enhanced pseudo-label (REPL),

which utilize a pre-trained readability-based predictor to obtain

more accurate pseudo-labels, especially in the beginning stage

of learning. Thirdly, we adopt difficulty-based data sampling.

After obtaining the REPL of the target domain, we choose

data in the same difficulty distribution from two domains

to pre-alignment. Finally, we train the network by a mean-

squared-error loss and a discriminator which will align the

distribution of different domains to learn the more transferable

representation as shown in Figure 2. In summary, the key

contributions of our work can be summarized as follows:

1) We propose a new QDP method with modeling educa-

tional concepts to improve both accuracy and domain-

invariant when compared with prior work.

2) We develop a domain adaptation strategy to align the

difficulty-conditioned distribution between two courses

by both data sampling and explicit alignment in a

continuous label space.

3) We conduct comprehensive experiments on diverse real-

world questions of multiple course pairs to validate the

effectiveness of STAN framework.

II. RELATED WORK

Generally, the related work can be classified into the fol-

lowing two categories, i.e., question difficulty studies both in

education and NLP field and domain adaptation.

A. Question Difficulty Prediction

Traditional Educational Psychology Method. How to

measure question difficulty has been studied for a long time in

the education field. Some psychological theories used students’

feedback in the test to evaluate the difficulty of the question,

such as Classical Test Theory (CTT) and Item Response

Theory (IRT) [8]. Besides, some works focus on the relations

between several factors of questions and the corresponding

difficulty. For example, Cheng et al. [6] proposed a question

difficulty framework comprising concepts such as content diffi-

culty, stimulus difficulty, task difficulty and expected response

difficulty. Sim et al. [9] found that the difficulty is related to

item discrimination. Wang et al. [10] found that the setting of

options affects the difficulty of the multiple-choice questions.

However, the common limitation of these works is that they

are subjective and labor-intensive. Therefore, all these works

are not suitable for intelligent education systems.
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Fig. 3. The overview of the proposed STAN model.

Natural Language Processing Method. The QDP methods

based on NLP and Representation Learning have recently at-

tracted a lot of attention [11]–[13]. Relying on hand-craft fea-

tures, Mothe et al. [14] studied that text linguistic features are

closely related to question difficulty, such as word frequency,

word diversity, average word and sentence length. There are

many end-to-end framework studies on CNN / RNN attention

mechanism. Ran et al. [15] proposed an option comparison

network for multiple-choice problems (MCP) in READING

problems, which compares options at word-level to identify

their correlations. Qiu et al. [4] proposed a document enhanced

attention-based network (DAN) to predict the difficulty of

MCP in medical exams. Huang et al. [3] proposed a test-

aware attention-based CNN framework to predict the difficulty

of Reading questions. However, all these data-driven methods

rely on a large scale question data with difficulty labels. And

existed QDP models are designed for a specific course, which

limits their application. Unlike the above solutions, our method

utilizes the common features without any assumptions that are

only valid in a specific course.

B. Domain Adaptation

There are lots of domain adaptation methods that learn

the domain-invariant representation by statistical discrepancy

[16]–[19] or discriminator-based method [20]–[23]. Most of

the work did not pay attention to the labels distribution, which

may cause label mismatch and poor transferable. In recent

years, there are some works about this shortage [24]–[27].

Long et al. [21] first proposed to align the conditional distri-

bution by the multilinear map and a joint domain discriminator.

Since the ground-truth in the target domain is unavailable, the

pseudo-label is used for explicit alignment. After that, there are

many pseudo-label-based works. Cicek et al. [24] proposed an

adversarial regularization method to improve the performance

in image classification. Luo et al. [25] proposed self-adaptive

adversarial loss for the image semantics task. Chen et al.

[26] found that inaccurate pseudo-label will be damaging,

and designed a novel training strategy with the confidence of

pseudo-label. The above works all utilized explicit alignment,

and Jiang et al. [27] proposed a implicit alignment method

from an sampling perspective. Through sampling, the label

distribution is aligned without false-pseudo-label risk.

A common assume of these works is that the label space is

discrete in the classification setting. But in the QDP problem,

the label space is continuous in interval [0, 1], which will make

the false-pseudo-label more harmful. And implicit alignment

can’t guarantee the label distribution is the same. Therefore

our method is proposed to alleviate this disadvantage.

