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Abstract

In online education systems, for offering proactive services to
students (e.g., personalized exercise recommendation), a cru-
cial demand is to predict student performance (e.g., scores)
on future exercising activities. Existing prediction methods
mainly exploit the historical exercising records of students,
where each exercise is usually represented as the manually
labeled knowledge concepts, and the richer information con-
tained in the text descriptions of exercises is still underex-
plored. In this paper, we propose a novel Exercise-Enhanced
Recurrent Neural Network (EERNN) framework for student
performance prediction by taking full advantage of both stu-
dent exercising records and the text of each exercise. Specif-
ically, for modeling the student exercising process, we first
design a bidirectional LSTM to learn each exercise represen-
tation from its text description without any expertise and in-
formation loss. Then, we propose a new LSTM architecture to
trace student states (i.e., knowledge states) in their sequential
exercising process with the combination of exercise represen-
tations. For making final predictions, we design two strate-
gies under EERNN, i.e., EERNNM with Markov property and
EERNNA with Attention mechanism. Extensive experiments
on large-scale real-world data clearly demonstrate the effec-
tiveness of EERNN framework. Moreover, by incorporating
the exercise correlations, EERNN can well deal with the cold
start problems from both student and exercise perspectives.

1 Introduction

Online education systems, such as massive open online
course (MOOC) and intelligent tutoring system (ITS), pro-
vide students with open access for self-learning. Their preva-
lence and convenience have attracted great attentions from
both educators and general publics (Anderson et al. 2014).

In such education systems, students can get appropriate
guidance and acquire knowledge individually in the process
of exercising. Figure 1 shows an example of such process of
a typical student. Generally, when an exercise is posted (e.g.,
e1), the student reads its text and applies knowledge to an-
swer it. Totally, student s1 has done four exercises during the
process. In order to offer students proactive services for their
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self-improvement, e.g., learning remedy suggestion and per-
sonalized exercise recommendation (Kuh et al. 2011), a cru-
cial demand is to predict their performance (e.g., score), i.e.,
forecasting whether or not a student could answer the exer-
cise (e.g., e5) correctly in the future (Baker and Yacef 2009).

In the literature, there are many efforts in predicting stu-
dent performance from both educational psychology and
data mining areas, such as cognitive diagnosis (DiBello,
Roussos, and Stout 2006), knowledge tracing (Corbett and
Anderson 1994), matrix factorization (Thai-Nghe et al.
2010) and deep learning (Piech et al. 2015). Generally,
most methods devote efforts to modeling student exercis-
ing records for the prediction. However, they just repre-
sent each exercise as knowledge concepts, e.g., exercise
e1 in Figure 1 is represented as the concept “Function”.
These knowledge-specific concepts are usually marked by
experts (e.g., teachers) in practice, which may be labor inten-
sive (Desmarais, Beheshti, and Naceur 2012). Meanwhile,
these manual representations cannot distinguish individual
characteristics (e.g., difficulty) of exercises so that causing
server information loss (DiBello, Roussos, and Stout 2006),
e.g., exercise e1 and e3 are different according to their texts
(e3 is more difficult than e1) though they are all labeled with
“Function”. To this end, in this paper, we argue that it is ben-
eficial to combine both student exercising records and the
text of each exercise for more precisely predicting student
performance.

Unfortunately, there are many technical and domain chal-
lenges along this line. First, there are diverse expressions
of exercises, which requires a unified way to automatically
understand and represent the characteristics of them from
a semantic perspective. Second, student performance in the
future is deeply relied on their long-term historical exercis-
ing, especially on their important knowledge states. How to
track the focused information for students is very challeng-
ing. At last, student performance prediction task suffers from
the “cold start” problem. That is, we usually have to make
predictions for new students and new exercises (Wilson et
al. 2016). In this scenario, limited information could be ex-
ploited, and thus, leading to the poor prediction results.

To address these challenges, we propose a novel Exercise-
Enhanced Recurrent Neural Network (EERNN) framework
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Exercise Exercise Texts 

1 If function f = 2 2 + 2 and x 0,3 , What is the range of f ? Function 

 If four numbers are randomly selected without replacement from set {1, 2, 3, 4}, 

what is the probability that the four numbers are selected in ascending order? 

