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1.In AABC.AB = AC, ~BAC = 108°. AD,AE and BC DIRT Framework

Intersect at point D and E. And £BAC 1s divided into v DIRT contains three modules, i.e., input, deep diagnosis and prediction modules.
@ three equal parts, what Is wrong? o Input module initializes a proficiency vector for the student, and embeds question
K_nowlec?ges: Similar trlang_le propertles, Similar texts and knowledge concepts to vectors. Deep diaghosis module diagnoses
triangle judgement, Proportional line segment latent trait, discrimination and difficulty with deep learning to enhance the model.
Prediction module predicts the probability that the student answers the question
correctly with item response function. In the section bellow, we give a specific
x implementation of DIRT which is shown in Figure 2.
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2. Calculate 4sin60° + tan45 - 2+/3
@ Knowledges: Quadratic root operation, Special
trigonometric function

. _ _ The Input: $j
3. Two midlines AD, BE of AABC intersect at G, line P Xy = Z SOftmaX(—;)ki +wy, &=wlk;
@ EF//BC through E and intersect with AD at F V ki€Xg Vv H#0
Knowledges: Parallel line segment proportion, centroid -
Latent Trait: 6 = DNNp (0), @ =a O k = 2 a:k,
Figure 1: A toy example of student question records ki€X

Abstract Discrimination:  ; _ g & siomoid(DNN, (4)—0.5), A= k@ k = Z k;

Cognitive diagnosis is the cornerstone of modern educational techniques. One of Ki€Xq
the most classic cognitive diagnosis methods is Item Response Theory (IRT), which| |Difficulty:
provides interpretable parameters for analyzing student performance. However,
traditional IRT only exploits student response results and has difficulties in fully
utilizing the semantics of question texts, which significantly restricts its| |Prediction:
application. To this end, in this paper, we propose a simple yet surprisingly
effective framework to enhance the semantic exploiting process, which we
termed Deep Item Response Theory (DIRT). In DIRT, we first use a proficiency| |Objective Function:
vector to represent student proficiency on knowledge concepts and represent
guestion texts and knowledge concepts by dense embedding. Then, we use deep

b = 8 X sigmoid(averagePooling(A4)—0.5)

P(6) =

1 4+ e—Da(6-b)

L = Tilegi"?} +(1 — Tl])lOg(l o ?U)

learning to enhance the process of diagnosing parameters of student and i Input Module | : Deep Diagnosis Module : | Prediction Module )
Question by exploiting question texts and the relationship between question : ot | : d; =50 :: :
texts and knowledge concepts. Finally, with the diagnosed parameters, we adopt : o | A :
. . . . ] |
the item response function to predict student performance. Extensive : IS . : - :
experimental results on real-world data clearly demonstrate the effectiveness and | : : | | : ~ |
the interpretability of DIRT framework. | |al ! DN\N  1i| |
: Up I : | : — [
| d; = 50 ; ;
Problem Definition | * 1 N > !
; Knowledges| 1 |1 : a''' N :
| > p—d

Suppose there are L students, M questions and total P knowledge concepts. The : 121 ” % :
history records that L students do M questions are represented by R = {1 <i < : < 31, : : : ] ;
. . [ ~ [
L,1<j<Mj}, where R;; = (Sj,Qj,rij) denotes the student S; obtains score 7; : ¢ | | : DNN bl | ;
[ [
on question Q;. Q; = (QTj, QKj> is composed of question texts QT; and : \ ' :
; . : , Texts |- | ® Avg Pooling ! - :
knowledge concepts QK;. Given students' responses 1;;, question texts QT; and : Att-based LSTM ;= 11 |
j ij j : ' dy = 50 L |
knowledge concepts QK;, our goal is to build a model M to diagnose students’ T TTm T T TT T o m T s o T s s s s s m s S s s

oroficiency on each knowledge concept. Figure 2: Deep Learning Enhanced Item Response Theory Framework

Experimental Results

g T g We conduct extensive experiments to demonstrate the effectiveness of our approach. First, we compare the
E ;EE e performance between DIRT and baseline approaches for performance prediction. Then, we conduct a case study to
£ pom0] £ 1o visualize the explanatory of the DIRT.
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Table 1: The statistics of the dataset - _ - .- -
Figure 4: Overall results of student performance prediction on four metrics
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Figure 5: Visualization of a student’s proficiency on knowledge concepts and the parameters of three questions.
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