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Motivation: Existing accuracy-oriented MF

methods cannot always meet the expectation of end-
users. Users do not necessarily prefer the items with
higher predicted ratings.

Fact : In practice, a user often has several alternatives
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in the recommendation. Confidence weighs in the A ... Coniidenee level ...
user’s decision significantly when the rating itself is . g
not sufficient to make conclusive decisions. 2 !
Definition: The confidence of rating prediction is &
defined as the recommender system’s trust in its ! v .
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prediction.
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How to build confidence-aware

recommender systems?

Goal: Optimize accuracy of rating prediction and measure the prediction

confidence simultaneously in a general framework.

Challenges:

® Requires an unified way to understand and measure the ratings and

confidence from an overall perspective.

® Influence of users and items on rating variances should be both considered.

® The confidence of ratings should be employed to improve the accuracy of

rating prediction.

Implementation

We propose two implementations, i.e., Confidence-aware Probabilistic Matrix
Factorization and Confidence-aware Bayesian Probabilistic Matrix
Factorization, with gradient descent and Bayesian inference, respectively.
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Algorithm 1 Gibbs sampling for CBPMF

I: Initialize factor parameters U°, V'°.
2: fort = 1to1" do

3: Draw factor hyperparameters @Er and @i’/ from Gaussian-Wishart distribu-
tions: P(©% |U*~1) and P(©%,|V*~1) like Equation (11).

4: Draw variance parameters fyfj and fyf/ from Gamma distributions:
I‘(fy;i |a;2 : b;) and I‘(fy;j |G*V; : b;; ).

5: Draw factor parameters U’ and V* from Gaussian distributions:

NU* |yl [AGT]) and N (Vi [AG ).

6:  Draw each rating R;; from N (R;;|(U})T VL, (7; fy; o) h).

J
7. end for
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Confidence-aware Matrix Factorization Framework

e Inputspace: {R;;}: The rating of user i for item j.
e Latent space: {U; and V;}: User-specific and item-specific latent feature
vectors for user i and item j.

Yu; and yy }: Variance parameters of user i and item j.

e QOutput space: Rating prediction and prediction interval.
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Confidence-aware Ranking:

1) A candidate list of more than K elements is generated by ranking mean of
the predicted rating;

2) The candidate list is rearranged by ranking in the order of the defined

value of Sharpe Ratio.

, R;; — Ro
SharpeRatio = :

® R, is a constant and represents the benchmark rating which means items
below this boundary may be unacceptable.
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- Table 1: The statistics of the datasets.
Ex pe rnmen ts Dataset Users Items | Ratings | sparsity
: Movielens 6,040 3,952 IM 4.19%
1.Dataset: We conduct experiments Netflix 480.198 | 17.770 | 100M 1.18%
on three real-world datasets. Jester 59,132 140 1.8M | 21.28%

2.Accuracy Evaluation
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MovieLens | 86.26% (3.74%) | 89.24% (0.76%) 2 V- 74 o
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® By combining accuracy and confidence, our model outperformed alternative methods
on prediction accuracy, confidence measurement and top-K recommendations.

e Extensive experiments on three real-world datasets demonstrate the effectiveness of our
framework from multiple perspectives.

5. Analyzing the Variance Parameters on MovieLens
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