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ABSTRACT
Meta-learning has been widely employed to tackle the cold-start

problem in user modeling. Similar to a guidebook for a new traveler,

meta-learning significantly affects decision-making for new users in

crucial scenarios, such as career recommendations. Consequently,

the issue of fairness in meta-learning has gained paramount impor-

tance. Several methods have been proposed to mitigate unfairness

in meta-learning and have shown promising results. However, a

fundamental question remains unexplored: What is the critical fac-

tor leading to unfairness in meta-learned user modeling? Through

the theoretical analysis that integrates the meta-learning paradigm

with group fairness metrics, we identify group proportion imbal-

ance as a critical factor. Subsequently, in order to mitigate the

impact of this factor, we introduce a novel Fairness-aware Adaptive

Sampling framework for meTa-learning, abbreviated as FAST. Its

core concept involves adaptively adjusting the sampling distribu-

tion for different user groups during the interleaved training process

∗
Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0171-9/24/05.

https://doi.org/10.1145/3589334.3645369

of meta-learning. Furthermore, we provide theoretical guarantees

demonstrating the convergence of FAST. Finally, empirical exper-

iments conducted on three datasets reveal that FAST effectively

enhances fairness while maintaining high accuracy. The code for

FAST is available at https://github.com/zhengz99/FAST.
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1 INTRODUCTION
User modeling aims to infer latent characteristics by analyzing

users’ behavioral information, such as capability and preference,

and is widely applied in numerous web applications (e.g., recom-

mender system) [48]. One common challenge in user modeling is

the cold-start problem [14], which arises when interactions are
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severely limited for new users. In recent years, meta-learning meth-

ods [2, 18, 32, 35] have garnered widespread adoption as a solution

to this issue, which facilitate rapid learning from limited data while

remaining computationally efficient. The core idea behind meta-

learning is “learning-to-learn” [10], i.e., learning globally shared

meta-initialization parameters for all users and then swiftly adapt-

ing them into local parameters specific to each user. The training

approach involves an interleaved training procedure, as illustrated

in Figure 1. It contains 1) an inner loop that local updates the user-

specific parameter 𝜃𝑖 , initialized by meta-parameters 𝜃 ; 2) an outer

loop that global updates the meta-parameter 𝜃 .

As meta-learning, much like a guidebook for a new traveler,

significantly influences the decision-making of fresh users in cru-

cial scenarios, such as career recommendations [17] and college

admissions [16], the fairness problem has attracted significant at-

tention from a broad audience. It requires user groups divided by

sensitive attributes (e.g., gender, race) should be treated similarly.

Regrettably, meta-learning methods have exhibited susceptibility to

unfairness [34, 42, 43, 46], prompting the development of numerous

fairness-aware meta-learning approaches, such as regularization-

based methods [28, 44], constraint-based methods [42, 43], and

adversarial-based methods [34].

While these methods have demonstrated promising results, a

fundamental question remains unexplored:What is the critical
factor leading to unfairness in meta-learned user modeling?
Understanding this question not only enhances our comprehen-

sion of the meta-learning paradigm but also enables us to make

targeted improvements for superior fairness outcomes. To address

this inquiry, we conduct an in-depth theoretical analysis by combin-

ing the meta-learning paradigm with fairness metrics. Specifically,

we establish a correlation between the lower bounds of the unfair

degree in meta-learning and the level of imbalance in group propor-

tions. Our theoretical findings indicate that during the outer loop

optimization, as the group proportions become more imbalanced,

the lower bound increases, making unfairness more probable. This

theoretical contribution underscores that a critical determinant

of fairness in meta-learning is the group proportion imbalance
during the outer loop (as shown in Figure 1).

Having gained insight into this factor contributing to unfairness

in meta-learning, a second question arises: How can we miti-
gate the influence of the factor to enhance fairness in meta-
learned user modeling? In response to this question, we introduce

a novel framework, called Fairness-aware Adaptive Sampling for

meTa-learning, abbreviated as FAST. Our core concept involves the

adaptive adjustment of group-level sampling distribution during

the training process. Specifically, within the inner loop of meta-

learning, we introduce a Group-level Binary Cross Entropy (G-BCE)

loss to continuously monitor the model’s fairness status at each step.

Then, in the outer loop, by leveraging the fairness signals gathered

during the inner loop, we propose an adaptive update strategy to

optimize the group sampling distribution. This effectively addresses

the issue of group proportion imbalance, thus promoting fairness.

Notably, we offer theoretical evidence showcasing that FAST can

make the sampling probabilities of each group converge to the op-

timal values that achieve the minimal unfair degree. This suggests

that from a theoretical standpoint, our FAST has the potential to

completely eliminate unfairness.
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Figure 1: Illustration of unfairness in meta-learning for user
modeling. In the outer loop optimization, group proportion
imbalance results in unfairness between different groups.

Finally, we apply FAST to some classic meta-learning models for

user modeling. Empirical experiments conducted on three datasets

reveal that FAST effectively enhances fairness while maintaining

high accuracy. Our key contributions in this work can be summa-

rized as follows:

• Understanding Fairness. We theoretically identify group

proportion imbalance as a crucial factor contributing to un-

fairness in meta-learned user modeling.

• Improving Fairness. We introduce a general framework,

FAST, to facilitate fairness optimization for meta-learning.

Additionally, we offer theoretical guarantees demonstrating

FAST’s potential to completely eliminate unfairness.

• Fairness Evaluations. Empirical experiments demonstrate

that FAST is highly effective in enhancing fairness without

compromising accuracy.

2 RELATEDWORKS
2.1 Meta learning for User Modeling
The cold-start problem represents a prevalent challenge in user

modeling [14, 23, 37, 45]. In recent years, meta-learning has gained

substantial traction in effectively tackling the cold-start problem

in user modeling, yielding remarkable success [2, 10, 18, 29]. This

innovative approach empowers models to swiftly grasp new tasks

with limited labeled data by leveraging prior knowledge gleaned

from preceding tasks. For example, Lee et al. [18] introduced MELU,

a method that harnessed MAML [10], to ascertain the initial neural

network weights for cold-start users. Building upon the MELU con-

cept, Bharadhwaj et al. [2] employed a more versatile meta-update

strategy to refine the model parameters. Ye et al. [39] advocated for

a personalized adaptive meta-learning approach that tackled the

issue of non-uniformly distributed data. Wei et al. [34] presented

CLOVER, a comprehensive meta-learning framework designed to

ensure the fairness of meta-learned recommendation models. In

addressing the cold start problem in cognitive diagnosis [33], a

classical user modeling task, Bi et al. [3] proposed a comprehensive

Bayesian meta-learned framework. Nonetheless, the origins of un-

fairness within the meta-learned user modeling remain relatively
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unexplored. In this study, we delve into alleviating the fairness

concerns inherent in meta-learning for user modeling.

2.2 Fairness in User Modeling
As machine learning is widely applied in various scenarios, such as

recommender systems [15, 25], cognitive diagnosis [12, 13, 24, 47],

and affects human decisions [26]. The fairness issue has emerged

as a crucial concern [40, 41]. There are numerous perspectives to

study fairness [7, 8, 19, 21]. For instance, Wu et al. [36] approached

fairness from a graph-based perspective, simultaneously proposing

an adversarial learning framework to enhance fairness. Zhu et al.

[46] explored the issue of fairness in new item activity and devised

a trainable post-processing framework to improve fairness. Li et

al. [20] proposed a user-oriented group fairness definition, arguing

that algorithms should deliver an equal level of utility performance

for different user groups. This fairness definition has gained wide

acceptance [9, 11, 21, 34]. In this paper, we also adhere to this

definition. Regarding the investigation into the causes of unfair-

ness for user modeling, many researchers have pointed out group

imbalance as a significant factor while simultaneously proposing

solutions. For example, Chen et al. [5] proposed a fairly adaptive

negative sampling approach to improve item group fairness for

pairwise algorithms. Different from these approaches, to the best

of our knowledge, we are the first to theoretically identify group

proportion imbalance as a critical factor in meta-learning. Simulta-

neously, we have elucidated that this imbalance leads to unfairness

in the outer loop of the meta-learning process and have provided

corresponding solutions with strong theoretical guarantees.

2.3 Fairness in Meta-learning
With the evolution of meta-learning, an increasing number of stud-

ies have taken up the challenge of addressing fairness concerns in

this domain. These approaches can be broadly categorized into three

primary types based on their optimization strategies: regularization-

based methods [28, 44], constraint-based methods [42, 43], and

adversarial-based methods [34]. Slack et al. [28] and Zhao et al. [44]

introduced the incorporation of group regularization terms into

the meta-learning optimization process. Furthermore, Zhao et al.