Probability 

3 What is the y-intercept of the graph of equation y = 2 × |4 × x 4| 10? Function 

4 What is the value of x If the inequality 2 1

+2
3? Inequality 

5 If function f =  2 2 and x 1,1 , what is the range of f ? Function 

Student exercising process

2  

1  

Figure 1: Example: Left box shows a student exercising process. Right table shows texts and knowledge concepts of exercises.

to predict student performance by taking full advantage of
student exercising records and the texts of exercises. Specif-
ically, for student exercising process modeling, inspired by
some techniques in nature language processing, we first
design a bidirectional LSTM to automatically characterize
each exercise semantics by exploiting its text. The learned
encodings can be interpreted as exercise-specific embed-
dings, which capture the individual characteristics of each
exercise without any expertise. Then, we propose a new
LSTM architecture to trace student states in their sequen-
tial exercising process with the combination of exercise rep-
resentations. For making predictions, leveraged by student
states and exercise embeddings, we design two strategies un-
der EERNN framework. The first one is a straightforward
yet effective strategy, i.e., EERNNM with Markov prop-
erty, in which students’ future performance only depends
on current states. Comparatively, the second is a more so-
phisticated one, EERNNA with Attention mechanism, which
tracks the focused student states based on similar exercises
in the history. In this way, EERNN can naturally predict each
student performance on future exercises given her exercis-
ing records. Finally, we conduct extensive experiments on
a large-scale real-world dataset, which clearly demonstrate
the effectiveness of EERNNM and EERNNA. Moreover, by
considering the exercise correlations, EERNN framework
can effectively deal with the cold start problem when mak-
ing predictions for new students and new exercises. To the
best of our knowledge, this is the first comprehensive at-
tempt to consider both exercising records and exercise texts
for student performance prediction.

2 Related Work

The related work can be classified into following categories,
i,e., Cognitive Diagnosis, Knowledge Tracing, Matrix Fac-
torization and Deep learning researches.

Cognitive Diagnosis. In the domain of educational psy-
chology, cognitive diagnosis is a technique to predict student
performance by discovering student states from their exer-
cising records (DiBello, Roussos, and Stout 2006). Tradi-
tional cognitive diagnostic models (CDM) could be grouped
into two parts: continuous ones and discrete ones. Among
them, item response theory (IRT), as a typical continu-
ous model, characterized each student by a variable from
a logistic-like function (Embretson and Reise 2013). Com-
paratively, discrete models, such as Deterministic Inputs,
Noisy-And gate model (DINA), represented each student as
a binary vector which denoted whether she mastered or not

the knowledge concepts required by exercises (De La Torre
2009). To improve prediction results, many variations, such
as learning factors analysis (LFA) (Cen, Koedinger, and
Junker 2006), performance factors analysis (PFA) (Pavlik Jr,
Cen, and Koedinger 2009) and FuzzyCDM (Wu et al. 2015)
were proposed by combining other factors.

Knowledge Tracing. Knowledge Tracing is an essen-
tial task for tracing the knowledge states of each student
separately so that we can predict their performance on fu-
ture exercising activities, where the idea is similar to typ-
ical sequential behavior mining (Shang et al. 2017). In
this task, Bayesian knowledge tracing (BKT) was a pop-
ular knowledge-specific model, which assumed students’
knowledge states as a set of binary variables followed
by Hidden Markov Model (Corbett and Anderson 1994).
The exercise-knowledge relationship was usually labeled
by experts. Many extensions were proposed by considering
other factors, e.g., exercise difficulty (Pardos and Heffer-
nan 2011), multiple knowledge concepts (Xu and Mostow
2010) and student individuals (Yudelson, Koedinger, and
Gordon 2013). One step further, to improve the predic-
tion performance, researchers also suggested to incorpo-
rate IRT or PFA into traditional BKT (Khajah et al. 2014a;
2014b).

Matrix Factorization. Recently, researchers have at-
tempted to leverage matrix factorizations from the per-
spective of data mining for student performance predic-
tion (Toscher and Jahrer 2010; Thai-Nghe et al. 2010).
Usually, the goal of this kind of research is to predict the
unknown scores of students as accurate as possible given
a student-exercise performance matrix with some known
scores. For example, Thai et al. (2015) proposed a multi-
relational matrix factorization for the prediction in online
learning systems. To capture the changes of student exer-
cising process, Thai et al. (2011) proposed a tensor factor-
ization approach by adding additional time factors. Chen et
al. (2017) noticed the effects of both Learning theory and
Ebbinghaus forgetting curve theory and incorporated them
into a unified probabilistic framework.