III. STAN FRAMEWORK

In this section, we first formally define the problem of cross-

domain question difficulty prediction. Then, we present the

technical details of our QDP model. Finally, we present our

domain adaptation method and training strategy.

A. Problem Setup

In this paper, we assume that there are two domains, Ds

is the source domain which represents resource-rich course,

and Dt is the target domain which refers to resource-poor

course. We further assume that we are given a set of labeled

training data Xl
s = {(Qi

s, y
i
s)}n

l
s

i=1 and unlabeled training data

Xu
s = {Qi

s}n
u
s

i=1 from the source domain, where nl
s and nu

s are

the number of labeled question data and unlabeled question

data, respectively. Besides, we have a set of unlabeled data

Xt = {Qi
t}nt

i=1 from the target domain, where nt is the number

of all question data which is unlabeled.

Each question Qi has a question stem S, a correct answer

A ,and three distractors {C1, C2, C3} if it’s a multiple-choice

problem. We define the question-answer statement Sa as the

sentence formed by combining the question stem and its

answer. For multiple-choice problems, there are question-

distractors statements Si. If the question is labeled, it has a

difficulty attribute yi ∈ R obtained from students’ test logs.
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Domain adaptation reuses labeled data from one domain to

train model for a different but related domain. The goal of

cross-domain question difficulty prediction is to train a robust

model based on all labeled and unlabeled data and adopt it to

predict the unlabeled data in the target domain.

B. Question Difficult Prediction Model

Our QDP model is designed not only to predict the difficulty

of an unseen question, but also to extract more robust features

of questions, which is important for improving performance

in different domains. As shown in Figure 3(a), for a question,

we firstly extract deep semantic features by Bi-LSTM, and

readability features of question text by linguistic processing

in Readability Feature Extractor (RFE). Then, we model

the stimulus and task difficulty representation and designed

Stimulus Difficulty Module (SDM) and Task Difficulty
Module (TDM) to get the representation of a question, which

is utilized to predict an estimated value. Meanwhile, we

pretrain a difficulty predictor only with readability features.

After that, we combine there two prediction results to obtain

Readability-Enhanced Pseudo-Label (REPL) as final esti-

mation of difficulty. The details are showed as follows:

Question Text Encode. We use Bi-LSTM to encode each

text sequence since it can learn not only low-level linguistic

features (e.g., relation and structure), but also high-level se-

mantic. For question stem S = {w0, w1, ..., wla}. Then we

take word w in S to its d-dimensional embedding e with

an embedding matrix E. This matrix is initialized by the

Word2Vec tool [28], and E ∈ R
|V |×d, where |V | is the size

of vocabulary. Finally, we extract the semantic features for

sentence with Bi-LSTM. Specifically, we set
−→
h (0) =

←−
h (0) =

{e0, e1, ...eLs
}. At each position t, bidirectional hidden states

are updated with input from previous layer:

−→
h

(l)
t = LSTM(

−→
h

(l−1)
t ,

−→
h

(l)
t−1;

−→
θ LSTM), (1)

←−
h

(l)
t = LSTM(

←−
h

(l−1)
t ,

←−
h

(l)
t−1;

←−
θ LSTM). (2)

Because the hidden states can capture the context and

linguistic information, the encode result of the sentence is

s ∈ R
L×2d where st ∈ R

2d:

s = concat(
−→
h (l),

←−
h (l)). (3)

And for other text, such as question-distractor statement

Sa and question-distractor statement Si, we also can obtain

Bi-LSTM outputs sa ∈ R
La×2d, si ∈ R

Li×2d via the same

encoding process. Ls, La and Li are the lengths of the

question stem and question-answer and question-distractor

statements respectively.

Readability Features. In order to obtain the readability fea-

tures of a given question stem, we utilize the StanfordCoreNLP

toolkit [29] to finish tokenization, part-of-speech tagging and

syntax parsing as shown in Figure 3. Then, from the levels

of vocabulary, sentence and syntax, We construct a multi-

level linguistic feature set with 12 features to measure the

readability of the question text:

TABLE I
QUESTION TEXT READABILITY FEATURES.