[43] pioneered an innovative framework for fair meta-learning that

integrates task-specific group soft fairness constraints. Building

upon their prior work, Zhao et al. [42] extended their research to

confront the intricate issue of online fairness-aware meta-learning.

Wei et al. [34] introduced an adversarial-based approach designed

to simultaneously achieve three types of user-oriented fairness in

meta-learning. While previous studies have demonstrated promis-

ing results, they have tended to overlook a fundamental question:

What is the root cause of unfairness in meta-learned user modeling?

In this paper, we theoretically identify group proportion imbalance

as a crucial factor and present an adaptive sampling strategy to

mitigate the impact of this factor.

3 PRELIMINARIES
In this section, we introduce the cold-start problem definition and

the fairness considerations in user modeling.

3.1 Problem Definition
Suppose there are 𝑀 users, represented as 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑀 }.
Each user 𝑢𝑖 has a limited set of rated items, denoted as 𝐼𝑠

𝑖
. The

corresponding rating between user 𝑢𝑖 and each item 𝑣𝑠 ∈ 𝐼𝑠
𝑖
is

denoted as 𝑟𝑖𝑣𝑠 . The primary objective of the system is to predict

the rating 𝑟𝑖𝑣𝑞 by user 𝑢𝑖 for a new query item 𝑣𝑞 ∈ 𝐼𝑞
𝑖
, where 𝐼

𝑞

𝑖
represents the set of items that need to be predicted.

For each user, there are two datasets available: the support set

for fine-tuning and the query set for testing. The support set for

user 𝑢𝑖 is denoted as 𝐷𝑠
𝑖
= {𝑢𝑖 , 𝑣𝑠 , 𝑟𝑖𝑣𝑠 }, 𝑣𝑠 ∈ 𝐼𝑠

𝑖
, and the query

set is denoted as 𝐷
𝑞

𝑖
= {𝑢𝑖 , 𝑣𝑞, 𝑟𝑖𝑣𝑞 }, 𝑣𝑞 ∈ 𝐼

𝑞

𝑖
. Following previous

works [18, 34, 35], we consider the fast adaptation for each user 𝑢𝑖
as a task 𝑡𝑖 :

𝑡𝑖 : 𝑓 (𝜃, 𝐷𝑠
𝑖 ) → 𝜃𝑖 , (1)

where 𝜃 is the meta-parameters, and 𝜃𝑖 is the personalized parame-

ter fine-tuned on 𝐷𝑠
𝑖
for each user. The focus of the cold-start user

modeling system is on new users who arrive after the training stage.

Let 𝑈 𝑐
represent the set of fresh users that will enter the system.

Our goal is to learn proper 𝜃 on existing users that generalize well

to new users 𝑈 𝑐
, achieving efficient fast adaptation on their tasks.

3.2 User-oriented Group Fairness
In this paper, we focus on user-oriented group fairness, which re-

quires that user groups divided by sensitive attributes (gender, race)

should be treated similarly. For the sake of analytical convenience,

we focus on the case where the sensitive attribute is binary, which

can be easily extended to multiple values. The user group can be

divided into two groups based on sensitive attributes, denoted as

𝐺0 and𝐺1, where𝑈 = 𝐺0∪𝐺1,𝐺0∩𝐺1 = ∅. We denote the number

of samples in each group as𝑚0 and𝑚1, respectively. Without loss

of generality, we assume𝑚1 > 𝑚0. Adhering to the widely adopted

user modeling fairness definition, a fair user modeling algorithm

should provide the same level of utility performance for various

user groups [20]. Subsequently, user-oriented group fairness in

user modeling (GF) is defined as follows, lower GF represents better

fairness performance:

Definition 1 (User-oriented Group Fairness).

𝐺𝐹 =

������ 1

𝑚0

∑︁
𝑢𝑖 ∈𝐺0

M(𝑢𝑖 ) −
1

𝑚1

∑︁
𝑢𝑖 ∈𝐺1

M(𝑢𝑖 )

������ , (2)

whereM represents a metric for evaluating utility performance, such
as𝑀𝐴𝐸 or𝑀𝑆𝐸 score, andM(𝑢𝑖 ) to denote the utility performance
for user 𝑢𝑖 .

After introducing the user-oriented group fairness definition, our

objective extends beyond merely generalizing well to new users.

We should also strive to meet fairness requirements, aiming to

minimize the GF.

4 UNDERSTANDING FAIRNESS IN
META-LEARNING

In this section, we begin with introducing the classic meta-learning

paradigm. Subsequently, we delve into a theoretical exploration of

the underlying factors that lead to unfairness in meta-learning.
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4.1 Meta-learning for User Modeling
The core concept underlying meta-learning for user modeling is

learning to learn, i.e., learning to solve the rapid adaptation task

(𝑡𝑖 ) for new users. To clarify this concept, we adhere to a widely

recognized framework [2, 18, 34]. In order to learn the parameters

for a new task (user), the primary objective of the meta-model is to

establish a promising initialization through learning from a variety

of similar tasks. Subsequently, leveraging the learned parameters,

the meta-model can be fine-tuned on the new task with limited

interactions. The workflow for meta-learning in user modeling is

visually depicted in Figure 2. The training methodology involves

an interleaved training procedure, including:

Inner loop. In the inner loop, for each user 𝑢𝑖 , the framework

initializes 𝜃𝑖 with the most recent meta-parameter 𝜃 , and then

proceeds to fine-tune 𝜃𝑖 based on the user’s existing training data

𝐷𝑠
𝑖
as follows:

𝜃𝑖 ← 𝜃𝑖 − 𝛼∇𝜃𝑖𝐿(𝑓𝜃𝑖 , 𝐷
𝑠
𝑖 ), (3)

where 𝛼 is the learning rate of parameter update, 𝐿𝑜𝑠𝑠 (𝑓𝜃𝑖 , 𝐷𝑠
𝑖
)

denotes the prediction loss (e.g., cross-entropy loss ) on data 𝐷𝑠
𝑖
.

𝑓𝜃𝑖 suggests the loss is parametrized by parameter 𝜃𝑖 .

Outer loop. In the outer loop, the meta-parameter 𝜃 is updated

by summing up all user 𝑢𝑖 ’s specific loss (𝐿𝑜𝑠𝑠 (𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
)) on query

data set (𝐷
𝑞

𝑖
), and then minimizing them to provide a promising

initialization for each user. More precisely, during each training

step, the meta-parameter 𝜃 is updated as follows:

𝜃 ← 𝜃 − 𝛽∇𝜃
∑︁
𝑢𝑖 ∈𝐵

𝐿(𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
), (4)

where 𝐵 is a set of users involved in the batch, 𝛽 is the learning rate

of meta-parameters. Note that the query set is in the training set.

After detailing the training process of the meta-learning, we

will proceed to explain the testing process. To evaluate a new user

𝑢𝑐 ∈ 𝑈 𝑐
, the framework will begin by initializing the user model

parameters using the meta-model 𝜃 . Subsequently, the user model

undergoes fine-tuningwith the user’s observed interaction data𝐷𝑠
𝑢𝑐 .

Finally, the fine-tuned model will be employed to make decisions.

4.2 Fairness Understanding
Meta-learning paradigms have already been extensively studied

and they significantly impact the decision-making processes of new

users in critical scenarios. Consequently, it is important to inves-

tigate fairness issues in meta-learning. However, a fundamental

question remains unexplored: What is the critical factor leading

to unfairness in meta-learned user modeling? In this section, we

attempt to analyze this question by integrating the meta-learning

paradigm with relevant fairness metrics.

We represent the average loss of group 𝐺0 and group 𝐺1 as L0

and L1, where L0 = 1

𝑚0

∑
𝑢𝑖 ∈𝐺0

𝐿(𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
) and L1 is calculated

in a similar manner. Following the classical group fairness defini-

tion introduced in section 3.2 and previous works [5, 39], the gap

between these average losses, L1 − L0, can serve as a measure

of the degree of unfairness. Next, we will explore the factors that

influence L1 − L0 through the following theorem.

Theorem 1. Given the user group 𝑈 , comprising𝑀 users, which
can be divided into two subgroups, 𝐺0 and 𝐺1, based on binary sensi-
tive attributes. Let the number of users in each group be represented

as𝑚0 and𝑚1, respectively. Without loss of generality, let us assume
𝑚1 > 𝑚0. We further assume the actual preference of user 𝑢𝑖 is 𝑥𝑖 ,
and the actual preferences of users in group 𝐺0 and group 𝐺0 are
drawn from two normal distribution, i.e., N(−𝜂, 𝜎2) and N(𝜂, 𝜎2),
respectively1. Then we have: with probability at least 1 − 𝐴

𝑚
1
−𝑚

0

2𝑀

, the

loss gap L1 − L0 satisfies:

L1 − L0 >
𝑚1 −𝑚0

2𝑀
𝜂2𝐶, (5)

where𝐶 is a constant related to the learning rate 𝛼 , and𝐴 = 𝐶2 [2(1−
1

𝑀
)2𝜎4 ( 1

𝑚0

+ 1

𝑚1

) + 16(1 − 1

𝑀
)𝜂2 ( 𝑚3

0
+𝑚3

1

𝑚0𝑚1𝑀
2
)].