Deep Learning. Deep learning is a family of state-of-the-
art techniques, which has achieved great success in many ap-
plications, e.g., speech recognition (Graves, Mohamed, and
Hinton 2013), image classification (Krizhevsky, Sutskever,
and Hinton 2012), natural language processing (Mikolov et
al. 2013) and also some educational applications like ques-
tion difficulty prediction (Huang et al. 2017). Inspired by
its remarkable performance, deep knowledge tracing (DKT)
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Figure 2: Solution Overview.

was the first attempt, to the best of our knowledge, to uti-
lize recurrent neural networks (e.g., RNN and LSTM) to
model student exercising process for predicting their perfor-
mances (Piech et al. 2015). Moreover, by bridging the rela-
tionship between exercises and knowledge concepts, Zhang
et al. (2017) proposed a dynamic key-value memory network
model for student performance prediction.

Our work differs from the previous studies as follows.
First, we make use of both student exercising records and ex-
ercise texts. Second, the proposed model tracks the focused
local effects in the sequential exercising process by atten-
tion mechanism, benefiting the prediction. At last, we can
well handle the cold start problem by incorporating exercise
correlations without any retraining.

3 EERNN Framework

In this section, we first formally introduce student perfor-
mance prediction problem and give a solution overview.
Then we describe the details of EERNN framework. At last,
we specify the model learning and testing stage.

Problem and Solution Overview

In an online education system, there are S students and
E exercises, where students do exercises individually. We
record the exercising process of each student as si =
{(ei1, ri1), (ei2, ri2), . . . , (eiT , riT )}, where eij represents the j-
th exercise solved by student i and rij denotes the corre-
sponding score. Generally, if student i answers exercise j
right, rij equals to 1, otherwise it equals to 0. In addition to
the logs of student exercising process, we are also given the
text descriptions of exercises. Formally, each exercise ei is
combined with a word sequence as ei = {wi

1, w
i
2, . . . , w

i
M}.

For simplicity, we use s = {(e1, r1), (e2, r2), . . . , (eT , rT )}
and e = {w1, w2, . . . , wM} to represent each student pro-
cess si and each exercise text ei, respectively.

Definition 1 (Student Performance Prediction Problem).
Given the exercising logs of each student and the text
descriptions of each exercise from 1 to T , our goal is to
train a unified model M which can be used to predict the
scores r̃T+1 on the next exercise eT+1 of each specific
student.

Figure 2 shows the solution overview of our study. From
the figure, in the training stage, we train EERNN framework

by modeling all student exercising processes with the ex-
ercise texts. After that, in the testing stage, EERNN could
predict each student performance on future exercises given
her individual sequential exercising record.

Specifically, EERNN is a general framework where we
can predict student performance based on different strate-
gies. As the details shown in Figure 3, we propose two im-
plementations under EERNN, i.e., EERNNM with Markov
property and EERNNA with Attention mechanism. Both
models have the same process for modeling student exer-
cising records yet follow different prediction strategies.

Modeling process of EERNN

The goal of modeling process in EERNN framework is to
model the each student exercising sequence with the input s.
From Figure 3, this process contains two main components,
i.e., Exercise Embedding and Student Embedding.
Exercise Embedding. As shown in Figure 3, given student
exercising process s = {(e1, r1), (e2, r2), . . . , (eT , rT )},
Exercise Embedding learns the semantic representation of
each exercise xi from its text input ei automatically.

Figure 4 shows the detailed techniques of Exercise Em-
bedding. It is an implementation of a recurrent neural net-
work, which is inspired by the typical one called Long
Short-Term Memory (LSTM) (Graves, Mohamed, and Hin-
ton 2013) with minor modifications. Specifically, given the
exercise’s text description with the M words sequence ei ={w1, w2, . . . , wM}, we first take Word2vec (Mikolov et al.
2013) to transform each word wi in exercise ei into a d0-
dimensional pre-trained word embedding vector. After the
initialization, Exercise Embedding updates the hidden state
vm ∈ R

dv of each word wm at m-th word step with the
previous hidden state vm−1 in a recurrent formula as:

im = σ(Z
E
wiwm + Z

E
vivm−1 + b

E
i ),

fm = σ(Z
E
wfwm + Z

E
vfvm−1 + b

E
f ),

om = σ(Z
E
wowm + Z

E
vovm−1 + b

E
o ), (1)

