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Introduction Challenges:

@® How to define the learning process and convert it into a proper form for modeling.

@ The learning gain, which represents the knowledge that students acquire in
learning, is implicit and changeable in learning process.

@ students’ knowledge will also decrease over time, which commonly manifests as
forgetting, is also necessary to be considered in the KT task.

Motivation: Knowledge Tracing (KT) is a fundamental and critical task of online
education, which aims to trace students’ changing knowledge state during their
learning process. Most of the existing KT methods pursue high accuracy of student
performance prediction but neglect the consistency of students’ changing knowledge
state with their learning process. They argue that once the student has answered

wrongly, his/her knowledge state on corresponding knowledge concepts will decline. Problem Statement
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The LPKT Model LPKT details
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Figure 2: The architecture of the LPKT model. LGy = Fg : ((l g + 1) / 2)?
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Figure 4: Comparison results of the influence of learning sequence length of LPKT and AKT on ASSISTchall. E mall :



mailto:chinawolfman@hotmail.com