Level Feature

Word Average word length
Frequency weighted average word length

Part of speech Proportions of verb, noun, adjective

Sentence The sum of word lengths
Number of words
TTR

Syntax Syntax tree height
Dependence distance

Comprehensive index Flesch reading ease
Gunning-Fog index

• Words are the most basic unit of sentence formation in

language and word recognition is an important process

in question reading [30]. Word recognition in reading is

affected by many factors, such as the the average length

of a word, and its frequency weighted average.

• In part of speech, we count the proportions of verbs,

nouns, adjectives and symbols in the question text.

• Syntax analysis is divided into two aspects: syntax anal-

ysis based on phrase structure and syntactic analysis

based on dependence. The former analyzes the structural

relationship between the phrases in the sentence in a tree

manner [31]. We adopt the height of syntax tree as a

feature; the latter reveals the syntax dependence between

the words in the sentence on the basis of identifying the

main predicate in the sentence, such as the modification

relationship and the dominance relationship [32], and we

adopt the average dependence distance.

• Moreover, we take two classic and popular readability

scores: Flesch reading ease and Gunning-Fog index [33],

which measure the complexity of the questions compre-

hensively.

In summary, the linguistic features is shown in Table I. For

question Q, the readability feature of its stem is fr ∈ R
Nr ,

where Nr is the number of readability features.

Stimulus Difficulty Module. Stimulus difficulty refers to

the difficulty about comprehending the words and phrases in

a question and the information that accompanies the question

i.e. note and table. For example, questions with simple easy-

to-understand descriptions are usually easier than those that

need careful comprehension. Consider that stimulus difficulty

is determined by question complexity, knowledge depth and

text readability, we combine the average of semantic features

of stem s̄ and readability features fr as the representation of

stimulus difficulty as shown in Figure 3(d). First, we take the

weighted tensor product of s̄ and fr as interaction matrix Ir.

Then we take the attention mechanism to aggregate the matrix

to stimulus representation fs:

Ir = Ws ◦ (s̄⊗ fr), (4)

fs = Attention(s̄, Ir)× Ir, (5)
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Attention(s̄, Ir) = Softmax(
s̄× IrT√

dk
), (6)

where ◦ and ⊗ denote the Hadamard product and the Kro-

necker product respectively, dk is the dimension of text

encoder, and Ws is a trainable parameter.

Task Difficulty Module. Task difficulty refers to difficulty

students face when they finish the task. For multiple-choice

problems (MCP), students need to choose from multiple op-

tions. Hence the task difficulty can be represented by confusion

of distractors. For fill-in-blank problems (FBP), students need

to write an answer to the blank, thus the difficulty can be repre-

sented by the similarity between its stem and question-answer

statement. In detail, for MCP, we use the word-level matching

[4] to measure the similarity between distractors and answer.

Specifically, the question-answer statement is compared with

all question-distractors one by one to collect the information

describing the misleading information. Then, the distraction

information gathered from the question-distractor statement si
is computed as:

Ai = Attention(sa, si)× si, (7)

Mi = concat(sa −Ai, sa ◦Ai), (8)

ŝi = ReLU(WmMi + bm), (9)

where Wm and bm are trainable parameters of the predictor.

ŝi represents the misleading information from the i-th distrac-

tor. Then we gather all the misleading information collected

from distractors together as:

ft = concat(̂s1, ŝ2, ŝ3). (10)

For FBP, we measure the similarity between question stem

and question-answer statement. Hence in above procedure, the

distractors si is replaced with stem s and we obtain its task

representation ft.
Readability-Enhanced Difficulty Prediction. It’s effective

that utilize a pre-trained readability-based predictor to enhance

our model in the training stage. First, we predict readability

difficulty yr. Then, based on the concatenated stimulus and

task representation fq , we use a fully connected layer to predict

the model difficulty:

yd = Wpfq + bp, (11)

where Wp and bp are trainable parameters. Finally, we use a

progress variable α from 1 → 0 to adjust the weight of these

two predictions:

ŷ = α× yr + (1− α)× yd, (12)

where ŷ is the REPL that is more accurate than simple pseudo-

label. Each training 5000 steps, the α is reduced by 1/2. Note

that in the test stage, we set α = 0.