cm = fm · cm−1 + im · tanh(ZE
wcwm + Z

E
vcvm−1 + b

E
c ),

vm = om · tanh(cm),

where im, fm, om represent the three gates, i.e., input, for-
get, output, respectively. cm is a cell memory vector. σ(x) is
the non-linear sigmoid activation function and · denotes the
element-wise product between vectors. Besides, the input
weighted matrices ZE

w∗ ∈ R
dv×d0 , recurrent weighted ma-

trices ZE
v∗ ∈ R

dv×dv and bias weighted vectors bE
∗ ∈ R

dv

are all the network parameters in Exercise Embedding.
Traditional LSTM model learns each word representation

by a single direction network and can not utilize the contex-
tual texts from the future word token (Tan et al. 2015). To
make full use of the contextual word information of each
exercise, we build a bidirectional LSTM taking the word
sequence in both forward and backward directions, respec-
tively. As illustrated in Figure 4, at each word step m, the
forward layer with hidden word state −→v m is computed based
on both the previous hidden state −→v m−1 and the current
word wm; while the backward layer updates hidden word
state ←−v m with the future hidden state ←−v m+1 and the cur-
rent word wm. Therefore, each word hidden representation
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Figure 3: The architectures of two implementations based on EERNN framework, where the shaded and unshaded symbols
denotes the observed and latent variables, respectively.
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Figure 4: Exercise Embedding of exercise ei.

vm can be calculated with the concatenation of the forward
state and backward state as vm = concatenate(−→v m,←−v m).

After that, to obtain the whole semantic representation of
exercise ei, we exploit the element-wise max pooling opera-
tion to merge M word contextual presentations into a global
embedding xi ∈ R

2dv as xi = max(v1, v2, . . . , vM ).
It is worth mentioning that Exercise Embedding directly

learns each exercise semantic representation from its text
description without any expert encoding. It can also auto-
matically capture the characteristics (e.g., difficulty) of each
exercise and distinguish their individual differences.
Student Embedding. After obtaining each exercise repre-
sentation xi from its text ei by Exercise Embedding, Student
Embedding aims at modeling the whole student exercising
process and learning the hidden representations of students,
which we called student states, at different exercising steps
combined with the influence of student performance in the
history. As shown in Figure 3, EERNN framework relies on
two basic assumptions: (1) The student states are influenced
by both the exercises and the corresponding scores she got.
(2) Students usually learn and forget in their long term se-
quential exercising process.

Along this line, we exploit a variant of LSTM network for
Student Embedding with the input of each specific student
exercising process s = {(x1, r1), (x2, r2), . . . , (xT , rT )}.

Specifically, at each exercising step t, the input to the net-
work is a combined encoding with both exercise embedding
xt and the corresponding score rt. Since the exercise with
right score (i.e., 1) and wrong score (i.e., 0) have different
influences on student states during the exercising process,
we need to find a appropriate way to distinguish these dif-
ferent effects for a specific student.

Methodology-wise, we first extend the score value rt to a
feature vector 0 = (0, 0, . . . , 0) with the same 2dv dimen-
sions of exercise embedding xt and then learn the combined
input vector x̃t ∈ R

4dv as:

x̃t =

{
[xt ⊕ 0] if rt = 1,

[0⊕ xt] if rt = 0,
(2)

where ⊕ is the operation that concatenates two vectors.
With the combined exercising sequence of a student s =

{x̃1, x̃2, . . . , x̃T }, the hidden student state ht ∈ R
dh at her

exercising step t is updated based on the current combined
input x̃t and the previous student state ht−1 as well as the
formula in Eq. (1):

it = σ(ZS
x̃ix̃t + ZS

hiht−1 + bS
i ),

ft = σ(ZS
x̃f x̃t + ZS

hfht−1 + bS
f ),

ot = σ(ZS
x̃ox̃t + ZS

hoht−1 + bS
o), (3)

ct = ft · ct−1 + it · tanh(ZS
x̃cx̃t + ZS

hcht−1 + bS
c ),

ht = ot · tanh(ct),
where ZS

x̃∗ ∈ R
dh×4dv ,ZS

h∗ ∈ R
dh×dh and bS

∗ ∈ R
dh are

the parameters in Student Embedding.
Particularly, the input weight matrix ZS

x̃∗ ∈ R
dh×4dv in

Eq. (3) can be divided into two parts, i.e., the positive one
ZS+

x̃∗ ∈ R
dh×2dv and the negative one ZS−

x̃∗ ∈ R
dh×2dv ,

which can separately capture the influences of exercise ei
with both right and wrong responses for a specific student
during her exercising process. Based on these two types of
parameters, Student Embedding can naturally model the ex-
ercising process to obtain student states by integrating both
the exercise texts and the corresponding scores.
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Prediction Output of EERNN