The detailed proof is provided in Appendix B.1. According to

Theorem 1, we can find that the lower bounds of L1 − L0 (i.e.,

𝑚1−𝑚0

2𝑀
𝜂2𝐶) is related to𝑚1−𝑚0. To be specific, as the larger𝑚1−𝑚0

(the group proportions become more imbalanced), the larger lower

bound, making unfairness more likely to occur. This theoretical

contribution underscores that a critical determinant of fairness in

meta-learning is the group proportion imbalance.

To better understand Theorem 1, we offer an intuitive illustra-

tion here. In the outer loop optimization of meta-learning, all user

records are utilized to update the meta-parameter 𝜃 . Intuitively,

the training process will prioritize users in major groups since the

losses of these users occupy a larger proportion of the overall loss.

Consequently, the learned 𝜃 will be closer to the centroid of major

groups, which results in a disparity of average losses between major

and minor groups.

5 THE PROPOSED FRAMEWORK
After recognizing how imbalanced group proportions can con-

tribute to unfairness in meta-learning, this section introduces our

novel framework, FAST, designed to mitigate the impact of this

factor. The subsequent discussion will begin with an overview of

FAST, followed by a detailed description of each of its components

and an illustration of the designed optimization algorithm. Finally,

we present the theoretical guarantees for FAST.

5.1 An Overview of the Proposed Framework
In the traditional meta-learning paradigm, within the outer loop,

all user records are utilized to update the meta-parameters, with

limited consideration for the imbalanced group proportions. This

oversight can lead to noticeable fairness issues within the model.

To overcome these limitations without making explicit alterations

to the model architecture or training data, we introduce an adaptive

sampling framework known as FAST, as depicted in Figure 2. The

core concept of FAST lies in adaptively adjusting the sampling

probability for each group during the outer loop. Specifically, the

FAST method consists of two crucial components.

• Group Fairness Perception. This component is specifically

designed to detect unfairness among groups during the inner

loop of the meta-learning process, offering pertinent signals

to guide subsequent sampling adjustments.

• AdaptiveUpdate ofGroup SamplingDistribution. Build-
ing upon the unfairness signals gathered in the initial stage,

1
The choice of −𝜂, 𝜂 as values is made for the sake of analytical convenience and

does not impose any strict limitation. In reality, these values can be any two distinct

numbers since we have the flexibility to adjust our coordinates to achieve symmetry.
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Figure 2: The overall framework of FAST.
this component adapts the sampling probability for each

group in the outer loop, with the aim of attaining equalized

performance across all groups.

5.2 Group Fairness Perception
To achieve fair training for meta-learning from the perspective

of adaptive sampling, we first need to perceive the group-wise

performance disparity in the inner loop, which provides guidance

for adjusting the group-level sampling distribution in the outer loop.

However, the fairness evaluation metric mentioned above cannot be

used here directly since it is non-differentiable. Inspired by [5], we

adopt a Group-level Binary CrossEntropy (G-BCE) loss as a proxy to

measure each group’s performance. It calculates the group average

classification loss as an approximation of group performance. The

details of G-BCE loss are as follows:

L0 =
1

𝑚0

∑︁
𝑢𝑖 ∈𝐺0

𝐿𝑜𝑠𝑠 (𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
), L1 =

1

𝑚1

∑︁
𝑢𝑖 ∈𝐺1

𝐿𝑜𝑠𝑠 (𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
), (6)

where𝐷
𝑞

𝑖
represents the query set used to evaluate the performance

of user 𝑢𝑖 during the inner loop. The performance gap between two

groups, 𝐺1 and 𝐺0, can subsequently be expressed as follows:

Δ𝑔 = L1 − L0 . (7)

The inequality Δ𝑔 > 0 indicates that Group 𝐺1 achieves lower

performance. In other words, the meta-learning process has learned

meta-parameters that generalize better to 𝐺0 compared with 𝐺1,

resulting in unfair treatment of Group 𝐺1. Furthermore, a larger

value of Δ𝑔 signifies a higher degree of unfairness, necessitating

a more substantial adjustment. Next, we will concentrate on the

adjustment of group sampling probabilities during the outer loop

to acquire meta-parameters that exhibit greater fairness.

5.3 Adaptive Update of Group Sampling
Distribution

After detecting the direction and extent of unfairness among groups,

we consistently modify the sampling probabilities of each group

to mitigate performance disparities. We define the probability of

sampling user 𝑢𝑖 belonging to Group 𝐺0 as 𝑝 and belonging to

Group𝐺1 as 1−𝑝 . In the following section, we will demonstrate the

update mechanism for 𝑝 . Intuitively, when Δ𝑔 > 0, it indicates that

Group𝐺1 achieves lower performance. To narrow the performance

gap between 𝐺1 and 𝐺0 to ensure fairness, we should increase the

sampling probability of 𝐺1 samples while reducing the sampling

probability of 𝐺0 samples. Conversely, when Δ𝑔 < 0, we should

increase the sampling probability of 𝐺0 samples. Based on these

considerations, we design the following update strategy:

𝑝 (𝑡+1) = 𝑝 (𝑡 ) − 𝛾Δ𝑔 (𝑡 ) , 𝑝 (0) = 0.5, (8)

where Δ𝑔 (𝑡 ) represents the performance gap between 𝐺1 and 𝐺0

in step t, 𝑝 (𝑡 ) and 𝑝 (𝑡+1) represent the sampling probabilities for

𝐺0 at steps t and t+1, respectively. In the initial stages of optimiza-

tion, due to a lack of information regarding the fairness between

the two groups, we opt to initialize the sampling probabilities for

both groups equally, setting them both to 0.5. Furthermore, 𝛾 is a

hyperparameter controlling the rate of change, and its influence

will be studied in the experimental section.

The variation in the sampling process probabilities depends on

Δ𝑔. However, during the training process, it is possible for the

value of Δ𝑔 to change significantly due to unstable factors. This can

lead to a substantial fluctuation in sampling probabilities, resulting

in an unstable outcome in terms of fair training effectiveness. To

mitigate this phenomenon, we introduce an upper threshold (𝜏 ) for

the changing sampling probabilities. Specifically, when the value

of the changed sampling probability (i.e., 𝛾 |Δ𝑔 |), exceeds 𝜏 , we opt
to replace it with 𝜏 . The specific formula is as follows:

𝑝 (𝑡+1) = 𝑝 (𝑡 ) − 𝑠𝑖𝑔𝑛(Δ𝑔 (𝑡 ) )𝑚𝑖𝑛{𝛾 |Δ𝑔 (𝑡 ) |, 𝜏}, (9)

where 𝑠𝑖𝑔𝑛(Δ𝑔 (𝑡 ) ) represents the sign of Δ𝑔 (𝑡 ) , and we will inves-

tigate the impact of the hyperparameter 𝜏 in our experiments.

5.4 Optimization for FAST
In the preceding sections, we have introducted the training para-

digm of traditional meta-learning, identified factors contributing

to its unfairness, and outlined how an adaptive sampling strategy

can be employed to mitigate these issues. In this section, we will

delve into the integration of this sampling strategy into the training

paradigm of traditional meta-learning to enhance its fairness. The

overall training algorithm is depicted in Appendix A (Algorithm 1).

To begin, we will adhere to the conventional meta-learning para-

digm and fine-tune each user within the inner loop. After obtaining
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the loss for each individual in the query set, we will calculate the

G-BCE loss for each user group according to Eq. (7). Subsequently,

we will update the sampling probabilities for each group based

on Eq. (9). Following this step, we will sample users 𝐵
′
from the

batch 𝐵 in accordance with their respective sampling probabilities.

Specifically, at step 𝑡 , the ratio of the number of groups in 𝐺1 and

𝐺0 within 𝐵′ is as 1 − 𝑝 (𝑡 ) : 𝑝 (𝑡 ) . Finally, we will utilize the query
set loss (𝐿(𝑓𝜃𝑖 , 𝐷

𝑞

𝑖
)) of the sampled users 𝐵′ to update the fairness-

aware meta-model parameters. The final optimization objective of

the FAST can be represented as:

min

𝜃

∑︁
𝑢𝑖 ∈𝐵′

𝐿(𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
),

where 𝜃𝑖 = 𝜃 − 𝛼∇𝜃𝑖𝐿(𝑓𝜃𝑖 , 𝐷
𝑠
𝑖 ) .