C. Adaptation Method

As mentioned above, the STAN framework is trained on

labeled question data from the source course, and unlabeled

data from the target course. To prevent prediction mismatch,

we adopt a simple but effective difficulty-based sampler to

(a) Source difficulty distribution be-
fore sampling.

(b) Source difficulty distribution after
sampling.

(c) Target difficulty distribution before
sampling.

(d) Target difficulty distribution after
sampling.

Fig. 4. An illustration of difficulty-based sampling method.

align two domains implicitly. Then we utilize all the data Xs

and Xt to train a domain classifier which learns transferable

features, and minimize the prediction loss with labeled data

(Xs, ys) simultaneously.

Difficulty-based Implicit Alignment. We use a sampling

method to align the two domains implicitly. First, we take the

common interval (ymin, ymax) of the difficulty value of the

two domains. Then, we uniformly sample N values {yi}i=N
i=1

from this interval. After that, for each sample value yi, we

randomly choose data (Xs, ys) satisfying that ys ∈ [yi−δ, yi+
δ] as shown in Figure 4(a) and Figure 4(c). The radius of

the neighbourhood δ is determined by the estimated density

function. With Epanechnikov kernel, the density function can

be estimated by:

f̂h(y) =
1

Ns

Ns∑
i=1

[1− (y − ysi)
2

h2
], (13)

δ(yi) = w/f̂h(yi), (14)

where f̂h(x) is the final estimated density function, h is

the bandwidth parameter, and w determines the sampling

range. The function [1 − x2

h2 ] is Epanechnikov kernel, which

is effective in scoped data distribution with less border effect.

In our experiments, we set h = 0.07 and δ = 0.2.

For unlabeled target domain data, we predict pseudo-labels

(Xt, ŷt) mentioned above to replace its absence of ground-

truth difficulty. Finally, we obtained the difficulty-aligned

batch (Xs, ys, Xt, ŷt) where ys and ŷt is closed enough as

shown in Figure 4(b) and Figure 4(d), we use it to train STAN

framework and repeat this process until the model converges.
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Training Strategy. In adversarial network training, there

is a domain classifier to discriminate which domain the data

come from, and a difficulty predictor to estimate a difficulty.

Since the above two optimization goals are opposite, the

adversarial training is used to train the overall network as a

minimax game. With the gradient reverse layer, the feature

extractor receives gradients from both the discriminator and

the predictor, and gradients of the discriminator are nega-

tive. Conditional domain discriminator takes features fq and

its pseudo label ŷ as input. Formally, given a conditional

discriminator D(Q; θd) with parameters θd, a feature ex-

tractor F (Q; θf ) with parameters θf , a difficulty predictor

G(Q; θg) with parameters θg . Then, distribution alignment will

be applied to reduce the shift between the two domains is

implemented by:

1) Training Conditional Domain Discriminator. To

align the conditional distribution P (F (Qs), ŷs) and

P (F (Qt), ŷs), we train the domain discriminator with

parameter θd. The loss function of domain discriminator

can be written as:

LCDA = EQs∼Xs
[log(1−D(F (xs), ŷs))] (15)

+EQt∼Xt
[log(D(F (Qt), ŷt))].

2) Minimize Prediction Loss and Confusing Discriminator.

To make the prediction ŷs more closed to the true

difficulty ys, we train the predictor with parameters θf
and θg , while confusing the domain discriminator with

parameter θd. The loss function of train feature extractor

and predictor can be written as:

LMSE = E(Qs,ys)[(G(F (Qs))− ys)
2 (16)

−log(1−D(F (xs), ŷs))]− EQt
[log(D(F (Qt), ŷt))].

In summary, using the gradient reversal layer, we integrate

the aforementioned two terms into a whole objective function

as below:

Loverall = E(Qs,ys)[(G(F (Qs))− ys)
2 (17)

+λlog(1−D(F (Qs), ŷs))] + EQt
[λlog(D(F (Qt), ŷt))],

where λ is trade-off hyper-parameter. In GRL, this parameter

is usually changed with a specified schedule during training.

In our network, we set λ = 1 fixed for all experiments. In

summary, the labeled source samples and unlabeled target

samples are used to train our model. Then we adopt the

learned predictor to estimate the difficulty of the unlabeled

target questions.