After modeling the exercising process of each student from
steps 1 to T , in this subsection, we will introduce the de-
tailed techniques of predicting her performance on exercise
eT+1 at step T +1. Psychological results claim that student-
exercise performances depend on the student states and exer-
cise characteristics (DiBello, Roussos, and Stout 2006). Fol-
lowing this finding, we propose two implementations of pre-
diction strategies under EERNN framework, i.e., a straight-
forward yet effective EERNNM with Markov property and
a more sophisticated EERNNA with Attention mechanism,
based on both the learned student states {h1, h2, . . . , hT }
and exercise embeddings {x1, x2, . . . , xT }.
EERNNM with Markov Property. For a typical sequen-
tial prediction task, Markov property is a well understood
and widely used theory that assumes that the next state de-
pends only on the current state and not on the sequences that
precede it (Rabiner and Juang 1986). Given this theory, as
shown in Figure 3(a), when an exercise eT+1 at T + 1 step
is posted to a student, EERNNM (1) assumes that the stu-
dent applies current state hT to solve the exercise; (2) lever-
ages Exercise Embedding to extract semantic representation
xT+1 from the exercise text eT+1; (3) predicts the perfor-
mance r̃T+1 on exercise eT+1 of her as:

yT+1 = ReLU(W1 · [hT ⊕ xT+1] + b1),

r̃T+1 = σ(W2 · yT+1 + b2), (4)

where yT+1 ∈ R
dy denotes the overall presentation for pre-

diction at T + 1 exercise step. {W1,W2,b1,b2} are the
parameters. σ(x) is the Sigmoid activation function and ⊕ is
the concatenation operation.

EERNNM presents a straightforward yet effective way
for student performance prediction. However, in most cases,
since the current student state hT is the last hidden state
of the LSTM-based architecture in Student Embedding, it
may discard some important information when the sequence
is long, which is called Vanish problem (Hochreiter and
Schmidhuber 1997). Thus, EERNNM is unsatisfactory with
student state representation for future prediction. To address
this question, we propose another more sophisticated pre-
diction strategy, i.e., EERNNA with Attention mechanism, to
enhance the effects of important student states in the sequen-
tial exercising process for prediction.
EERNNA with Attention Mechanism. In Figure 1, stu-
dents may get similar scores on similar exercises, e.g., stu-
dent s1 answers the exercises e1 and e3 right due to the pos-
sible reason that the both exercises are similar because of the
same knowledge concept “Function” behind.

According to this observation, as the red lines illustrated
in Figure 3(b), EERNNA assumes that the student state
at T + 1 exercising step is a weighted sum aggregation
of all historical student states during the process based
on correlations between exercise eT+1 and historical ones
{e1, e2, . . . , eT }. Formally, at next step T +1, we define the
attentive student state vector hatt as:

hatt =
T∑

j=1

αjhj , αj = cos(xT+1, xj), (5)

where xj is the exercise embedding at j-th exercise step and
hj is the corresponding student state. Cosine Similarities αj

are attention scores for measuring the importance of exercise
ej in the history for new exercise eT+1.

After obtaining attentive student state at step T + 1,
EERNNA predicts her performance on exercise eT+1 with
the similar operation in Eq. (4) by replacing hT with hatt.

Particularly, through Exercise Embedding, our attention
scores αj not only measure the similarity between exercises
from syntactic perspective but also capture the correlations
from semantic view (e.g., difficulty correlation), benefiting
student state representation for prediction and model expla-
nation. We will conduct experimental analysis for them.

Model learning

Objective function. The whole parameters to be updated
in both proposed models mainly come from three parts, i.e.,
parameters in Exercise Embedding {ZE

w∗,Z
E
v∗,b

E
∗ }, param-

eters in Student Embedding {ZS
x̃∗,Z

S
h∗,b

S
∗} and parameters

in Prediction Output {W∗,b∗}. The objective function of
EERNN is the negative log likelihood of the observed se-
quence of student exercise process. Formally, at t-th step,
let r̃t be the predicted score on exercise et through EERNN
framework, rt is the actual score, thus the overall loss for a
specific student is defined as:

L = −
T∑

t=1

(rt log r̃t + (1− rt) log(1− r̃t)). (6)

The objective function is minimized using the Adam op-
timization (Kingma and Ba 2014). More details of settings
will be specified in the experiments.