(10)

5.5 Theoretical Guarantees
In this paper, we theoretically identify group proportion imbalance

as a crucial factor leading to unfairness in meta-learning. To address

this issue, we propose FAST, whose core idea is adaptively adjusting

the sampling probability of each group 𝑝 . In this section, we present

theoretical evidence illustrating that FAST can make 𝑝 converge to

the optimal value while also revealing its potential to completely

eliminate unfairness issues. In each optimization step, we can com-

pute the fairness state of the meta-learning model optimized based

on the current sampling probability 𝑝 (𝑡 ) . Following the analysis of

[27], we assume that the model has reached the optimal state of this

step and denote the fairness result as |Lopt

0
(𝑝 (𝑡 ) ) − Lopt

1
(𝑝 (𝑡 ) ) |,

where Lopt

0
(𝑝 (𝑡 ) ), Lopt

1
(𝑝 (𝑡 ) ) represent the loss of groups 𝐺0, 𝐺1

obtained under the optimal model with the sampling probability

𝑝 (𝑡 ) . Then, the fairness result function involving 𝑝 in FAST is ex-

pressed as 𝐹 (𝑝) = |Lopt

0
(𝑝) − Lopt

1
(𝑝) |. The optimal value 𝑝∗ of

𝐹 (𝑝) can be represented as,

𝑝∗ = arg min

𝑝
𝐹 (𝑝) . (11)

Subsequently, we attempt to answer the two questions theoretically:

• Q1: Can FAST make 𝑝 converge to the optimum value 𝑝∗?
• Q2: When 𝑝 reaches its optimum value 𝑝∗, is 𝐹 (𝑝∗) equal to
0, implying that the meta model can achieve perfect fairness?

If the answers to both of the above questions are affirmative,

then we can conclude that FAST has the potential to completely

eliminate unfairness. For Q1, we will show that FAST can make the

sampling probabilities of each group converge to the optimal values

through Theorem 2 below. In other words, we aim to demonstrate

that as long as the number of rounds 𝑡 is sufficiently large, the

difference between sampling probability 𝑝 (𝑡 ) and the optimum

value 𝑝∗ is bounded by a controllable parameter 𝜏 . The detailed

theoretical analysis is as follows, in Lemma 1 we will demonstrate

that 𝐹 (𝑝) is a quasi-convex function. Then, based on this, we prove

an upper bound for |𝑝 (𝑡 ) − 𝑝∗ | in Theorem 2.

Lemma 1. Let 𝐹 (𝑝) = |Lopt

0
(𝑝) − Lopt

1
(𝑝) |, then we have, 𝐹 (𝑝)

is quasi-convex, i.e., 𝐹 (𝑡𝑝 + (1 − 𝑡)𝑝′) ≤ max{𝐹 (𝑝), 𝐹 (𝑝′)} for all
𝑡 ∈ [0, 1] and 𝑝 , 𝑝′.

Theorem 2. We denote 𝑝∗ is the optimal value of 𝐹 (𝑝), i.e., 𝑝∗ =
arg min

𝑝
𝐹 (𝑝), then we have,

Table 1: The statistics of the datasets.

Dataset ML-1M BookCrossing ML-100K

#Users 6,040 278,858 943

#Items 3,706 271,379 1,682

#Ratings 1,000,209 1,149,780 100,000

Sparsity 95.5316% 99.9985% 93.6953%

Sensitive Attribute Gender Age Gender

Range of ratings 1 - 5 1 - 10 1 - 5

|𝑝 (𝑡 ) − 𝑝∗ | ≤ max{|𝑝 (0) − 𝑝∗ | − 𝑡𝜏, 𝜏}. (12)

Remark. Specific proof details of Lemma 1 and Theorem 2 will

be provided in the appendix B.2, B.3. Theorem 2 demonstrates that

for a controllable parameter 𝜏 , as long as the number of rounds

𝑡 is sufficiently large, |𝑝 (0) − 𝑝∗ | − 𝑡𝜏 will always be less than 𝜏 .

This implies that |𝑝 (𝑡 ) − 𝑝∗ | is upper-bounded by a controllable

parameter. Consequently, it indicates that the optimization of 𝑝 in

FAST can converge to the optimum. □

For Q2, we will prove 𝐹 (𝑝∗) = 0 through Theorem 3,

Theorem 3. When 𝑝 reaches its optimal value 𝑝∗, 𝐹 (𝑝∗) = 0.

The detailed proof is provided in Appendix B.4. Based on the re-

sponses to these questions, we can conclude that from a theoretical

standpoint, FAST has the potential to entirely eliminate unfairness.

6 EXPERIMENTS
In this section, we first introduce the dataset and experimental setup.

Then, we conduct extensive experiments on real-world datasets to

answer the following questions:

• RQ1: Does FAST learn fair and accurate results for cold-start

problem?

• RQ2:How is the generalization ability of our proposed FAST

on other cold-start meta-learning models?

• RQ3: How does the adaptive sampling impact FAST?

• RQ4: How do different hyper-parameter settings (i.e. 𝛾 , 𝜏)

affect the fairness and utility performance?

The code for FAST is available at https://github.com/zhengz99/FAST.

6.1 Datasets
In this paper, we conduct experiments using three publicly available

recommender system datasets to validate the effectiveness of our

FAST framework. We adopt the datasets ML-1M, BookCrossing,

and ML-100K, following the precedent set by previous research

[1, 18, 34]. Both the ML-1M and ML-100K datasets belong to the

MovieLens Collection
2
, containing movie rating data from users

registered on the MovieLens website. Additionally, we utilize the

BookCrossing dataset
3
, a widely recognized benchmark for recom-

mender systems that contains book rating data available on the

web. These datasets encompass user, item, and their interaction

information. Regarding the sensitive attribute, we select the gen-

der attribute for the ML-100K and ML-1M datasets, while for the

2
https://grouplens.org/datasets/movielens/

3
http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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Table 2: The utility and fairness results on three datasets. The best fairness results on each backbone are highlighted in bold
and underline represents the runner-up results. The lower, the better. All experiments are repeated five times on each dataset
with mean and standard deviation results reported.

ML-1M BookCrossing ML-100k

Utility Fairness Utility Fairness Utility Fairness

MAE ↓ MSE ↓ GF(MAE) ↓ GF(MSE) ↓ MAE ↓ MSE ↓ GF(MAE) ↓ GF(MSE) ↓ MAE ↓ MSE ↓ GF(MAE) ↓ GF(MSE) ↓

Wide&Deep 0.937 ± 0.019 1.245 ± 0.026 0.120 ± 0.087 0.239 ± 0.169 1.558 ± 0.039 3.585 ± 0.356 0.083 ± 0.023 0.178 ± 0.188 1.071 ± 0.073 1.658 ± 0.203 0.164 ± 0.086 0.465 ± 0.274

DropoutNet 0.940 ± 0.028 1.347 ± 0.065 0.121 ± 0.065 0.271 ± 0.170 1.531 ± 0.034 3.523 ± 0.072 0.093 ± 0.051 0.184 ± 0.164 1.092 ± 0.063 1.694 ± 0.184 0.125 ± 0.061 0.358 ± 0.189

NLBA 1.060 ± 0.095 1.811 ± 0.309 0.051 ± 0.040 0.245 ± 0.188 1.659 ± 0.029 3.956 ± 0.071 0.103 ± 0.014 0.367 ± 0.029 0.999 ± 0.014 1.396 ± 0.036 0.109 ± 0.035 0.294 ± 0.100

Melu 0.796 ± 0.006 1.005 ± 0.018 0.057 ± 0.015 0.132 ± 0.045 1.464 ± 0.013 3.458 ± 0.108 0.056 ± 0.009 0.337 ± 0.114 0.850 ± 0.002 1.126 ± 0.003 0.089 ± 0.006 0.131 ± 0.014

Melu + Reg 0.790 ± 0.005 0.986 ± 0.022 0.060 ± 0.012 0.147 ± 0.025 1.522 ± 0.048 3.715 ± 0.177 0.088 ± 0.030 0.481 ± 0.118 0.875 ± 0.003 1.193 ± 0.009 0.070 ± 0.009 0.150 ± 0.018

Melu + IPW 0.810 ± 0.009 1.035 ± 0.022 0.061 ± 0.012 0.156 ± 0.031 1.624 ± 0.127 4.051 ± 0.519 0.118 ± 0.114 0.543 ± 0.468 0.878 ± 0.008 1.171 ± 0.014 0.063 ± 0.008 0.084 ± 0.017

Melu + CLOVER 0.752 ± 0.004 0.906 ± 0.004 0.039 ± 0.003 0.115 ± 0.008 1.652 ± 0.056 4.353 ± 0.233 0.110 ± 0.015 0.514 ± 0.074 0.875 ± 0.006 1.118 ± 0.014 0.055 ± 0.016 0.066 ± 0.041