D. Theoretical Understanding

We give theoretical motivations of the STAN with the

similar formalism of the domain adaptation theory. Formally,

given source domain S and target domain T , let H be the

hypothesis space, the error εT (h) of hypothesis h ∈ H
on the target domain is bounded by three terms [34]: the

error εS(h) on the target domain, the distribution discrep-

ancy |εS(h, h∗) − εT (h, h
∗)|, and the optimal shared error

λ = εS(h
∗) + εT (h

∗).

The shared error λ is considered to be a constant, but it is not

guaranteed that λ will be small even εS(h) and |εS(h, h∗) −
εT (h, h

∗)| are minimal [26]. To address this problem, We give

the bound of εT (h) from the perspective of pseudo-labeling

function ĥ:

εT (h) ≤ εT (ĥ) + εT (h, ĥ)

≤ εT (ĥ) + εS(h, ĥ) + |εS(h, ĥ)− εT (h, ĥ)| (18)

≤ εS(h) + [εS(ĥ) + εT (ĥ)] + |εS(h, ĥ)− εT (h, ĥ)|.
The bound can be divided into three parts which are

correspond to our different motivations:

• Error in source domain. The discriminator confusion will

disturb the optimization of the error in source domain.

The proposed adaptive method alleviates this disadvan-

tage by difficulty-aligned sampling and conditional ad-

versarial learning.

• Error of pseudo-label. The proposed REPL aims to im-

prove the accuracy of pseudo-label, especially at the be-

ginning of learning, which can be shown in experiments.

Therefore, this part can be reduced compared to simple

pseudo-label.

• Domain discrepancy. This term is optimized in the pro-

cess of training the conditional discriminator. Long et

al. [21] have given the theory of domain discrepancy

optimization. Because the QDP problem doesn’t meet the

setting of the classification, we give a similar result by

redefining the error of a hypothesis as follow.

Define a loss hypothesis space Ψ = {ψ = �[|h(f) − ŷ| ≤
δ] : h ∈ H}, where ψ is a function: (f, ŷ) 	→ {0, 1}. Then,

we found that even if the loss hypothesis is different, it can

still give the same result as in [21]. First, by considering Ψ
distance, the distribution discrepancy can be bounded as that:

dΨ(S, T ) ≥ |εS(h, ĥ)− εT (h, ĥ)|. (19)

Then, due to the function ψ and D are both (f, ŷ) 	→ {0, 1},

by the fact that Ψ ⊂ D, the Ψ distance can be bound by

training conditional domain discriminator:

dΨ(S, T ) ≤ sup
D∈D

|ES [D(f, ŷ) �= 0]− ET [D(f, ŷ) �= 0]|
≤ sup

D∈D
[ES [D(f, ŷ) = 1] + ET [D(f, ŷ) = 0]].

(20)

According to Eq.(19) and Eq.(20), the domain discrepancy

|εS(h, ĥ)−εT (h, ĥ)| can be optimized with discriminator even

in the QDP task setting.

IV. EXPERIMENTS

In order to verify the effectiveness of our method, we

conduct comprehensive experiments on multiple courses. First,

we compare with baseline approaches to show that our frame-

work STAN achieves the best performance. Then, we conduct

an ablation study to show the effectiveness of each module,

especially our domain adaptation method. After that, we show

our REPL is more effective than using simple pseudo-label
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TABLE II
THE STATISTICS OF THE MATHEMATICS DATASET.

Statistics Raw Processed

# of test logs 651,944,494 27,169,290
# of questions 688,598 20,000
# of students 9,670,747 4,130,308
Average test logs per question 947 1,358
Average test logs per student 67 7

by comparing the accuracy. Finally, we show the relationship

between the performance and the similarity between datasets.

A. Dataset Preparation

Our dataset includes four courses: Mathematics, Physics,

History and Moral Education. We collect a large number of

questions with difficulty labels from Zhixue1 and LUNA2

online education system. The Mathematics dataset is collected

from Zhixue, and the Physics, History and Moral Education

datasets are collected from LUNA. The statistics on the

Mathematics dataset is shown in Table II, and the question

numbers of all the courses are shown in Table III.