Testing Stage

So far, we have discussed the whole training stage of
EERNN. After obtaining the trained EERNN based model
M, in the testing stage, given an individual student exercis-
ing record sp = {(ep1, rp1), (ep2, rp2), . . . , (epT , rpT )}, we could
predict her performance on the next exercise epT+1 followed
by the steps: (1) apply model M to fit her exercising pro-
cess sp to get the student state at T step for prediction (i.e.,
hp
T in EERNNM or hp

att in EERNNA); (2) leverage Exer-
cise Embedding in M to extract exercise embedding xp

T+1;
(3) predict her performance r̃pT+1 with Eq. (4) (replacing hp

T

with hp
att in EERNNA).

Please note that, in the testing stage, student sp can be
either any one that exists in the training stage or a new stu-
dent that never shows up. Equally, exercise epi in sp can also
be either learned exercise or any new exercise. Specifically,
when a new student without any historical record is coming,
at step 1, EERNN can model him/her first state h1 for the
prediction on first exercise with the non-personalized prior
h0 (Figure 3) using Eq. (3). This is the comprehensive pre-
diction generated from all trained student records. After that,
EERNN can fit her own exercising process and make person-
alized predictions on following exercises. Similarly, when a
new exercise is coming, Exercise Embedding in EERNN can
learn its representation only based on its original text. Last

2439



Table 1: The statistics of mathematics dataset.
Statistics Original Pruned

# of records 68,337,149 5,596,075
# of students 110,0726 84,909
# of exercises 1,825,767 15,045

# of knowledge concepts 550 447
Avg. exercises per student \ 65.9
Avg. words per exercise \ 27.3

Avg. knowledge concepts per exercise \ 54.2
Avg. exercises per knowledge concept \ 1.8

but not least, all the testing stage of EERNN do not require
any model retraining. Therefore, EERNN can naturally han-
dle with the cold start problem when making predictions for
new students and new exercises.

4 Experiments

In this section, we conduct extensive experiments to demon-
strate the effectiveness of EERNN from various aspects: (1)
the prediction performance of EERNN against the baselines
in both future and cold-start scenarios; (2) the attention ef-
fectiveness in EERNN; (3) meaningful visualization.

Experimental Dataset

The experimental dataset supplied by iFLYTEK Co., Ltd. is
collected from Zhixue1, a widely-used online learning sys-
tem, which provides senior high school students with a large
exercise resources for exercising. In this paper, we conduct
experiments on the mathematical data records because the
mathematical dataset is currently the largest in the system.
To make sure the reliability of the experimental results, we
filter the students that did less than 10 exercises and the exer-
cises that no students have done. Table 1 shows the statistics
of the dataset before and after preprocessing. Note that most
exercises contain less than 2 knowledge concepts, and 54
exercises on average are related to one specific knowledge
concept. These observations prove that the way to represent
exercises as knowledge concepts cannot distinguish differ-
ences among exercises, causing some information loss.

Experimental Setup

Word Embedding. Please note that the word embeddings
of mathematical exercises in Exercise Embedding are differ-
ent from traditional ones, like news, because there are some
mathematical formulas in the exercise texts. Therefore, we
develop a formula tool2 to transform each formula into a
semantic feature word. After this initialization, each exer-
cise is transformed into a word/feature sequence. Next, to
extract the exclusive word embeddings for mathematics, we
construct a corpus of all 1,825,767 exercises shown in Ta-
ble 1 and train each word in exercises into an embedding
vector with the 50 dimensions (i.e., d0 = 50) by the public
word2vec tool (Mikolov et al. 2013).

1http://www.zhixue.com
2The details of this tool are not the major focus of this work.