Melu + FAST 0.763 ± 0.003 0.933 ± 0.007 0.033 ± 0.004 0.108 ± 0.009 1.473 ± 0.009 3.369 ± 0.018 0.017 ± 0.009 0.168 ± 0.053 0.898 ± 0.004 1.217 ± 0.015 0.044 ± 0.006 0.056 ± 0.022

MetaCS 0.774 ± 0.007 0.959 ± 0.012 0.050 ± 0.005 0.148 ± 0.014 1.445 ± 0.013 3.420 ± 0.033 0.088 ± 0.011 0.436 ± 0.059 0.905 ± 0.005 1.318 ± 0.004 0.092 ± 0.003 0.187 ± 0.006

MetaCS + Reg 0.797 ± 0.003 0.995 ± 0.005 0.026 ± 0.009 0.080 ± 0.006 1.327 ± 0.007 2.894 ± 0.031 0.065 ± 0.015 0.298 ± 0.045 0.912 ± 0.003 1.314 ± 0.007 0.078 ± 0.002 0.174 ± 0.010

MetaCS + IPW 0.760 ± 0.002 0.916 ± 0.006 0.046 ± 0.006 0.124 ± 0.007 1.399 ± 0.011 3.216 ± 0.057 0.063 ± 0.013 0.190 ± 0.033 0.920 ± 0.008 1.329 ± 0.010 0.065 ± 0.009 0.208 ± 0.011

MetaCS + CLOVER 0.804 ± 0.036 1.027 ± 0.095 0.049 ± 0.011 0.133 ± 0.017 1.973 ± 0.332 5.851 ± 1.239 0.029 ± 0.019 0.168 ± 0.133 0.918 ± 0.022 1.304 ± 0.081 0.043 ± 0.020 0.083 ± 0.021
MetaCS + FAST 0.770 ± 0.003 0.938 ± 0.007 0.026 ± 0.006 0.072 ± 0.007 1.385 ± 0.014 3.204 ± 0.055 0.025 ± 0.011 0.117 ± 0.083 0.879 ± 0.003 1.184 ± 0.011 0.054 ± 0.002 0.118 ± 0.010

BookCrossing dataset, we adapt the age attribute as the sensitive

attribute. For the sake of convenience, following [34], we categorize

users into two groups based on whether they are over 40 years old.

The dataset statistics are summarized in Table 1.

To evaluate user cold-start performance, we divided the users

into training, validation, and testing datasets using a ratio of 7:1:2. In

an effort to closely mimic real-world scenarios, following the setting

in [18, 34], for each user𝑢𝑖 , we utilize a limited and variable number

of interactions as their existing fine-tuned data 𝐷𝑠
𝑖
while reserving

the last 10 interactions as the query data 𝐷
𝑞

𝑖
for evaluation.

6.2 Experimental Setup and Baselines
Evaluation. In this paper, we evaluate the results of user mod-

eling by predicting item ratings. This evaluation can be divided

into two main aspects: utility evaluation and fairness evaluation.

For utility evaluation, we employ classical metrics MAE, MSE. For

fairness evaluation, we adopt the User-oriented Group Fairness

Definition introduced in Section 3.2. For theM in Eq. (2), we adopt

MAE, MSE. In our final experiments, we will use GF(MAE) and

GF(MSE) to represent these fairness metrics. Lower GF indicates

better fairness performance.

Implementation detail. We incorporate two meta-learning back-

bones, MELU and MetaCS, to illustrate the generalization of the

proposed framework. For each backbone, we evaluate the fairness

on the query set and adjust the sample probability 𝑝 based on the

evaluated fairness. Following [18], We adopt two-layer network as

our user preference estimator, and each layer has 64 nodes. We set

the dimension of all embedding vectors to 32 and adopt the mean

square error (mse) as our loss function. Adam algorithm is used to

optimize the model. We set the number of training epochs to 50 and

train 32 user tasks in one batch. The parameter configuration of

FAST is shown in Appendix C (Table 3). We implement all models

with PyTorch and conduct all experiments on four 2.0GHz Intel

Xeon E5-2620 CPUs and a Tesla K20m GPU.

Baseline approaches. FAST is a fairness-aware framework that

can be applied to variousmeta-learning paradigms. In this paper, fol-

lowing [34], we utilize FAST in two well-established meta-learning

backbones: MELU [18], MetaCS [2]. To validate the effectiveness

of FAST, we integrate several classic fairness-aware methods into

the realm of meta-learning: Reg [38], IPW [22], CLOVER [34]. Fur-

thermore, we conduct a comparative analysis involving various

classic cold-start baselines to demonstrate FAST’s effectiveness in

cold-start scenarios: Wide & Deep [6], DropoutNet [31], NLBA [30].

Detail descriptions of baselines are shown in Appendix C.

6.3 Experimental Results
Overall Results (RQ1, RQ2). In this section, we delve into whether

FAST can achieve fair and accurate results. Furthermore, FAST

represents a general framework that can be applied to different

meta-learning methods (e.g., Melu and MetaCS). We also explore

the generalization of FAST. The utility and fairness results on three

datasets are presented in Table 2. From these results, we can draw

the following findings:

• From the perspective of the cold-start problem, we observe

that meta-learning methods exhibit significant performance

improvements compared to traditional cold-start approaches.

This underscores the superiority of the meta-learning par-

adigm. Additionally, we uncover instances of unfairness in

all cold-start methods, underscoring the necessity of investi-

gating fairness in cold-start scenarios.

• From the perspective of utility, we are surprised to discover

that many fairness-aware methods, such as CLOVER, can

even enhance the performance of the original methods, align-

ing with their papers’ claims [34], which argues that ad-

versarial learning may aid in achieving better convergence

towards optimality. Furthermore, our utility results consis-

tently yield comparable outcomes, and in some cases, our

approach outperforms traditional meta-learning methods.

We believe this is because our process may filter out re-

dundant information during the sampling phase, thereby

facilitating improved meta-learning convergence.

• From the perspective of fairness, we find that in two meta-

learning paradigms, the majority of fairness-aware methods

enhance fairness, with FAST showing the most significant

improvement. This highlights the effectiveness of FAST in

addressing fairness concerns across different paradigms.

In summary, our FAST demonstrates satisfactory fairness results

and comparable utility across various meta-learning paradigms,

showcasing the effectiveness and generality of FAST.
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Figure 3: The utility and fairness result on different sample strategies (the lower, the better).
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Figure 4: The impact of 𝛾 ,𝜏 for different meta-learning backbones on the BookCrossing dataset (the lower, the better).

Impact of Adaptive Sampling (RQ3). Our paper theoretically iden-
tifies group proportion imbalance as a pivotal factor contributing

to unfairness in meta-learned systems. To efficiently address this

factor, we propose an adaptive sampling strategy. In this section,

we validate the superiority of this adaptive strategy on ML-1M and

BookCrossing datasets. Specifically, we compare it to the simplest

static sampling approach (referred to as Static), where the probabil-
ity of sampling different groups is equal in each step. The results are

depicted in Figure 3. Here, Origin refers to the meta-learning strat-

egy without any fairness considerations. From the results, we can

observe that both the Static and FAST strategies achieve improved

fairness performance and comparable utility performance when

compared to the original meta-learning paradigm. This suggests

that sampling strategy can mitigate the unfairness stemming from

group proportion imbalance to a certain extent. Furthermore, we

find that FAST outperforms Static in terms of fairness performance,

demonstrating the superiority of the adaptive sampling strategy.

Effect of Hyper-parameters (RQ4). In FAST, there are two hyper-

parameters that control the effectiveness of FAST. Specifically, 𝛾

controls the rate of change in sampling probabilities, and 𝜏 sets an

upper threshold for the change in sampling probabilities. In this

section, we examine the impact of adjusting these two hyperpa-

rameters on FAST using the BookCrossing dataset. The specific

results are shown in Figure 4. Figure 4 (a) and Figure 4 (b) illustrate

the effects of 𝛾 on different meta-learning backbones. Overall, they

exhibit similar trends. When 𝛾 initially increases, both fairness and

utility deteriorate. However, after reaching a certain threshold (0.8

for MetaCS, 1.5 for Melu), fairness improves, and the change in

accuracy becomes more gradual. This phenomenon indicates that

increasing 𝛾 has a beneficial impact on the fairness of FAST and can

aid in achieving a trade-off between fairness and utility. Figures 4

(c) and Figure 4 (d) depict the effects of 𝜏 on different backbones. We

observe that initially increasing 𝜏 enhances fairness. This demon-

strates that setting 𝜏 can help FAST achieve better fairness results.