Data Preprocess. For data with test logs, we firstly drop

duplicate logs. In the online system, some students solve the

same question multiple times. We delete all the duplicate test

logs and only keep the first attempt to make the difficulty

more truthful. After dropping duplicates, there is only one

test log for a student and a specific question. Then, we drop

the questions that are related to few test logs. If only a small

number of students try to solve the problem, the difficulty of

the question will be very unstable. To avoid this, we filter the

questions having no more than 80 test logs.

Question Difficulty. After removing duplicate records and

filtering questions with fewer records, we calculate the real

difficulty of questions. Because the question difficulty cannot

be directly observed, we obtain the real difficulty of each

question from the test logs. Instead of calculating the percent-

age of students who answer the question wrongly, we divide

the student’s average score of a question by the total score

of this question to get the proportion of incorrect answers.

This approach can handle partially correct situations. The real

difficulty Ri of Qi computed as follows:

Ri =
Gi

N × gi
, (21)

where Gi is the sum of all students’ scores for the question,

N is the number of answers and gi is the full score of this

question.

B. Experimental Setup

Network Architecture. Firstly, all word embeddings are

128-d vectors pre-trained by the Word2vec tool [28]. Secondly,

for the question text encoder, we adopt a Bi-LSTM with 2

layers, and the sizes of hidden states in these modules are set

1https://www.zhixue.com/
2https://luna.bdaa.pro/

TABLE III
THE QUESTIONS NUMBER OF FOUR DATASETS.

Multi-Choice Fill-in-Blank

Math (M) 227,899 148,684
Physics (P) 154,442 37,719
History (H) 309,179 29,814
Moral Edu (ME) 115,547 21,507

to 128. The parameters of the Bi-LSTM are shared between the

processing of stem, question-answer statements and question-

distractor statements. For the predictor and discriminators,

we use 3 layers of fully-connection with batch normalization

[35]. Finally, all weight matrices are randomly initialized

by Kaiming uniform distribution [36]. All biases are set to

zeros except for prediction layer, and bias of prediction layer

is randomly initialized by uniform distribution in the range

between −√
fan in and

√
fan in, where

√
fan in are the

numbers of input features.

All models are implemented by PyTorch and all experiments

are run on a Linux server with two 2.20GHz Intel(R) Xeon(R)

Processor E5-2699 v4 CPUs and a Tesla P100 PCIe GPU. Our

codes are available in https://github.com/bigdata-ustc/STAN.

Training Settings. We use Adam optimizer and the learning

rate is set as 0.001. The dropout [37] is introduced between

layers with probability 0.2 to prevent overfitting. Our model

is trained with a batch size of 32. For all datasets, we split

75% of the data as the training set and the rest as the test set.

Evaluation Metrics. To measure the performance of our

method, we use the Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE). RMSE and MAE are widely

used in regression tasks, which are used to measure the

distance between the predicted difficulty and the ground truth

difficulty in the target domain. Ranges of both RMSE and

MAE are (0,+∞), and the smaller they are, the better

performance the results have.

Baseline Approaches Before comparing model perfor-

mance, we select a comprehensive baseline approaches. Firstly,

we choose source-only baselines LSTM and CNN with atten-

tion (ACNN), which are used in QuesNet [12] and TACNN [3],

respectively. In addition, pre-training methods are widely used

in the NLP field, of which BERT [38] is the most representa-

tive method. Secondly, three basic domain adaptation methods

are adopted as baselines, includes the pioneering work deep

domain adaptation MK-MDD based DAN [17], discriminator-

based DANN [39] and ADDA [40]. Then, we selected two

adaptation methods JAN [18] and CDAN [21] which consider

joint feature alignment. Finally, we compared with a recent

work MDD [19], which is. Note that for all DA baselines, the

feature extractors are the same as our STAN.

C. Performance Comparison

To observe how our STAN perform in different courses,

we choose four course pairs: M→P (MCP), H→ME (MCP),

M→P (FBP) and H→ME (FBP). Although data in the target

domain is unlabeled, in order to ensure that there are no
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TABLE IV
THE PERFORMANCE RESULTS.

Domain M→P (MCP) H→ME (MCP) M→P (FBP) H→ME (FBP) Avg.