EERNN Setting. We now specify the network initializations
in EERNN, we set the dimension dv of hidden states in Exer-
cise Embedding as 100, dh of hidden states in Student Em-
bedding as 100, and dy of overall presentation vectors in
prediction stage as 50, respectively.
Training Setting. To set up the training process, we fol-
low (Orr and Müller 2003) and randomly initialize all pa-
rameters in EERNN framework with uniform distribution
in the range (−√

6/(ni+ no),
√

6/(ni+ no)), where ni
and no are the numbers of input and output feature sizes of
the corresponding ones, respectively. Besides, we set mini
batches as 32 for training and also use dropout (with proba-
bility 0.1) to prevent overfitting.
Comparison Methods. To demonstrate the effectiveness of
EERNN framework, we compare our two implementations,
i.e., EERNNM and EERNNA, with many models from var-
ious perspectives. First, to highlight the effectiveness of Ex-
ercise Embedding in EERNN, i.e., to validate whether or not
it is effective to incorporate exercise texts for the prediction,
we introduce two variants of EERNN, which are denoted as
LSTMM and LSTMA. Then, we consider some traditional
models: Item Response Theory (IRT), Bayesian Knowledge
Tracing (BKT) from educational psychology and Proba-
bilistic Matrix Factorization (PMF) and Deep Knowledge
Tracing (DKT) from data mining area as the baselines. The
details of them are as follows:

• LSTMM: LSTMM is a variant of EERNN framework.
Here, for modeling process, we do not use the exer-
cise texts and just utilize knowledge-specific represen-
tations for exercises as inputs and leverage traditional
LSTM to model student exercising process. For predic-
tion, LSTMM follows Markov property strategy as well
as EERNNM.

• LSTMA: LSTMA is another variant of EERNN frame-
work which contains the same modeling process as
LSTMM. For prediction, LSTMA follows the strategy of
Attention mechanism as well as EERNNA.

• IRT: IRT is a cognitive diagnostic model that models stu-
dent exercising records by a logistic-like function (Di-
Bello, Roussos, and Stout 2006).

• BKT: BKT is a typical knowledge tracing model for pre-
diction that assumes the knowledge states of each student
as a set of binary variables and traces them with a kind of
hidden Markov model (Corbett and Anderson 1994).

• PMF: PMF is a factorization model that projects students
and exercises into latent factors (Thai-Nghe et al. 2011).

• DKT: DKT is a recent deep learning method that lever-
ages recurrent neural network to model student exercising
process for prediction (Piech et al. 2015). The inputs are
one-hot encodings of student-knowledge representations.

All models are implemented by PyTorch (Paszke and
Chintala ) using Python on a Linux server with four 2.0GHz
Intel Xeon E5-2620 CPUs and a Tesla K20m GPU. All mod-
els are tuned to have the best performance.
Evaluation Metrics. We evaluate EERNN on student per-
formance prediction from both regression and classification
perspectives (Fogarty, Baker, and Hudson 2005; Wu et al.
2015; 2017). For regression, we select Mean Absolute Error
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Figure 5: Overall results of student performance prediction on four metrics.

Figure 6: Results of student performance prediction on cold start new exercises on four metrics.

(MAE) and Root Mean Square Error (RMSE), to quantify
the distance between predicted scores and the actual ones.
The smaller the values are, the better the results have.

Besides, we also treat the prediction problem as a clas-
sification task, where a record with score 1 (0) indicates
a positive (negative) instance. Thus, we use two metrics,
i.e., Area Under an ROC Curve (AUC), Prediction Accu-
racy (ACC), for measuring. Generally, the value 0.5 of AUC
or ACC represents the performance prediction result by ran-
domly guessing, and the larger, the better.

Experimental Results

Student Performance Prediction. We partition the dataset
to compare the results of all models on student performance
prediction. For each student’s sequential exercising record,
we use the beginning 60%, 70%, 80%, 90% exercises as
training sets, and the remains are as testing sets, respectively.
We repeat all experiments 5 times and report the average re-
sults using all metrics, which are shown in Figure 5.

There are several observations. First, both EERNNA
and EERNNM perform better than all other methods. The
results indicate that EERNN framework can make full
use of exercising records and exercise texts, benefiting
the prediction. Second, models with Attention mechanism
(EERNNA, LSTMA) outperform those with Markov prop-
erty (EERNNM, LSTMM), which demonstrates that it is
effective to track focused student embeddings based on
similar exercises for the prediction. Third, both EERNNA
and EERNNM generate better result than their variants
(LSTMA, LSTMM) and DKT, showing the effectiveness
of Exercise Embedding. This observation also suggests that
EERNN could alleviate the information loss caused by
knowledge-specific representations. Last but not least, we
observe that traditional models (IRT, PMF and BKT) do not

perform as well as all deep learning models in most cases.
We guess a possible reason is that all these RNN based mod-
els can capture the change of student exercise process, where
the deep neural network structures are suitable for student
performance prediction.