However, when 𝜏 reaches a certain threshold (0.05 for MetaCS, 0.1

for Melu), fairness begins to degrade. As 𝜏 increases further, FAST’s

performance remains relatively stable. We believe this is because

when 𝜏 becomes too large, the changes in model sampling probabil-

ities consistently fall below this threshold, rendering 𝜏 ineffective

and no longer beneficial for the model.

7 CONCLUSION
In this paper, we presented a focused study on fairness in meta-

learning for user modeling. Specifically, through a rigorous theo-

retical analysis that integrated the meta-learning paradigm with

the classical fairness metric, we identified group proportion im-

balance as a pivotal factor that contributed to unfairness. In light

of this insight, we proposed a novel fairness-aware adaptive sam-

pling framework for meta-learning, known as FAST, which could

adaptively adjust the group-level sampling distribution during the

interleaved training process. Moreover, we provided theoretical

proof demonstrating FAST’s potential to completely eliminate un-

fairness. Finally, we conducted experiments on three datasets and

the results demonstrated that FAST could effectively enhances fair-

ness while maintaining high accuracy. In the future, we intend to

expand our exploration of fairness into other paradigms to further

enhance our understanding of fair machine-learning techniques.
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A THE TRAINING ALGORITHM OF FAST
The overall training algorithm of FAST is depicted in Algorithm 1.

Algorithm 1 The FAST framework

Require: 𝛼 , 𝛽 : learning rate hyper-parameters; 𝛾 , 𝜏 : the hyper-

parameters of adaptive sampling;

1: Randomly initialize meta-parameters 𝜃 and set group sampling

distribution 𝑝
(0)
𝑧0

= 𝑝
(0)
𝑧1

= 0.5;

2: while not converge do
3: Sample batch of users 𝐵;

4: for user 𝑢𝑖 in 𝐵 do
5: set 𝜃𝑖 = 𝜃 ;

6: Inner loop update:

7: 𝜃𝑖 ← 𝜃𝑖 − 𝛼∇𝜃𝑖𝐿(𝑓𝜃𝑖 , 𝐷𝑠
𝑖
);

8: end for
9: Adaptive sampling:

10: Calculate G-BCE loss according to Eq. (7);

11: Update group’s sampling probabilities based on Eq. (9);

12: Sample the users 𝐵
′
based on the sampling probabilities;

13: Outer loop update:

14: 𝜃 ← 𝜃 − 𝛽∇𝜃𝑖
∑
𝑢𝑖 ∈𝐵′ 𝐿(𝑓𝜃𝑖 , 𝐷

𝑞

𝑖
);

15: end while
16: /* Testing on the new users 𝑈 𝑐

*/

17: for user 𝑢𝑐 in𝑈 𝑐 do
18: Finetune on test data 𝐷𝑡𝑒𝑠𝑡

𝑐 of 𝑢𝑐 :

19: 𝜃𝑐 ← 𝜃 − 𝛼∇𝜃𝑐𝐿(𝑓𝜃𝑐 , 𝐷𝑡𝑒𝑠𝑡
𝑐 );

20: User rating prediction based on 𝜃𝑐 ;

21: end for

B THEORETICAL ANALYSIS
B.1 Theorem 1

Theorem 1. Given the user group 𝑈 , comprising𝑀 users, which
can be divided into two subgroups, 𝐺0 and 𝐺1, based on binary sensi-
tive attributes. Let the number of users in each group be represented
as𝑚0 and𝑚1, respectively. Without loss of generality, let us assume
𝑚1 > 𝑚0. We further assume the actual preference of user 𝑢𝑖 is 𝑥𝑖 ,
and the actual preferences of users in group 𝐺0 and group 𝐺0 are
drawn from two normal distributions, i.e., N(−𝜂, 𝜎2) and N(𝜂, 𝜎2),
respectively. Then we have: with probability at least 1 − 𝐴

𝑚
1
−𝑚

0

2𝑀

, the

loss gap L1 − L0 satisfies:

L1 − L0 >
𝑚1 −𝑚0

2𝑀
𝜂2𝐶, (13)

where𝐶 is a constant related to the learning rate 𝛼 , and𝐴 = 𝐶2 [2(1−
1

𝑀
)2𝜎4 ( 1

𝑚0

+ 1

𝑚1

) + 16(1 − 1

𝑀
)𝜂2 ( 𝑚3

0
+𝑚3

1

𝑚0𝑚1𝑀
2
)].

Proof. Given that the actual preference of user 𝑢𝑖 is 𝑥𝑖 , we can

express 𝐿(𝑓𝜃𝑖 , 𝐷
𝑞

𝑖
) as (𝜃𝑖 − 𝑥𝑖 )2. For the sake of convenience, we

use 𝐿𝑖 to represent this expression. Then the primary objective of

meta-learning can be represented as follows:

min

𝜃

∑︁
𝑢𝑖 ∈𝐵

𝐿𝑖

where 𝜃𝑖 = 𝜃 − 𝛼∇𝜃𝑖𝐿𝑖
(14)

Then, express the total loss 𝐿 as the sum of losses from group 0

and group 1, and we have:

𝐿 =
∑︁
𝑢𝑖 ∈𝐵

𝐿𝑖

=
∑︁

𝑢𝑖 ∈𝐺0

(𝜃𝑖 − 𝑥𝑖 )2 +
∑︁

𝑢𝑘 ∈𝐺1

(𝜃𝑘 − 𝑥𝑘 )2 .
(15)

Taking the gradient of 𝐿𝑖 , we get

∇𝜃𝑖𝐿𝑖 = ∇𝜃𝑖 (𝜃𝑖 − 𝑥𝑖 )
2

= 2(𝜃𝑖 − 𝑥𝑖 ) .
(16)

Substituting the gradient part in Eq. (14) with Eq. (16) and combin-

ing Eq. (15), we get:

𝐿 =
∑︁
𝑖∈𝐺0

[(1 − 2𝛼) (𝜃 − 𝑥𝑖 )]2 +
∑︁
𝑖∈𝐺1

[(1 − 2𝛼) (𝜃 − 𝑥𝑖 )]2 . (17)

Then we can solve the problem in Eq. (14) by solving ∇𝜃𝐿 = 0.

Therefore, we have

𝜃∗ =
𝑚0

𝑚0 +𝑚1

𝑥0 +
𝑚1

𝑚0 +𝑚1

𝑥1, (18)

where 𝜃∗ is the optimum solution of Eq. (14) and 𝑥0 and 𝑥1 are the

centroid of samples in group 0 and group 1 respectively.

Now we define L0 = 1

𝑚0

∑
𝑢𝑖 ∈𝐺0

(𝜃𝑖 − 𝑥𝑖 )2 as the average loss of

users in group 0. Putting 𝜃∗ into L0 and L1, we obtain

L0 = (1 − 2𝛼)2 1

𝑚0

∑︁
𝑢𝑖 ∈𝐺0

(𝜃∗ − 𝑥𝑖 )2 (19)

For the sake of simplicity, we denote 𝐶 as (1 − 2𝛼)2 and L′
0
as

1

𝑚0

∑
𝑢𝑖 ∈𝐺0

(𝜃∗ −𝑥𝑖 )2 respectively. In similar way, we can define L1

and L′
1
.

If we view 𝑥𝑖 as a random variable that drawn from some normal

distributions, then the average loss L0 is also a random variable,

as well as L1.

We denote Lgap as the average loss gap between group 0 and

group 1, i.e.,

Lgap = L0 − L1 = 𝐶 ∗ (L′
0
− L′

1
). (20)

To prove the theorem, we first calculate the expectation and

variance of L′
0
. And the expectation and variance of L′

1
can be

calculated similarly. We let 𝑌𝑖 = 𝜃∗ − 𝑥𝑖 and put Eq. (18) into its

expression, then we have:

𝑌𝑖 = 𝜃∗ − 𝑥𝑖

=
𝑚0

𝑚0 +𝑚1

1

𝑚0

∑︁
𝑢 𝑗 ∈𝐺0

𝑥 𝑗 +
𝑚1

𝑚0 +𝑚1

1

𝑚1

∑︁
𝑢 𝑗 ∈𝐺1

𝑥 𝑗 − 𝑥𝑖

=
1

𝑚0 +𝑚1

∑︁
𝑢𝑗 ∈𝐺0

𝑗≠𝑖

𝑥 𝑗 +
1

𝑚0 +𝑚1

∑︁
𝑗∈𝐺1

𝑥 𝑗 − (1 −
1

𝑚0 +𝑚1

)𝑥𝑖 .