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 0.2963 0.3615 0.2845 0.3432 0.3011 0.3695 0.2844 0.3781 0.2916 0.3673
ACNN 0.2941 0.3372 0.2902 0.3517 0.2934 0.3661 0.2865 0.3576 0.2911 0.3531
BERT 0.2915 0.3497 0.2812 0.3202 0.2987 0.3524 0.2738 0.3359 0.2863 0.3396
DANN 0.2895 0.3415 0.2738 0.3128 0.2950 0.3481 0.2816 0.3471 0.2850 0.3374
ADDA 0.2784 0.3342 0.2849 0.3160 0.2843 0.3263 0.2794 0.3310 0.2818 0.3269
DAN 0.2961 0.3546 0.2593 0.3211 0.2901 0.3407 0.2896 0.3409 0.2838 0.3393
JAN 0.2710 0.3238 0.2546 0.3093 0.2765 0.3328 0.2690 0.3282 0.2678 0.3235
CDAN 0.2707 0.3175 0.2672 0.3116 0.2628 0.3289 0.2325 0.2786 0.2570 0.3208
MDD 0.2611 0.3072 0.2369 0.2982 0.2429 0.3173 0.2443 0.2947 0.2463 0.3044
STAN 0.2483 0.2945 0.2364 0.2857 0.2407 0.2853 0.2281 0.2709 0.2384 0.2841

TABLE V
THE RESULTS OF THE ABLATION STUDY OF OUR METHOD.

QDP Model Domain Adaptation M→P (MCP) H→ME (MCP)

Stimulus Difficulty Task Difficulty REPL Sample MAE RMSE MAE RMSE

1 � 0.2994 0.3358 0.2696 0.3029
2 � 0.3016 0.3372 0.2715 0.3177
3 � � 0.2912 0.3409 0.2602 0.3104
4 � � � 0.2518 0.3022 0.2459 0.3065
5 � � � 0.2547 0.3105 0.2471 0.2982
6 � � � 0.2571 0.3084 0.2402 0.2921
7 � � � � 0.2483 0.2945 0.2372 0.2858

overlaps between the questions in training sets and testing

sets, we remove the questions in training sets with the same

documents which exist in testing sets. Thus, the questions in

testing sets are all new questions in target domain. Table IV

shows the overall QDP results of all models. The accuracy

values reported here are the average of five-times test. From

the results, we can get several observations:

1) In summary, we can see that STAN performs best,

source-only methods e.g. LSTM and ACNN perform

worst, which means that when the model trained from

a course directly applied to another course, its perfor-

mance will decrease obviously.

2) With domain adaptation, the performance of DAN,

ADDA and DANN is improved comparing to source-

only methods. But they’re beaten by STAN because of

training examples mismatch. Meanwhile, BERT does not

perform as well as STAN, which indicates that the pre-

trained BERT which aims for the general NLP task is

not the best model for the QDP task, which contains a

large number of symbols and special expressions.

3) We can see that he MDD shows a good performance

on our datasets, and the models with joint alignment

(STAN, JAN, CDAN) perform better than those with

marginal alignment (DAN, ADDA, DANN). And the

STAN performs best because of the REPL and difficulty-

based implicit alignment. This observation suggests that

alignment of conditional distribution between question

features and difficulties are effective.

D. Ablation Study

The ablation study is conducted to highlight the individual

contribution of each components in STAN, and the result is

shown in Table V. From the results, we can find that:

1) Overall, the more terms are added, the better the perfor-

mance is. Our complete model (Row 7) shows the better

performance than all the others ablation methods.

2) The first two rows only keep stimulus and task difficulty

representation, respectively. By comparing Row 1 and

Row 2, we find that stimulus difficulty outperforms the

task difficulty. This observation suggests that the stim-

ulus module can reflect the difficulty better in different

courses than the task module. The reason is that the

stimulus representation contains the readability features

of the question text, which is more common in different

courses, especially in M-P and H-ME course pairs which

have similar question compositions.

3) After DA is deleted in Row 3, the STAN degenerates

into a pre-training method, which is comparable to pre-

training methods such as LSTM and ACNN in Table

IV. We find that STAN without DA performs better

than other methods. This observation shows that STAN

captures common difficulty-related features better.

