
User behavior is easily con-
centrated in a certain frequency band [51], resulting in behavioral
features not being adequately fused in the frequency domain, and
the model can easily overfit local information,

Introduction

Model

⚫ Code search is a crucial task for developers. However, short and ambiguous queries often lead to suboptimal

search results. For example, a developer searches for "save data to a file," the top-ranked result retrieved by

UniXcoder is incorrect, while the ground truth appears much lower in the ranking. A deeper analysis reveals that

the retrieved top result does implement saving data to a file, but it saves in a different format than what the

developer intended (e.g., a generic file format instead of CSV). This discrepancy highlights a fundamental

challenge: developers often struggle to express their precise intent in short queries, leading to ineffective search

results. Addressing this issue is essential to improving the accuracy and usability of code search systems.

⚫Table 2: Comparisons on the datasets.

Experiments

⚫ The results show that methods incorporating programming context (e.g., UniXcoder-Context, ConCR-UniXcoder) outperform traditional code search models,

demonstrating the importance of capturing developers' search intent through context. Notably, the ConCR framework, which models context more effectively, yields

better performance than methods that treat context as a single vector.

⚫ Increasing the context length initially improves performance, but excessive length introduces redundancy that hampers effectiveness. Additionally, the model performs

better on the Java dataset, Java’s strongly typed nature provides clearer developer intent compared to Python’s dynamic typing.

⚫ Ablation experiments reveal that both CHE and CW components are essential for model performance, with the CHE component being particularly crucial for

enhancing context modeling. Furthermore, the number of context samples m positively impacts performance up to a threshold, beyond which redundant information

starts to degrade results.

⚫ In the case study, ConCR effectively captures the developer’s intent by leveraging context, shown through the attention mechanism, while UniXcoder, which does not

consider context, retrieves results that do not align with the developer's true intent.

CodeSearchNet-C Dataset Construction

Framework

Challenge

Motivation

⚫ Existing benchmarks do not provide programming context, making it difficult to study context-aware code search effectively.

⚫ Developers write code in different orders and query at different stages, requiring a realistic simulation of their habits.

⚫ The programming context has a complex hierarchical structure, and extracting relevant information while filtering out noise remains a challenge.

Fig1: The left represents the code search process in UniXcoder.

The middle is the search result. The right represents the scenario of writing code in an IDE.

Fig2: The process of constructing our CodeSearchNet-C dataset.

Enhancing Code Search Intent with Programming Context Exploration

Yanmin Dong1, Zhenya Huang1,2*, Zheng Zhang1, Guanhao Zhao1 , Likang Wu3, Hongke Zhao3, Binbin Jin1 , Qi Liu1

1State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China

2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

3College of Management and Economics, Tianjin University;

Table1: The statistics of the CodeSearchNet-C dataset..

Fig3: The proposed ConCR framework. The left part (a) shows the architecture of ConCR, which consists of two stages:

Context Walking and Context Hierarchical Encoder. The right part (b)(c) shows the details of these two stages, respectively.

⚫ Overview: We propose a novel two-stage ConCR framework. Figure 3(a) shows

the overall framework of ConCR. In the first stage, the Context Walking (CW) (in

Figure 3(c)) samples the CHT, generating variable-length and unordered

programming contexts to simulate different programming habits. In the second

stage, the Context Hierarchical Encoder (CHE) (in Figure 3(b)) hierarchically

model the sampled programming context from local to global to extract useful

information for searching.

⚫ Context Hierarchical Encoder: The programming context has a hierarchical

structure, with elements like classes and functions at different levels, and often

includes irrelevant information. To address this, we introduce CHE, which models

the context from local to global levels, mimicking how developers understand code.

CHE uses two types of embeddings—node and subtree embeddings—to capture

relevant information for search.

⚫ Context Walking: Programming habits vary among developers, such as

differences in the order of writing code and where they perform queries. For

example, one developer might write "load_csv" before "process_data," while

another does it in the opposite order. These variations result in different orders and

lengths of programming context. To address this, we design a context walking

algorithm that generates variable-length and unordered contexts to simulate

different developers' habits, using two sampling criteria to ensure diversity and

correctness.