(21)

Since all 𝑥 𝑗 are normal and independent, 𝑌𝑖 is also normal. Accord-

ing to the properties of expectation and variance, we have

E[𝑌𝑖 ] = −
2𝑚1

𝑚0 +𝑚1

𝜂,

and

Var[𝑌𝑖 ] = [1 −
1

𝑚0 +𝑚1

]𝜎2

0
.
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Hence, we get

𝑌𝑖 ∼ N(−
2𝑚1

𝑚1 +𝑚0

𝜂, [1 − 1

𝑚0 +𝑚1

]𝜎2

0
) . (22)

Assume a random variable 𝑧 is drawn from standard normal

distribution, then 𝑌𝑖 =

√︃
1 − 1

𝑚0+𝑚1

𝜎0𝑧 + 2𝑚1

𝑚0+𝑚1

𝜂 and

𝑌 2

𝑖 = [1 − 1

𝑚0 +𝑚1

]𝜎2

0
𝑧2 + 4[ 𝑚1

𝑚0 +𝑚1

]2𝜂2+

4

√︂
1 − 1

𝑚0 +𝑚1

𝑚1

𝑚0 +𝑚1

𝜂 · 𝜎0𝑧. (23)

Take the expectation on both sides of Eq. (23), we get the expec-

tation of the L′
0
:

E[L′
0
] = E[𝑌 2

𝑖 ]

=
𝑚2

1

(𝑚1 +𝑚0)2
𝜂2 + [1 − 1

𝑚0 +𝑚1

]𝜎2

0
.

(24)

Similarly, take the variance on both sides of Eq. (23), we get the

variance of L′
0
:

Var[L′
0
] = 1

𝑚0

Var[𝑌 2

𝑖 ]

=
2

𝑚0

(1 − 1

𝑚0 +𝑚1

)2𝜎4

0
+ 16

𝑚0

(1 − 1

𝑚0 +𝑚1

) ( 𝑚1

𝑚0 +𝑚1

)2𝜂2 .

(25)

The expectation and variance ofL′
1
can be calculated in the same

way:

E[L′
1
] =

𝑚2

0

(𝑚1 +𝑚0)2
𝜂2 + [1 − 1

𝑚0 +𝑚1

]𝜎2

1
, (26)

and

Var[L′
1
] = 1

𝑚1

Var[𝑌 2

𝑖 ]

=
2

𝑚1

(1 − 1

𝑚0 +𝑚1

)2𝜎4

1
+ 16

𝑚1

(1 − 1

𝑚0 +𝑚1

) ( 𝑚0

𝑚0 +𝑚1

)2𝜂2 .

(27)

As a result, we have

E[Lgap] = E[𝐶 (L′0 − L
′
1
)]

= 𝐶 ∗ [E[L′
0
] − E[L′

1
]]

(28)

and

Var[Lgap] = 𝐶2 [2(1 − 1

𝑚0 +𝑚1

)2𝜎4 ( 1

𝑚0

+ 1

𝑚1

)

+ 16(1 − 1

𝑚0 +𝑚1

)𝜂2 (
𝑚3

0
+𝑚3

1

𝑚0𝑚1 (𝑚0 +𝑚1)2
)] . (29)

From Chebyshev’s inequality, for any 𝜖 > 0, we have:

Pr[|Lgap − E[Lgap] | < 𝜖] > 1 −
Var[Lgap]

𝜖2
, (30)

i.e.,

Pr[E[Lgap] − 𝜖 < Lgap < E[Lgap] + 𝜖] > 1 −
Var[Lgap]

𝜖2
. (31)

Since Pr[E[Lgap] − 𝜖 < Lgap] > Pr[E[Lgap] − 𝜖 < Lgap <

E[Lgap] + 𝜖], we have

Pr[E[Lgap] − 𝜖 < Lgap] > 1 −
Var[Lgap]

𝜖2
. (32)

Let 𝜖 = 1

2
E[Lgap], we prove the theorem. □

B.2 Lemma 1
Lemma 1. 𝐹 (𝑝) is quasi-convex, i.e., 𝐹 (𝑡𝑝+(1−𝑡)𝑝′) ≤ max{𝐹 (𝑝),

𝐹 (𝑝′)} for all 𝑡 ∈ [0, 1] and 𝑝 , 𝑝′.

Proof. Before prove the theorem, we first express our objective

as follows:

min

𝑝
|Lopt

0
(𝑝) − Lopt

1
(𝑝) | (33)

whereLopt

0
(𝑝) andLopt

1
(𝑝) are the average losses on group 0 and 1,

respectively, of the optimal model trained with sample probability

𝑝 . Hence, they satisfy the following inequality:

𝑝Lopt

0
(𝑝) + (1 − 𝑝)Lopt

1
(𝑝) ≤ 𝑝L0 + (1 − 𝑝)L1, ∀𝜃 (34)

As known in [4], a continual function 𝑓 : R → R is quasi-

convex if and only if at least of one of the following conditions

holds: 1) non-decreasing, 2) non-increasing, 3) non-increasing and

then non-decreasing. As a result, we can prove the function 𝐹 (𝑝)
is quasi-convex by showing that it is first non-increasing and then

non-decreasing.

To show this, we can first prove that Lopt

0
(𝑝) − Lopt

1
(𝑝) is non-

increasing. After that, the conclusion that 𝐹 (𝑝) is non-increasing
and then non-decreasing can be easily proved.

Considering 𝑝𝑎 > 𝑝𝑏 , if we can prove that Lopt

0
(𝑝𝑎) ≤ Lopt

0
(𝑝𝑏 )

andLopt

1
(𝑝𝑎) ≥ Lopt

1
(𝑝𝑏 ), then it is obvious thatL

opt

1
(𝑝)−Lopt

0
(𝑝)

is non-increasing. We prove this by showing that it is only the cases

that do not contradict known conditions. From Eq. (34) we can

derive following conditions:

𝑝𝑎Lopt

0
(𝑝𝑎) + (1 − 𝑝𝑎)Lopt

1
(𝑝𝑎) ≤ 𝑝𝑎L0 + (1 − 𝑝𝑎)L1, ∀𝜃, (35a)

𝑝𝑏L
opt

0
(𝑝𝑏 ) + (1 − 𝑝𝑏 )L

opt

1
(𝑝𝑏 ) ≤ 𝑝𝑏L0 + (1 − 𝑝𝑏 )L1, ∀𝜃 .

(35b)

We prove Lopt

0
(𝑝𝑎) ≤ Lopt

0
(𝑝𝑏 ) and L

opt

1
(𝑝𝑎) ≥ Lopt

0
(𝑝𝑏 ) by

showing that other cases contradict Eq. (35):

• Case 1 Lopt

0
(𝑝𝑎) > Lopt

0
(𝑝𝑏 ) and L

opt

1
(𝑝𝑎) ≥ Lopt

1
(𝑝𝑏 ):

By multiplying these two inequalities with their correspond-

ing coefficients 𝑝𝑎 and 1 − 𝑝𝑎 , we get:

𝑝𝑎Lopt

0
(𝑝𝑎) + (1−𝑝𝑎)Lopt

1
(𝑝𝑎) > 𝑝𝑎Lopt

0
(𝑝𝑏 ) + (1−𝑝𝑎)L

opt

1
(𝑝𝑏 ),

which is contradicted with Eq. (35a).

• Case 2 Lopt

0
(𝑝𝑎) ≤ Lopt

0
(𝑝𝑏 ) and L

opt

1
(𝑝𝑎) < Lopt

1
(𝑝𝑏 ):

By multiplying these two inequalities with their correspond-

ing coefficients 𝑝𝑏 and 1 − 𝑝𝑏 , we get:

𝑝𝑏L
opt

0
(𝑝𝑏 ) + (1−𝑝𝑏 )L

opt

1
(𝑝𝑏 ) > 𝑝𝑏L

opt

0
(𝑝𝑎) + (1−𝑝𝑏 )L

opt

1
(𝑝𝑎),

which is contradicted with Eq. (35b).

• Case 3 Lopt

0
(𝑝𝑎) > Lopt

0
(𝑝𝑏 ) and L

opt

1
(𝑝𝑎) < Lopt

1
(𝑝𝑏 ):

Add Eq. (35a) with L0 = Lopt

0
(𝑝𝑏 ) and L1 = Lopt

1
(𝑝𝑏 ), and

Eq. (35b) with L0 = Lopt

0
(𝑝𝑎) and L1 = Lopt

1
(𝑝𝑎), we have:

𝑝𝑎Lopt

0
(𝑝𝑎) + (1 − 𝑝𝑎)Lopt

1
(𝑝𝑎) + 𝑝𝑏L

opt

0
(𝑝𝑏 ) + (1 − 𝑝𝑏 )L

opt

1
(𝑝𝑏 )

≤ 𝑝𝑎Lopt

0
(𝑝𝑏 ) + (1 − 𝑝𝑎)L

opt

1
(𝑝𝑏 ) + 𝑝𝑏L

opt

0
(𝑝𝑎) + (1 − 𝑝𝑏 )L

opt

1
(𝑝𝑎).