4) Performance in Rows 4-7 is better than Rows 1-3,

so the domain adaptation can help reduce the domain

discrepancy and improve performance. Besides, Rows 5

and Rows 6 show that the addition of the REPL and

sampling alignment bring a performance improvement.
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TABLE VI
IMPROVEMENT OF REPL COMPARED WITH PL.

Domains M→P (MCP)

Steps 1000 2000 3000 4000 Avg.

PL 0.4337 0.3889 0.3196 0.2820 0.3561
REPL 0.3281 0.3015 0.2965 0.2774 0.3009
Improve 24.35% 22.47% 7.23% 1.63% 15.50%

Domains H→ME (MCP)

Steps 1000 2000 3000 4000 Avg.

PL 0.4417 0.3644 0.3358 0.2960 0.3595
REPL 0.3560 0.3221 0.3017 0.2841 0.3160
Improve 19.40% 11.61% 10.15% 4.02% 12.10%

Fig. 5. The relationship between similarity between courses and performance.

E. Impact of Readability-Enhanced Pseudo-Label

In this section, we analyze the effect of REPL in domain

adaptation. we explore the MAE error of REPL and simple PL

at four training steps to confirm the REPL does improve the

pseudo-label accuracy in target domain, which can guarantee

the generalization bound. The results are shown in Figure VI.

Experimental results show that the readability information

improves the accuracy of pseudo-labels during the training

stage. At the beginning of the training stage, the exists of

course terms and domain shift make deep semantic features

almost unavailable. Due to the influence of the initialization

parameters, it is not even guaranteed that the value of sim-

ple PL is between [0, 1]. In this stage, it’s obvious that

pseudo-label without readability will cause serious mismatch

and error accumulation because of its inaccuracy. The pre-

trained readability model can alleviate this shortage, thus the

REPL improves performance by about 20%. As the training

continues, the semantic features are gradually aligned, and

we reduce the proportion of the readability part. Therefore

when semantic features are better than readability, the former

is almost ignored.

F. Impact of Courses Similarity

In domain adaptation, our model should extract domain-

invariant features that represent semantic information in

question. Since each question is associated with domain-

specific terminologies, so the words similarity between dif-

ferent courses will affect the transfer performance. In order to

measure this impact, we randomly sample 10,000 questions

from two different courses in our datasets, and calculate the

similarity between representations of words from these two

courses. Specifically, for a course Ci, we first collect ni

words {w1, w2, ..., wni
} from sample questions. Note that we

remove the stopwords to capture course-specific words. Then

we utilize pre-trained word embedding to output its features

{v1,v2, ...,vni}. Finally, the representation vector of course

Ci and cosine similarity between course Ci and course Cj are

defined as:

Ci =

ni∑
i=1

vi

ni
, (22)

sim(Ci,Cj) =
Ci ·Cj

||Ci|| · ||Cj || . (23)

As illustrated in the Figure 5, for each similarity from 0.5 to

0.8, we sample 10 times and make boxplots of MAE in blue

and RMSE in red. Even these results are better than source-

only training without DA, we can observe that the more similar

source and target domain, the better transfer performance. This

observation shows that if the two courses are similar, such as

math and physical, we can obtain a good performance. And

for these not similar, such as math and history, using only

text readability and semantics is not enough. In this situation,

the textual expressions of the two courses are different. For

example, there are lots of formulas in math, which rarely

appear in history. Therefore additional domain information is

needed, which we will explore in the future.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a framework for cross-domain

question difficulty prediction. Specifically, we first designed

feature extractors based on stimulus and task difficulty repre-

sentation that are common in different courses. Then, we pro-

posed readability-enhanced pseudo-label and difficulty-based

sampling methods to implicit alignment. Finally, we utilized

an adversarial learning method to learn more transferable

features. From the experimental results, we showed that our

STAN framework outperforms other prior domain adaptation

and QDP work in accuracy. And we conducted the ablation

study to show the improvement of each module. Besides, we

explored the impact of pseudo-label and course similarity.

In the future, there are still some directions for further

studies. First, besides the text semantic and readability, we will

consider the other factors affecting the stimulus difficulty, e.g.

images and tables attached to the questions. Second, as our

STAN is a general framework, we will test its performance on

other kinds of domains (e.g. learning period) and meanwhile,

on the education applications in other tasks, such as the

similarity measurement of questions and problem solver [41].
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