In summary, all above evidences demonstrate that
EERNN framework has a good ability to predict student
performance by taking full advantage of both the exercising
records and the texts of exercises.
Cold Start Prediction. We conduct experiments to evaluate
the performance of EERNN in the cold start situation from
exercise perspective. Here, we only test the prediction re-
sults of the models, trained on 60%, 70%, 80%, 90% train-
ing sets, on new exercises (that never show up in training)
in the corresponding testing sets, using all metrics, respec-
tively. Please note that, we do not change any training pro-
cess and just select cold start exercises for testing, thus all
the testing do not need retraining. For better illustration, we
report the results of all 5 deep learning based models.

As shown in Figure 6, there are also the similar exper-
imental observations as Figure 5, which demonstrates the
effectiveness of EERNN framework again. These results in-
dicate the superiority of EERNN framework that it can well
deal with the cold start problem when predicting student per-
formance on new exercises.
Attention Effectiveness. As mentioned in Section 3, we
hold that EERNNA with Attention mechanism can track the
focused states of students during the student exercising pro-
cess to improve prediction performance, which is superior
to EERNNM. To highlight the attention effects, we compare
EERNNA and EERNNM (trained on 90% training set) for
prediction in the corresponding testing set with different fit-
ting lengths of all students, using ACC and AUC metrics.

From Figure 7, both EERNNA and EERNNM generate
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Figure 7: The attention effects in fitting process for testing.

similar results when the fitting sequence is short (less than
40). However, as the sequence length increases, EERNNA
performs better gradually. Moreover, when it surpasses
about 60, EERNNA outperforms EERNNM significantly on
both metrics. This phenomenon indicates that EERNNM
is effective for the prediction at the beginning of student
exercising process but discards some important informa-
tion when the sequence is long. Comparatively, EERNNA
enhances the local student states with attention mecha-
nism, benefiting the prediction. Besides, notice that both
EERNNA and EERNNM obtain about 0.65 results on both
metrics (better than randomly guessing 0.5) by the prior stu-
dent state h0 (Figure 3) in the case of predicting the first
performance of students without any record (fitting length
is 0). This finding also shows that EERNN can ensure a cer-
tain effect when meeting the cold start problem from student
perspective.
Visualization. Particularly, EERNNA has a great power of
explaining and analyzing the prediction results for each stu-
dent by attention mechanism, i.e., the attention score α in
Eq. (5). Figure 8 illustrates the attention scores for a student
in the experiment as an example. Here, EERNNA predicted
the student can answer exercise e20 right, because she even
got right answers on a more difficult similar exercise e4 in
the past. From their texts, we can conclude that both e20
and e4 are all “Geometry” exercises and e4 is more difficult
than e20. This visualization hints that EERNNA provides a
good way for result analysis and model explanations, which
is also meaningful in the educational applications.

5 Conclusions

In this paper, we presented a novel Exercise-Enhanced
Recurrent Neural Network (EERNN) framework to predict
student future performance by taking full advantage of stu-
dent exercising records and the texts of exercises. Specifi-
cally, for modeling student exercising process, we first de-
signed a BiLSTM to extract exercise semantic represen-
tations from texts without any expertise and information
loss. Then, we proposed another LSTM architecture to trace
student states by embedding exercise encodings. For mak-
ing prediction, we designed two strategies under EERNN,
i.e., a straightforward EERNNM with Markov property and
a sophisticated EERNNA with Attention mechanism. Com-
paratively, EERNNA can track the focused information for
making prediction, which is superior to EERNNM. Finally,
extensive experiments on a large-scale real-world dataset
demonstrated the effectiveness of EERNN framework and

 

1  

2  

3  

4  

5  

20  

 f = ( 2 + 3)/( 1)

f x =
2 + +

= 2 2 21

 

Figure 8: Attention visualization in EERNNA of a student.
We predict her performance on e20 based on her past 19 ex-
ercise records (we only show the first 5 exercises for better
illustration). Right bars show the attention scores of all ex-
ercises based on e20.

also claimed that EERNN could well deal with the cold start
problem.

In the future, we would like to consider the characteris-
tics of different exercise types (e.g., the subjective exercises
with continuous scores) for the prediction. Second, we will
extend EERNN framework to incorporate the information
of knowledge concepts. Third, we are also willing to inte-
grate some educational theories (e.g., learning and forgetting
curves) (Anzanello and Fogliatto 2011; Von Foerster 2007).
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