(36)
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Rearrange the items, we get

(𝑝𝑎−𝑝𝑏 ) [L
opt

0
(𝑝𝑎)−Lopt

0
(𝑝𝑏 )] ≤ (𝑝𝑎−𝑝𝑏 ) [L

opt

1
(𝑝𝑎)−Lopt

1
(𝑝𝑏 )] .
(37)

Since we assume 𝑝𝑎 > 𝑝𝑏 , we can divide the both side of

equation with (𝑝𝑎 − 𝑝𝑏 ) and get

Lopt

0
(𝑝𝑎) − Lopt

0
(𝑝𝑏 ) ≤ L

opt

1
(𝑝𝑎) − Lopt

1
(𝑝𝑏 ), (38)

which contradicts the conditions of Lopt

1
(𝑝𝑏 ) > L

opt

1
(𝑝𝑎)

and Lopt

0
(𝑝𝑎) > Lopt

0
(𝑝𝑏 ).

By showing that all other cases contradict Eq. (35), we prove

Lopt

0
(𝑝𝑎) ≤ Lopt

0
(𝑝𝑏 ) and L

opt

1
(𝑝𝑎) ≥ Lopt

1
(𝑝𝑏 ) holds, which im-

plies the quasi-convexity of 𝐹 (𝑝) as mentioned earlier. Hence we

complete the proof.

□

B.3 Theorem 2
Theorem 2. We denote 𝑝∗ is the optimal value of 𝐹 (𝑝), i.e., 𝑝∗ =

arg𝑝 min 𝐹 (𝑝), then we have,

|𝑝 (𝑡 ) − 𝑝∗ | ≤ max{|𝑝 (0) − 𝑝∗ | − 𝑡𝜏, 𝜏} (39)

Proof. As shown before, Lopt

0
(𝑝) − Lopt

1
(𝑝) is non-increasing

and can reach 0. Therefore, we have Lopt

0
(𝑝) − Lopt

1
(𝑝) ≥ 0 ∀𝑝 ∈

[0, 𝑝∗] and Lopt

0
(𝑝) − Lopt

1
(𝑝) ≤ 0 ∀𝑝 ∈ [𝑝∗, 1], where 𝑝∗ is the

zero point that satisfies Lopt

0
(𝑝∗) − Lopt

1
(𝑝∗) = 0

Then, we complete our proof by considering two cases:

• Case 1 For all 𝑖 ∈ {0, 1, 2, · · ·𝑘}, 𝑝 (𝑖 ) > 𝑝∗ holds or for
all 𝑖 ∈ {0, 1, 2, · · ·𝑘}, 𝑝 (𝑖 ) < 𝑝∗ holds. In this case, ∀𝑖 ∈
{0, 1, 2, · · ·𝑘}, the sign(Lopt

0
(𝑝 (𝑖 ) ) −Lopt

1
(𝑝 (𝑖 ) )) is the same.

Then according to the update rule, we have

|𝑝 (𝑘 ) − 𝑝∗ | = |𝑝 (0) − 𝑝∗ | −
𝑘∑︁
𝑖=0

min{𝛾 |Lopt

0
(𝑝 (𝑖 ) ) − Lopt

1
(𝑝 (𝑖 ) ) |, 𝜏}

(40)

If there exist some 𝑖 such that |Lopt

1
(𝑝 (𝑖 ) )−Lopt

0
0(𝑝 (𝑖 ) ) | = 0,

then we have got an optimal solution 𝑝 (𝑖 ) . Otherwise, we
can find a 𝜏 > 0 such that 𝛾 |Lopt

1
(𝑝 (𝑖 ) ) − Lopt

0
(𝑝 (𝑖 ) ) | > 𝜏 .

In this case, we can rewrite 40 as:

|𝑝 (𝑘 ) − 𝑝∗ | = |𝑝 (0) − 𝑝∗ | − 𝑘𝜏 (41)

• Case 2 ∃ 𝑗 ∈ {0, 1, 2, · · ·𝑘 − 1}, let 𝑝 ( 𝑗 ) < 𝑝∗ < 𝑝 ( 𝑗+1) or
𝑝 ( 𝑗 ) > 𝑝∗ > 𝑝 ( 𝑗+1) .
In this case, we prove |𝑝 (𝑘 ) − 𝑝∗ | ≤ 𝜏 by showing that

|𝑝 (𝑘 ) −𝑝∗ | > 𝜏 contradicts our condition. We assume 𝑝 (𝑘 ) >
𝑝∗ (The other case of 𝑝 (𝑘 ) < 𝑝∗ can be proved in the same

way).

If 𝑝 (𝑘−1) > 𝑝 (𝑘 ) , then we have |𝑝 (𝑘−1)−𝑝∗ | = 𝑝 (𝑘−1)−𝑝∗ >
𝑝 (𝑘 ) − 𝑝∗ > 𝜏 .

If 𝑝∗ < 𝑝 (𝑘−1) < 𝑝 (𝑘 ) , then we have Lopt

0
(𝑝 (𝑘−1) ) −

Lopt

1
(𝑝 (𝑘−1) ) < 0. According to the update rule, we can de-

rive that 𝑝 (𝑘−1) > 𝑝 (𝑘 ) , which is contradict to our condition.

If 𝑝 (𝑘−1) < 𝑝∗ < 𝑝 (𝑘 ) then we have |𝑝 (𝑘 ) − 𝑝∗ | < |𝑝 (𝑘 ) −
𝑝 (𝑘−1) | ≤ 𝜏 , which is contradict to our assumption.

Considering the above three cases, we can derive that if

|𝑝 (𝑘 ) − 𝑝∗ | > 𝜏 holds, then |𝑝 (𝑘−1) − 𝑝∗ | > 𝜏 also holds. As

a result, |𝑝 (𝑖 ) − 𝑝∗ | > 𝜏 must holds for all 𝑖 ∈ {0, 1, 2, · · · , 𝑘}.
However, this contradicts our condition since from the con-

dition there ∃ 𝑗 ∈ {0, 1, 2, · · · , 𝑘 − 1} letting |𝑝 ( 𝑗 ) − 𝑝∗ | <
|𝑝 ( 𝑗 ) − 𝑝 ( 𝑗+1) | ≤ 𝜏 .

To summarize, in this case, |𝑝 (𝑘 ) − 𝑝∗ | ≤ 𝜏 holds.

Combining Case 1 and Case 2, we prove the theorem. □

B.4 Theorem 3
Theorem 3. When 𝑝 reaches its optimal value 𝑝∗, 𝐹 (𝑝∗) = 0.

Proof. We assume that Lopt

0
(𝑝) − Lopt

1
(𝑝) is not always neg-

ative or positive. This assumption is reasonable since it is almost

impossible that the average loss of a group is always bigger than

that of the other group no matter how the training users are sam-

pled. Based on this assumption, according to the intermediate value

theorem, there is a point 𝑝∗ such that Lopt

0
(𝑝∗) − Lopt

1
(𝑝∗) = 0. As

a result, we have 𝐹 (𝑝∗) = 0 where 𝑝∗ is the optimal value of 𝐹 (𝑝).
□

C PARAMETER CONFIGURATION AND
BASELINES

The parameter configuration of FAST is shown in Table 3, and the

baselines are introduced as follows.

Table 3: The parameter configuration of FAST.

ML-1M BookCrossing ML-100K

𝛾 𝜏 𝛾 𝜏 𝛾 𝜏

Melu 0.3 0.8 0.5 0.1 2 0.2

MetaCS 2 0.2 0.3 0.8 2 0.2

• MELU [18]: MELU is a personalized user preference esti-

mation model based on meta-learning, designed for rapid

adaptation to new users.

• MetaCS [2]:MetaCS leverages a highly adaptablemeta-update

strategy for the acquisition of model parameters.

• Reg [38]: Reg is a regularization-based approach. Here, we

incorporates Eq. (2) into the outer-loop loss function.

• IPW [22]: IPW utilizes standard inverse propensity weights

to reweight samples, mitigating fairness issues.

• CLOVER [34]: CLOVER serves as a state-of-the-art fairness

baseline for meta-learning based on adversarial learning.

• Wide & Deep [6]: Wide & Deep predicts user preferences

for items using a deep neural network, employing the same

neural network architecture as MELU.

• DropoutNet [31]: DropoutNet combines the dropout tech-

nique with a deep neural network to effectively learn input

features for addressing cold-start problems.

• NLBA [30]: NLBA trains a cold-start neural network recom-

mender, which maintains constant weights (both output and

hidden) across users, adapting only the biases of output and

hidden units on a per-user basis.
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